Musterlösung zu Aufgabe 1 (Klassenstufe 9/10)

Größe: px
Ab Seite anzeigen:

Download "Musterlösung zu Aufgabe 1 (Klassenstufe 9/10)"

Transkript

1 Musterlösung zu Aufgbe 1 (Klssenstufe 9/10) Aufgbe. Drei Freunde spielen mehrere Runden eines Spiels, bei dem sie je nch Rundenpltzierung in jeder Runde einen festen, gnzzhligen Betrg x, y oder z usgezhlt bekommen. Die usgezhlten Beträge sind prweise verschieden und jeder Spieler erhält mindestens einen Euro. Am Ende hben die drei Freunde 20, 10 bzw. 9 Euro in Ihren Tschen. A) Wie viele Runden wurden gespielt? B) Welche Beträge wurden n den Erst-, Zweit- und Drittpltzierten in jeder Runde usgezhlt? Lösung zu Aufgbe 1. A) Wir bezeichnen mit n die Anzhl der gespielten Runden. Der Gesmtgewinn in Euro beträgt nch n Runden lso n(x + y + z) = 39 (= ). bzw. x + y + z = 39 n, wobei x+y+z eine gnze Zhl ist. Die Teiler von 39 sind 1, 3, 13 und 39. D nch Vorussetzung mehrere Runden gespielt wurden, scheidet n = 1 us. Für n = 39, muss x+y+z = 1 sein, im Widerspruch zur Annhme, dss x, y, z > 0 gnzzhlig und prweise verschieden sind; us dem gleichen Grund scheidet n = 13 us. Also wurden n = 3 Runden gespielt. B) Für n = 3 ist x + y + z = 13. Wir nehmen n, dss x > y > z ist. D einer der Freunde 20 Euro gewonnen ht und 3 Runden gespielt wurden, muss x 7 sein. D x, y, z 1 prweise verschieden sind, bleiben lso nur die folgenden 4 Möglichkeiten, um x, y, z uf den Gesmt-Rundengewinn ufzuteilen: = = = = 13. Die erste Möglichkeit scheidet us, d es nicht möglich ist, mit 1 bzw. 2 Euro Rundengewinn nch 3 Runden uf 9 Euro zu kommen. Gegen die dritte Zerlegung spricht, dss die 9 Euro nur mit 3 3 Euro erreicht werden können, es dnn ber 1

2 nicht mehr möglich ist, uf 10 Euro zu kommen. Vrinte Nr. 4 knn nlog usgeschlossen werden. Übrig bleibt x = 8, y = 4 und z = 1, denn mit = = = 20 existiert eine erlubte Gewinnkombintion. 2

3 Musterlösung zu Aufgbe 2 (Klssenstufe 9/10) Aufgbe. 25 Personen sitzen im Kreis und stimmen jede Stunde für oder gegen einen Antrg. Jede Person ändert ihre Stimme genu dnn, wenn ihre beiden Nchbrn bei der vorherigen Abstimmung nders ls sie selbst gestimmt hben. Beispiel: Wenn beide Nchbrn einer Person zuletzt mit j gestimmt hben, die Person selbst ber mit nein, dnn stimmt sie jetzt uch mit j ; ht ein Nchbr mit j gestimmt, der ndere mit nein, so bleibt die Person bei ihrem nein. A) Zeige, dss nch einer Weile niemnd mehr seine Stimme ändert. B) Stimmt die Aussge us A) uch dnn, wenn es sich um 24 Personen hndelt? Begründe Deine Antwort! Lösung zu Aufgbe 2. Wir stellen die 25 Personen ls Knoten in einem Grphen G dr. Zwei Personen werden durch eine Knte verbunden, wenn sie benchbrt sind. Wir färben diejenigen Knoten, die in der ktuellen Abstimmung mit j stimmen, weiß und die nderen Knoten schwrz. A) Wir stellen zwei Lösungsvrinten vor: Vrinte 1: Wir färben Knten zwischen gleichfrbigen Knoten rot (d.h. rote Knten verlufen zwischen Nchbrn, die beide gleich bstimmen). Sei A n die Anzhl der roten Knten in der n-ten Abstimmung. Wir mchen jetzt folgende Beobchtung: Wenn eine Person P in der (n + 1)-ten Abstimmung ihre Stimme ändert, dnn wr in der n-ten Abstimmung keine der beiden von P usgehenden Knten rot. In der (n + 1)-ten Abstimmung ist dies nur dnn weiterhin der Fll, wenn beide Nchbrn von P uch ihre Stimme geändert hben. Also ist A n+1 A n, und A n+1 > A n flls es mindestens ein Pr (P 1, P 2 ) benchbrter Knoten gibt, so dss P 1 seine Stimme ändert und P 2 seine Stimme nicht ändert. D A n 25 ist, muss es ein m N geben, so dss A m+1 = A m. Folglich gibt es dnn kein Pr (P 1, P 2 ) benchbrter Knoten, so dss P 1 nch der m- ten Abstimmung seine Stimme ändert und P 2 seine Stimme nicht ändert. D G zusmmenhängend ist, müssen lso nch der m-ten Abstimmung entweder lle Knoten ihre Stimme ändern oder kein Knoten, in letzterem Fll sind wir fertig. Der erste Fll knn nicht eintreten, denn es gibt immer mindestens zwei Personen, die ihre Stimme nicht ändern, denn d die Anzhl der Personen ungerde ist, sind zu Beginn zwei benchbrte Knoten in G entweder beide weiß oder beide schwrz gefärbt. Diese beiden Personen ändern ihre Stimme in der folgenden und (per Induktion) uch in llen weiteren Abstimmungen nicht. Vrinte 2: Wie schