24 Partialbruchzerlegung und elementare Stammfunktionen

Größe: px
Ab Seite anzeigen:

Download "24 Partialbruchzerlegung und elementare Stammfunktionen"

Transkript

1 4 Partialbruchzerlegung und elementare Stammfunktionen 4 Partialbruchzerlegung und elementare Stammfunktionen Aufgabe: Versuchen Sie, 0 d und 4 0 d 6 und zu berechnen. 4. Rationale Funktionen. a) uotienten R = P von Polynomen werden als rationale Funktionen bezeichnet, Notation: R C(z). Nach (7.4) lassen sich Zähler und Nenner in Produkte von Linearfaktoren zerlegen; durch Kürzen gemeinsamer Linearfaktoren läßt sich daher erreichen, daß für alle w C stets P(w) 0 oder (w) 0 gilt. b) Eine Zahl w C heißt Pol von R = P C(z), falls (w) = 0 und P(w) 0 gilt. Die Vielfachheit m von w als Nullstelle von heißt Polordnung von R in w. Im Fall m = heißt w einfacher Pol von R. Beweise zu diesem Abschnitt findet man in [K], Abschnitt Theorem (Partialbruchzerlegung). Es sei R = P C(z) eine rationale Funktion, und (z) = α r (z z j ) m j sei die Zerlegung von in Linearfaktoren j= gemäß (7.4). Dann gibt es T C[z] und c j,k C mit R(z) = T(z) r m j j= k= c j,k (z z j ) k. () Durch () sind T C[z] und die c j,k C eindeutig bestimmt. 4.3 Beispiel. Zur praktischen Durchführung einer Partialbruchzerlegung setzt man () mit unbestimmten Koeffizienten an und berechnet diese anschließend. Beispiel: R(z) = z z 3 z z. 4.4 Einfache Pole. a) Es sei z ein einfacher Pol der rationalen Funktion R = P C(z). Für degp < deg gilt nach () R(z) = c z z R (z), wobei z kein Pol von R ist. Daraus ergibt sich c = (z z )(R(z) R (z)) = z z (z) (z ) P(z) (z z )R (z). () b) Für komplee Polynome (z) = n a k z k eistiert die komplee Ableitung (z) (w) (w) = lim z w z w k=0 = n ka k z k für w C. (3) k= c) Für (z) = (z z ) m (z) C[z] mit m N und (z ) 0 liefert die Produktregel (z) = m(z z ) m (z)(z z ) m (z), also m = (z ) 0. Mit z z in () folgt somit die Aussage c = P(z ) (z ). (4)

2 III. Grundlagen der Differential - und Integralrechnung 4.5 Beispiel. Mit ǫ := E( π ) = cos π isin π von R(z) := zu z 4 ergibt sich diepartialbruchzerlegung 4R(z) = ǫ 3 (z ǫ) ǫ(z ǫ 3 ) ǫ 7 (z ǫ 5 ) ǫ 5 (z ǫ 7 ). (5) 4.6 Partialbruchzerlegung im Reellen. a) Für R = P R() ist mit z j auch z j eine Nullstelle von. Nach 8.8 ist ein endliches Produkt von Konstanten, Linearfaktoren (z a), a R, und von quadratischen Faktoren (z pzq) mit p,q R ohne reelle Nullstellen, d.h. p < q. b) Damit ist dann R eine Summe aus einem reellen Polynom sowie reellen Termen A ( a j ) l, l s j, und BC ( p k q k ) l, l t k. (6) c) Aus (5) oder durch Ansatz mit unbestimmten Koeffizienten erhält man 4 = 4 4. (7) 4.7 Integration rationaler Funktionen a) Wegen 4. sind zur Integration rationaler Funktionen nur Polynome und Funktionen der Form ( a) n, a R, cd n N (über Intervalle I mit I a) sowie mit p < q zu integrieren. ( pq) n b) Die Substitution t = pq liefert dt = (p)d und somit p ( pq) d = t n dt. (8) n c) Es bleibt d zu berechnen. Die Substitution t = α(p) liefert ( pq) n d = ( αn pq) n wenn α > 0 mit α = p q gewählt wird. dt, (9) (t ) n d) Die Integrale I m () := d können nur rekursiv berechnet werden. Für m = ( ) m ist d = arctan, und für m > folgt wegen d = ( ) m ( m)( ) m mit partieller Integration I m () = ( ) m d = I m () ( m)( ) m d ( m)( ) m = m 3I m m (). (0) (m )( ) m e) Für m = 0 beispielsweise ergibt sich ( ) 0 d = 8( ) ( ) ( ) ( ) ( ) ( ) ( ) 65536( ) ( ) 5 55 arctan Beispiel. Aus (7) erhält man d = log ( ) 4 8 ( ) 4 arctan( )arctan( ). ()

3 4 Partialbruchzerlegung und elementare Stammfunktionen Rationale Funktionen in mehreren Variablen. Für die Formulierung der folgenden Beispiele ist es bequem, rationale Funktionen in zwei oder drei Variablen zu verwenden. Ein Polynom in zwei Variablen u, v ist eine endliche Summe von Ausdrücken cu m v n mit m,n N 0 und c R, etwa P(u,v) = 3u 3 v uv 4u. uotienten R = P / solcher Polynome heißen rationale Funktionen; man schreibt R R(u, v). Entsprechend werden rationale Funktionen R R(u, v, w) in drei Variablen definiert. 4.0 Beispiele. Für R R(u) wird I := R(e )d berechnet. Die Substitution t = e liefert wegen dt = e d = td sofort I = R(t) dt, wobei natürlich noch t t = e einzusetzen ist. Damit ist die Berechnung von I auf die in 4.7 behandelte Methode zurückgeführt. 4. Beispiele. a) Für R R(u,v) berechnet man R(coss,sins)ds mit der Substitution t = tan s dt oder s = arctant. Man hat dann ds = sowie t cos s = tan s = t, sin s = s cos = t t, also coss = cos s sin s = t t, sins = sin s cos s = t t, also R(coss,sins)ds = R ( ) t t dt t, t t. () b) Oft läßt sich R(coss,sins)ds auch einfacher berechnen. Ist etwa R(u,v) ungeradeinu, sogiltr(u,v) = ur (u,v), alsor(cos,sin) = cosr (cos,sin) = cosr (sin). Mit t = sin gilt dann einfach R (sin)cosd = R (t)dt. 4. Beispiel. a) Für R R(u,v) und a > 0 wird nun R(, a )d (über dem Intervall ( a,a)) berechnet. Wegen a = a ( / a ) wird dies mit w = a zunächst auf R (w, w )dw reduziert. Mit w = coss, 0 s π, erhält man dann R (w, w )dw = R (coss,sins) sinsds. (3) Man kann auch direkt w = t t substituieren und erhält dann R (w, w )dw = ( ) t t 4tdt R t, t (t ). (4) b) Für R R(u,v) kann man zur Berechnung der Integrale R(, a )d und R(, a )d wieder sofort a = annehmen. Bequeme Substitutionen ergeben sich mit Hilfe der Hyperbel-Funktionen:

4 4 III. Grundlagen der Differential - und Integralrechnung 4.3 Sinus und Kosinus hyperbolicus werden definiert durch sinh = (e e ), (5) cosh = (e e ). (6) a) Offenbar gilt sinh = cosh, cosh = sinh. b) Die Funktion cosh ist gerade, und man hat cosh cosh0 = für R. c) Die Funktion sinh ist ungerade, und man hat 0 = sinh0 < sinh < cosh für > 0. d) Man hat sinh für und lim sinh cosh =. e) Es gelten die Funktionalgleichungen sinh(y) = sinhcoshy sinhycosh, (7) cosh(y) = coshcoshy sinhsinhy. (8) f) Insbesondere hat man stets cosh sinh =. Die Abbildung λ : R R, λ(t) := (cosht,sinht), (9) parametrisiert also den Hyperbelast H := {(,y) R > 0, y = }. 4.4 Tangens und Kotangens hyperbolicus werden definiert durch tanh = sinh cosh e (0) coth = cosh, 0. sinh e () a) tanh : R (,) ist ungerade, streng monoton wachsend und bijektiv. Es gilt tanh = cosh = tanh. () b) coth : R\{0} R ist ungerade, coth : (0, ) (, ) ist streng monoton fallend und bijektiv. Weiter gilt coth = sinh = coth, 0. (3) 4.5 Areafunktionen. Die Umkehrfunktionen von sinh, cosh, tanh, coth sind Arsinh = log( ) (4) Arcosh = log( ), (5) Artanh = Arcoth = log, < (6), >. (7) log Eemplarisch wird nur (4) bewiesen: Es ist = sinhy = (ey e y ) äquivalent zu e y e y = 0, d.h. zu e y = ±. Offenbar ist nur das Zeichen möglich, und daraus folgt (4). Die Ableitungen der Area-Funktionen findet man in der folgenden Tabelle, in der noch einmal eine Reihe wichtiger Stammfunktionen zusammengestellt wird:

5 4 Partialbruchzerlegung und elementare Stammfunktionen Tabelle. Funktion f Stammfunktion F Definitionsbereich n (n N 0 ) n n α α (α ) α > 0 / log 0 e e R cos sin R sin cos R arctan R Artanh < Arcoth > Arsinh R arcsin < Arcosh > R 4.7 Beispiele. Für R R(u,v) liefert die Substitution = sinht R(, )d = R(sinht,cosht) coshtdt; (8) die Substitution = cosht ergibt (für ) R(, )d = R(cosht,sinht) sinhtdt. (9) Nach (5) und (6) sind die neuen Integranden rationale Funktionen in e t, und man kann weiter wie in Beispiel 4.0 b) verfahren. 4.8 Definition. Es sei I R ein Intervall. Eine Funktion f F(I,R) heißt algebraisch, wenn es Polynome P 0,..., P n R[] mit P 0 P f P f P n f n = 0 und P n 0 (30) gibt. Nicht algebraische Funktionen heißen transzendent. 4.9 Beispiele. a) Für n = erhält man aus (30) die rationalen Funktionen, für n = Ausdrücke in uadratwurzeln und rationalen Funktionen wie etwa f() := 4. Auch Ausdrücke wie a() := 6 3 sind algebraische Funktionen. b) Für n 5 lassen sich algebraische Funktionen i.a. nicht durch Wurzeln ausdrücken, auch nicht im Kompleen (vgl. Bemerkung 8.7 c)). c) Die Eponentialfunktion ep ist transzendent. Andernfalls gibt es Polynome P 0,, P n R[] mit P 0 P e P n e n 0, und nach Division durch e n folgt der Widerspruch P n () 0 für.

6 6 III. Grundlagen der Differential - und Integralrechnung Es kann nun der Begriff der elementaren Funktion, der ja in der Überschrift des Kapitels wie auch des Abschnitts auftritt, etwas genauer gefaßt werden: Elementare Funktionen sind solche, die durch algebraische Operationen, Verkettungen und Umkehrungen aus algebraischen Funktionen, der Eponentialfunktion, Sinus und Kosinus bildbar sind. Alle in Tabelle 4.6 auftretenden Funktionen sind elementar. Nach 4.7 besitzen rationale Funktionen elementare Stammfunktionen, und dies gilt auch für die in den Beispielen 4.0, 4. und 4.7 betrachteten Funktionenklassen. Andererseits besitzen viele elementare Funktionen wie etwa e oder sin keine elementaren Stammfunktionen; dieses Phänomen tritt auch bei der Berechnung der Längen von Ellipsenbögen auf, vgl. [K], Abschnitt 30*.

23 Elementare Stammfunktionen

23 Elementare Stammfunktionen 3 Elementare Stammfunktionen 3 Elementare Stammfunktionen 07 Lernziele: Konzept: Elementare Funktion Resultat: Rationale Funktionen besitzen elementare Stammfunktionen Methoden: Partialbruchzerlegung,

Mehr

Vortragsübung am 25. April 2014

Vortragsübung am 25. April 2014 Seite von 6 Termin: 5. April 04 Vortragsübung am 5. April 04.. Berechnen Sie den Grenzwert lim n ( n + + n + + + ), n indem Sie ihn als Riemann-Summe eines Integrals auffassen... Bestimmen Sie folgende

Mehr

19. Weitere elementare Funktionen

19. Weitere elementare Funktionen 19. Weitere elementare Funktionen 1. Der Arcussinus Die Sinusfunktion y = f(x) = sin x (mit y = cos x) ist im Intervall [ π, π ] streng monoton wachsend und somit existiert dort eine Umkehrfunktion. f

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 016/17 Dr. K. Rothe Analsis I für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt 3 Gegeben sei eine Funktion f :

Mehr

Elementare Funktionen. Analysis I November 28, / 101

Elementare Funktionen. Analysis I November 28, / 101 Elementare Funktionen Analysis I November 28, 2017 76 / 101 Exponentialfunktion Buch Kap. 2.3 Exponentialfunktionen f(x) = a x, a > 0, D = R. Ist a = e (Eulerzahl e = 2, 71828...), sprechen wir von der

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 04/05 0..04 Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 7. Übungsblatt

Mehr

Musterlösungen zu Blatt 14

Musterlösungen zu Blatt 14 Musterlösungen zu Blatt 4 Aufgabe 79 Sei F eine Stammfunktion von f (eistiert, da f stetig ist). Dann ist b() a() f(t)dt = F (b()) F (a()) nach dem Hauptsatz der Differential- und Integralrechnung. Man

Mehr

HM I Tutorium 8. Lucas Kunz. 12. Dezember 2018

HM I Tutorium 8. Lucas Kunz. 12. Dezember 2018 HM I Tutorium 8 Lucas Kunz. Dezember 08 Inhaltsverzeichnis Theorie. Stetigkeit und Grenzwerte............................ Sinus und Cosinus.................................3 Tangens und Cotangens............................

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Motivation. Inhalt. Einführung in die Mathematik für Wirtschaftswissenschaften. Vorlesung im Wintersemester Kurt Frischmuth WS 2017

Motivation. Inhalt. Einführung in die Mathematik für Wirtschaftswissenschaften. Vorlesung im Wintersemester Kurt Frischmuth WS 2017 Inhalt 1 Motivation Einführung in die Mathematik für Wirtschaftswissenschaften Vorlesung im Wintersemester 2017 Kurt Frischmuth Institut für Mathematik, Universität Rostock WS 2017 2 Grundlagen Begriffe

Mehr

Merkblatt zur Integration (1)

Merkblatt zur Integration (1) Als erstes sollte man sich anschauen Merkblatt zur Integration () ) was die Integrationsvariable ist B.: ( y ) d y + C, da y eine KONSTANTE ist y Analog: ( y ) dy + C, da hier eine KONSTANTE ist ) ob es

Mehr

3. Übung zur Analysis II

3. Übung zur Analysis II Universität Augsburg Sommersemester 207 3. Übung zur Analysis II Prof. Dr. Marc Nieper-Wißkirchen Caren Schinko, M. Sc. 8. Mai 207 3. (a) m. Die Dirichletsche Reihe. In Abschnitt 5.8 haben wir bereits

Mehr

TRIGONOMETRISCHE UND HYPERBOLISCHE FUNKTIONEN

TRIGONOMETRISCHE UND HYPERBOLISCHE FUNKTIONEN TRIGONOMETRISCHE UND HYPERBOLISCHE FUNKTIONEN Zusammenfassung. Wir listen die wichtigsten Grundtatsachen trigonometrischer und hyperbolischer Funktionen auf... Sinus.. Trigonometrische Funktionen analytische

Mehr

Lösung zur Übung für Analysis einer Variablen WS 2016/17. f 1(x) = ln x + 1 (1) k=0. dx ee ln x = x xx (x x 1 + x x (1 + ln x) ln x) (3)

Lösung zur Übung für Analysis einer Variablen WS 2016/17. f 1(x) = ln x + 1 (1) k=0. dx ee ln x = x xx (x x 1 + x x (1 + ln x) ln x) (3) Blatt Nr. Prof. F. Merkl Lösung zur Übung für Analysis einer Variablen WS 06/7 Aufgabe Die Ableitungen der Funktionen in Frage sind: a): b): c): d): f () ln + () f () d n k0 k d n! n! ( k) () n n l0 k0

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).

Mehr

Serie 12 - Integrationstechniken

Serie 12 - Integrationstechniken Analysis D-BAUG Dr. Meike Akveld HS 5 Serie - Integrationstechniken. Berechnen Sie folgende Integrale: a e x cos(x dx Wir integrieren zwei Mal partiell, bis wir auf der rechten Seite wieder das Integral

Mehr

6.4 Stetige Funktionen

6.4 Stetige Funktionen 6.4 Stetige Funktionen Eine Funktion f heißt stetig im Punkt a, falls sie dort definiert ist und folgende Gleichung erfüllt: lim /a f = f a Ist dies für alle Punkte des Definitionsbereichs A erfüllt, so

Mehr

Spezielle Klassen von Funktionen

Spezielle Klassen von Funktionen Spezielle Klassen von Funktionen 1. Ganzrationale Funktionen Eine Funktion f : R R mit f (x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, n N 0 und a 0, a 1,, a n R, (a n 0) heißt ganzrationale Funktion n

Mehr

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z Aufgabe Zeigen Sie mit vollständiger Induktion: Für alle n N gilt (8 Punkte) n ( + z 2j ) = 2n+, wobei z C, z, eine komplexe Zahl ist Lösung [8 Punkte] Induktionsanfang: n = : ( + z 2j ) = ( + z 2 ) =

Mehr

29 Komplexe Zahlen und Polynome

29 Komplexe Zahlen und Polynome 29 Komplexe Zahlen und Polynome 30 Komplexe Zahlen und Polynome 147 Lernziele: Konzepte: Komplexe Zahlen Resultate: Fundamentalsatz der Algebra Methoden: Polarkoordinaten Kompetenzen: Lösung kubischer

Mehr

Formelsammlung spezieller Funktionen

Formelsammlung spezieller Funktionen Lehrstuhl A für Mathematik Aachen, en 70700 Prof Dr E Görlich Formelsammlung spezieller Funktionen Logarithmus, Eponential- un Potenzfunktionen Natürlicher Logarithmus Der Logarithmus ist auf (0, ) efiniert

Mehr

HM I Tutorium 9. Lucas Kunz. 22. Dezember 2017

HM I Tutorium 9. Lucas Kunz. 22. Dezember 2017 HM I Tutorium 9 Lucas Kunz. Dezember 017 Inhaltsverzeichnis 1 Theorie 1.1 Exponentialfunktion.............................. 1. Sinus und Cosinus................................ 1.3 Tangens und Cotangens............................

Mehr

Einführung in die Mathematik für Wirtschaftswissenschaften.

Einführung in die Mathematik für Wirtschaftswissenschaften. Einführung in die Mathematik für Wirtschaftswissenschaften. Mathias Sawall Institut für Mathematik, Universität Rostock WS 2018/2019 Mathias Sawall Einführung in die Mathematik für Wirtschaftswissenschaften

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 11. Übungsblatt. { wachsend fallend

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 11. Übungsblatt. { wachsend fallend UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 8/9 Aufgabe Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

Analysis I. Vorlesung 27. Stammfunktionen zu rationalen Funktionen in der Exponentialfunktion

Analysis I. Vorlesung 27. Stammfunktionen zu rationalen Funktionen in der Exponentialfunktion Prof. Dr. H. Brenner Osnabrück WS 03/04 Analysis I Vorlesung 7 Stammfunktionen zu rationalen Funktionen in der Exponentialfunktion Nachdem wir nun rationale Funktionen integrieren können, können wir auch

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Demo-Text für Hyperbolische Funktionen. Sinus hyperbolicus Kosinus hyperbolicus Tangens hyperbolicus. u. a.

Demo-Text für   Hyperbolische Funktionen. Sinus hyperbolicus Kosinus hyperbolicus Tangens hyperbolicus. u. a. Höhere Analysis Hyperbolische Funktionen Sinus hyperbolicus Kosinus hyperbolicus Tangens hyperbolicus u. a. Tet Nr. 50 Stand: 5. Mai 08 Demo-Tet für FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Übungen zu Einführung in die Analysis

Übungen zu Einführung in die Analysis Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung

Mehr

Beispiel zu Umkehrfunktionen des Sinus

Beispiel zu Umkehrfunktionen des Sinus Beispiel zu Umkehrfunktionen des Sinus Die Funktion f : [ π, π ] [, ], x sin(x) besitzt die Umkehrfunktion f Arcsin (Hauptzweig des Arcussinus). Wir betrachten die beiden Funktionen g : [ 3 π, 5 π] [,

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +

Mehr

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung Mathematik I Herbstsemester 208 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas / 70 5. Integralrechnung Grundbegriffe Das bestimmte Integral als Flächeninhalt Der Fundamentalsatz Partielle

Mehr

5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 115

5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 115 5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 5 Satz 5.5.2 (Ableitung der Umkehrfunktion einer Winkelfunktionen) Die Umkehrfunktionen der trigonometrischen Funktionen sind nach Satz 5.2.3 auf den

Mehr

Grundkurs Höhere Mathematik I (für naturwissenschaftliche. Studiengänge) Beispiele

Grundkurs Höhere Mathematik I (für naturwissenschaftliche. Studiengänge) Beispiele Grundkurs Höhere Mathematik I (für naturwissenschaftliche Studiengänge) Beispiele Prof. Dr. Udo Hebisch Diese Beispielsammlung ergänzt das Vorlesungsskript und wird ständig erweitert. 1 DETERMINANTEN 1

Mehr

Brückenkurs Mathematik. Dienstag Freitag

Brückenkurs Mathematik. Dienstag Freitag Brückenkurs Mathematik Dienstag 2.0. - Freitag 2.0. Vorlesung 5 Elementare Funktionen Kai Rothe Technische Universität Hamburg Dienstag 9.0. 0 Brückenkurs Mathematik, c K.Rothe, Vorlesung 5 Umkehrfunktion........................

Mehr

die kanonische Faktorisierung von p. Dann besitzt q/p eine Summendarstellung

die kanonische Faktorisierung von p. Dann besitzt q/p eine Summendarstellung Partialbruchzerlegung rationaler Funktionen Satz 4 (komplexe Partialbruchzerlegung) Es sei q/p eine echt gebrochen rationale Funktion, dh deg q < deg p und es sei p(z) = c (z z 1 ) α 1 (z z k ) α k die

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen

Mehr

Die Bedeutung der Areafunktionen

Die Bedeutung der Areafunktionen Die Bedeutung der Areafunktionen Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 8. März 003 Die Umkehrfunktionen der hyperbolischen Funktionen heißen Areafunktionen. Woher dieser Name kommt, und

Mehr

Mathematik für Naturwissenschaften Aufgaben mit Ergebnissen Differenzialrechnung

Mathematik für Naturwissenschaften Aufgaben mit Ergebnissen Differenzialrechnung Hans Walser Mathematik für Naturwissenschaften Aufgaben mit sen 3 3 4 4 5 5 6 6 7 Differenzialrechnung Differenzialrechnung, Aufgaben ii Inhalt Steigung... Beweis?... 3 Spiel mit Eponenten... 4 Ableitung...

Mehr

Lösung - Serie 10. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Berechnen Sie die Partialbruchzerlegung von

Lösung - Serie 10. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Berechnen Sie die Partialbruchzerlegung von D-MAVT/D-MATL Analysis I HS 8 Dr. Andreas Steiger Lösung - Serie MC-Aufgaben (Online-Abgabe). Berechnen Sie die Partialbruchzerlegung von + +. (a) + + + ( ). (b) + + + + ( ). (c) + + + + ( ). (d) + + +

Mehr

D-ITET Analysis II FS 13 Prof. Horst Knörrer. Musterlösung 1. 3xy 2 = 2 x 2. y y. 3 y y. 3 x v x + v = 2 3 v v.

D-ITET Analysis II FS 13 Prof. Horst Knörrer. Musterlösung 1. 3xy 2 = 2 x 2. y y. 3 y y. 3 x v x + v = 2 3 v v. D-ITET Analysis II FS 3 Prof. Horst Knörrer Musterlösung. a) Es gilt: dy d 3 + y 3 3y 3 y + y 3. Dies ist eine homogene Differentialgleichung, das heisst y hängt nur von y ab. Setze v : y y() v() y v +

Mehr

Faktorisierung von Polynomen

Faktorisierung von Polynomen Faktorisierung von Polynomen Ein Polynom p vom Grad n besitzt, einschließlich Vielfachheiten, genau n komplexe Nullstellen z k und lässt sich somit als Produkt der entsprechenden Linearfaktoren schreiben:

Mehr

Integralrechnung. Neben der Differentialrechnung ist die Integralrechnung die zweite tragende Säule der Analysis, Kapitel 5

Integralrechnung. Neben der Differentialrechnung ist die Integralrechnung die zweite tragende Säule der Analysis, Kapitel 5 Kapitel 5 Integralrechnung Neben der Differentialrechnung ist die Integralrechnung die zweite tragende Säule der Analysis, deren Fundament natürlich nach wie vor Konvergenz und Grenzwertbegriff sind. 5.

Mehr

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln $Id: integral.tex,v.5 2009/05/05 4:57:29 hk Exp hk $ 2 Integralrechnung 2.3 Die Integrationsregeln Wir wollen noch eine letzte kleine Anmerkung zur Substitutionsregel machen. Der letzte Schritt bei der

Mehr

Definition von Sinus und Cosinus

Definition von Sinus und Cosinus Definition von Sinus und Cosinus Definition 3.16 Es sei P(x y) der Punkt auf dem Einheitskreis, für den der Winkel von der positiven reellen Halbachse aus (im Bogenmaß) gerade ϕ beträgt (Winkel math. positiv,

Mehr

ANALYSIS I FÜR TPH WS 2018/19 7. Übung Übersicht

ANALYSIS I FÜR TPH WS 2018/19 7. Übung Übersicht 7. Übung Übersicht Aufgaben zu Kapitel 1, 11 und (ein wenig) 12 Aufgabe 1: Kurvendiskussion (i) Aufgabe 2: Kurvendiskussion (ii) Aufgabe 3: ( ) Kurvendiskussion (iii) Aufgabe 4: ( ) Beweis einer Ungleichung

Mehr

Trigonometrische Substitutionen

Trigonometrische Substitutionen Trigonometrische Substitutionen Mit Hilfe der folgenden Substitutionen lassen sich eine Reihe von elementaren algebraischen Integranden explizit berechnen: x = a sin t : x = a tan t : x = a/ cos t : =

Mehr

3 Grenzwert und Stetigkeit 1

3 Grenzwert und Stetigkeit 1 3 Grenzwert und Stetigkeit 3. Grenzwerte bei Funktionen In diesem Abschnitt gilt: I ist immer ein beliebiges Intervall, 0 I oder einer der Endpunkte. 3.. Definition Sei I Intervall, 0 IR und 0 I oder Endpunkt

Mehr

Analysis II - 1. Klausur

Analysis II - 1. Klausur Analysis II -. Klausur Sommersemester 25 Vorname: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Analysis II -. Klausur 2.5.25 Aufgabe 2 Punkte Berechnen

Mehr

10 Differenzierbare Funktionen

10 Differenzierbare Funktionen 10 Differenzierbare Funktionen 10.1 Definition: Es sei S R, x 0 S Häufungspunkt von S. Eine Funktion f : S R heißt im Punkt x 0 differenzierbar, wenn der Grenzwert f (x 0 ) := f(x 0 + h) f(x 0 ) lim h

Mehr

Münchner Volkshochschule. Themen

Münchner Volkshochschule. Themen Themen Logik und Mengenlehre Zahlensysteme und Arithmetik Gleichungen und Ungleichungen Lin. Gleichungssysteme und spez. Anwendungen Geometrie und Trigonometrie Vektoren in der Ebene und Punktemengen Funktionen

Mehr

Kapitel 12. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 12. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel Aufgaben Verständnisfragen Aufgabe. Als Umkehrung welcher Rechenregeln ergeben sich Substitution und partielle Integration? Aufgabe. Man bestimme das Integral π sinh cos I π + d Aufgabe. Substituieren

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

VERTIEFUNGSKURS MATHEMATIK. Es gibt drei ganz einfache Techniken zum Integrieren von etwas komplizierteren

VERTIEFUNGSKURS MATHEMATIK. Es gibt drei ganz einfache Techniken zum Integrieren von etwas komplizierteren VERTIEFUNGSKURS MATHEMATIK ÜBUNGEN Es gibt drei ganz einfache Techniken zum Integrieren von etwas komplizierteren Funktionen: () Mit der Partialbruchzerlegung lässt sich jede gebrochen-rationale Funktion

Mehr

1. ( e -x + e -(- x) 1. . ( e x + e - x ) . ( e x - e - x 2. Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Analysis Übung 15 Folie 1

1. ( e -x + e -(- x) 1. . ( e x + e - x ) . ( e x - e - x 2. Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Analysis Übung 15 Folie 1 04.03.04 Übung 5a Analysis, Abschnitt.5, Folie Definition der hyperbolischen Funktionen: sinus hyperbolicus: sinh( ). ( e - e - ) cosinus hyperbolicus: cosh( ). ( e + e - ) tangens hyperbolicus: sinh(

Mehr

Analysis I Lösung von Serie 14. Um die Inhomogene DGl zu lösen, müssen wir partikuläre Lösungen finden. (a) Wir machen den Ansatz:

Analysis I Lösung von Serie 14. Um die Inhomogene DGl zu lösen, müssen wir partikuläre Lösungen finden. (a) Wir machen den Ansatz: d-infk Lösung von Serie 4 FS 07 4.. Inhomogene Lineare Differentialgleichungen Das charakteristische Polynom der homogenen DGl y (4) + y + y = 0 ist λ 4 + λ + = (λ + ). Seine Wurzeln sind ±i und jede hat

Mehr

8.2. Integrationsregeln

8.2. Integrationsregeln 8.. Integrationsregeln Jeder Differentiationsregel entspricht wegen der Beziehung F ( x ) f( x ) F( x ) + C f( x ) dx eine Integrationsregel. Wir kennen schon die Additionsregel c f( x ) + d g( x )

Mehr

(1) gegeben. Für x a (und stetige f ) nähert sich (x,f(x)) dem Punkt (a,f(a)), und die Sekante

(1) gegeben. Für x a (und stetige f ) nähert sich (x,f(x)) dem Punkt (a,f(a)), und die Sekante 88 III. Grundlagen der Differential - und Integralrecnung III. Grundlagen der Differential- und Integralrecnung 8. Differenzierbare Funktionen 88 9. Maima und Minima 93 0. Mittelwertsätze und Anwendungen

Mehr

Kapitel 4. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 4. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel 4 Aufgaben Verständnisfragen Aufgabe 4. Bestimmen Sie ein Polynom vom Grad 3, das die folgenden Werte annimmt 0 p) 3 3 Aufgabe 4. Jede Nullstelle ˆ eines Polynoms p mit p) = a 0 + a +...+ a n n

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Analysis I. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 6. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 26, 2017 1 Erinnerung Eine Abbildung f : X Y heisst injektiv, falls 1, 2 X : 1 2 f( 1 ) f( 2 ). (In Worten:

Mehr

2.2 Reellwertige Funktionen

2.2 Reellwertige Funktionen 4 Kapitel. Differentialrechnung in einer Variablen. Reellwertige Funktionen Ein zentraler Begriff der Mathematik ist der Begriff der Abbildung oder Funktion, und dieses Konzept taucht in den verschiedensten

Mehr

Analysis I. Arbeitsblatt 25. Übungsaufgaben. π x sin x 2 dx.

Analysis I. Arbeitsblatt 25. Übungsaufgaben. π x sin x 2 dx. Prof. Dr. H. Brenner Osnabrück WS 23/24 Analysis I Arbeitsblatt 25 Übungsaufgaben Aufgabe 25.. Berechne das bestimmte Integral π x sin x 2 dx. In den folgenden Aufgaben, bei denen es um die Bestimmung

Mehr

11 Spezielle Funktionen und ihre Eigenschaften

11 Spezielle Funktionen und ihre Eigenschaften 78 II. ANALYSIS 11 Spezielle Funktionen und ihre Eigenschaften In diesem Abschnitt wollen wir wichtige Eigenschaften der allgemeinen Exponentialund Logarithmusfunktion sowie einiger trigonometrischer Funktionen

Mehr

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 25.06.2018 20. Juni 2018 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2018 Steven Köhler 20. Juni 2018 Konvergenz

Mehr

SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2

SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2 SBP Mathe Grundkurs 2 # 0 by Clifford Wolf SBP Mathe Grundkurs 2 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

8 Reelle Funktionen. 16. Januar

8 Reelle Funktionen. 16. Januar 6. Januar 9 54 8 Reelle Funktionen 8. Reelle Funktion: Eine reelle Funktion f : D f R ordnet jedem Element x D f der Menge D f R eine reelle Zahl y R zu, und man schreibt y = f(x), x D. Die Menge D f heißt

Mehr

Serie 4: Flächeninhalt und Integration

Serie 4: Flächeninhalt und Integration D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr. Ana Cannas Serie 4: Flächeninhalt und Integration Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom. und 4. Oktober.. Das Bild zeigt

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

21 Bogenlängen, Sinus und Kosinus

21 Bogenlängen, Sinus und Kosinus 1 Bogenlängen, Sinus und Kosinus 19 Bogenlängen, Sinus und Kosinus 99 Lernziele: Konzepte: Bogenlängen, Sinus und Kosinus Resultat: Eine C 1 -Funktion hat die Bogenlänge L a (f) = a 1+f (x) dx. In diesem

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

Einführung in die Algebra

Einführung in die Algebra 1 Einführung in die Algebra 1.1 Wichtige Formeln Formel Symbol Definition Wert Bedingungen n Fakultät n! k = 1 2 3 n n N Binomialkoeffizient Binomische Formeln Binomischer Lehrsatz Potenzen ( ) n k Definition

Mehr

2. Umkehrfunktionen und ihre Ableitung, Hyperbelfunktionen 2.1. Höhere Ableitungen. Die Ableitung der Ableitung von f bezeichnet man, x 2, fur x < 0,

2. Umkehrfunktionen und ihre Ableitung, Hyperbelfunktionen 2.1. Höhere Ableitungen. Die Ableitung der Ableitung von f bezeichnet man, x 2, fur x < 0, . Umkehrfunktionen un ihre Ableitung, Hyperbelfunktionen.. Höhere Ableitungen. Die Ableitung er Ableitung von f bezeichnet man, falls sie existiert, mit f x) oer f ) x) oer fx)) oer fx) bzw. allgemein

Mehr

43 Anwendung der Partialbruchzerlegung auf die Bestimmung von Stammfunktionen

43 Anwendung der Partialbruchzerlegung auf die Bestimmung von Stammfunktionen 43 Anwendung der Partialbruchzerlegung auf die Bestimmung von Stammfunktionen 43. Bestimmung von Stammfunktionen für rationale Funktionen 43.2 Bestimmung von Stammfunktionen für rationale Funktionen in

Mehr

Beispiel. Die Reihe ( 1) k k + 1 xk+1 für 1 < x < 1 konvergiert auch für x = +1. Somit ist nach dem Abelschen Grenzwertsatz insbesondere die Gleichung

Beispiel. Die Reihe ( 1) k k + 1 xk+1 für 1 < x < 1 konvergiert auch für x = +1. Somit ist nach dem Abelschen Grenzwertsatz insbesondere die Gleichung Beispiel. Die Reihe log + x) = ) k k + xk+ für < x < konvergiert auch für x = +. Somit ist nach em Abelschen Grenzwertsatz insbesonere ie Gleichung log + ) = gültig. Daraus folgt ie Darstellung log2) =

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: D. Garmatter C. Apprich, B. Krinn J. Hörner, M. Werth 7. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester M. Künzer M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 9. Potential mittels

Mehr

15 Integration (gebrochen) rationaler Funktionen

15 Integration (gebrochen) rationaler Funktionen 5 Integration (gebrochen) rationaler Funktionen Wir werden im folgenden sehen, daß sich die Integration gebrochen rationaler Funktionen auf die folgenden drei einfachen Fälle zurückführen läßt (für komplexe

Mehr

Analysis I. 1. Beispielklausur mit Lösungen

Analysis I. 1. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Das Bild einer Abbildung F: L M. (2) Eine Cauchy-Folge

Mehr

8.1. Das unbestimmte Integral

8.1. Das unbestimmte Integral 8 Das unbestimmte Integral So wie ie Bilung von Reihen, also Summenfolgen, ein zur Bilung er Differenzenfolgen inverser Prozess ist, kann man ie Integration als Umkehrung er Differentiation ansehen Stammfunktionen

Mehr

7. Integralrechnung. Literatur: [SH, Kapitel 9]

7. Integralrechnung. Literatur: [SH, Kapitel 9] 7. Integralrechnung Literatur: [SH, Kapitel 9] 7.. Was sind Integrale? 7.2. Unbestimmte Integrale 7.3. Flächen und bestimmte Integrale 7.4. Eigenschaften und bestimmte Integrale 7.5. Partielle Integration

Mehr

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz. FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f

Mehr

Jörg Gayler, Lubov Vassilevskaya

Jörg Gayler, Lubov Vassilevskaya Integralrechnung: Aufgaben Jörg Gayler, Lubov Vassilevskaya ii Contents 1. Unbestimmtes Integral: Aufgaben............................. 1 1.1. Grund- oder Stammintegrale (Tabelle 1.....................

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure (Wintersemester 8/9) Kapitel 3:Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 4. November 8) Abbildungen / Funktionen Definition 3. Eine

Mehr

1. Aufgabe (6 Punkte) Zeigen Sie mit Hilfe der vollständigen Induktion, dass folgende Gleichheit gilt für alle n N, n 2. k (k + 1)! = 1 1 n!.

1. Aufgabe (6 Punkte) Zeigen Sie mit Hilfe der vollständigen Induktion, dass folgende Gleichheit gilt für alle n N, n 2. k (k + 1)! = 1 1 n!. . Aufgabe (6 Punte) Zeigen Sie mit Hilfe der vollständigen Indution, dass folgende Gleichheit gilt für alle n N, n 2 n ( + )! n!. [6P] Ind. Anfang: n 2 oder l.s. ( + )! 2 r.s. 2! 2. ( + )! 2! 2! 2 2 2

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Vorlesung Mathematik für Ingenieure (WS /, SS, WS /3) Kapitel 3: Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 4. November 0) Abbildungen / Funktionen Definition 3. Eine

Mehr

Kapitel II Funktionen reeller Variabler

Kapitel II Funktionen reeller Variabler Kapitel II Funktionen reeller Variabler D (Funktion) Es sei f XxY eine Abbildung Die Abbildung f heiß Funktion, falls sie eindeutig ist Man schreibt dann auch: f : X Y f ( x) = y, wobei y das (eindeutig

Mehr

Analysis I. 7. Beispielklausur mit Lösungen

Analysis I. 7. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 7. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine surjektive Abbildung f: L M. () Ein archimedisch

Mehr

13 Polynome und Nullstellen

13 Polynome und Nullstellen 60 II. Differentialrechnung 13 Polynome und Nullstellen Lernziele: Resultat: Zwischenwertsatz Methoden: Raten von Nullstellen, Euklidischer Algorithmus, Horner-Schema Kompetenzen: Bestimmung von Nullstellen

Mehr

Aufgaben zu Kapitel 4

Aufgaben zu Kapitel 4 Aufgaben zu Kapitel 4 Aufgaben zu Kapitel 4 Verständnisfragen Aufgabe 4. Bestimmen Sie ein Polynom vom Grad 3, das die folgenden Werte annimmt 0 p) 3 3 Aufgabe 4. Jede Nullstelle ˆ eines Polynoms p mit

Mehr

2 Polynome und rationale Funktionen

2 Polynome und rationale Funktionen Gleichungen spielen auch in der Ingenieurmathematik eine große Rolle. Sie beschreiben zum Beispiel Bedingungen, unter denen Vorgänge ablaufen, Gleichgewichtszustände, Punktmengen. Gleichungen für eine

Mehr

Mathematik I HM I A. SoSe Variante A

Mathematik I HM I A. SoSe Variante A Prof. Dr. E. Triesch Mathematik I SoSe 08 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur die Antworten

Mehr

Spezielle Funktionen. Definition 8.1 : Sei D C eine Kreisscheibe f : D C heißt Lipschitz (-stetig) oder dehnungsbeschränkt auf D

Spezielle Funktionen. Definition 8.1 : Sei D C eine Kreisscheibe f : D C heißt Lipschitz (-stetig) oder dehnungsbeschränkt auf D 8 Spezielle Funktionen werden in diesem Abschnitt definiert, also insbesondere Exponentialfunktion, Logarithmusfunktion, die trigonometrischen Funktionen sowie weitere wichtige Funktionen, die mit exp,

Mehr

für Technische PhysikerInnen

für Technische PhysikerInnen R E C H E N V E R F A H R E N für Technische PhsikerInnen Technische Universität Wien Gabriela Schranz-Kirlinger Institut für Angewandte und Numerische Mathematik.Teil Oktober Vorwort Diese Lehrveranstaltung

Mehr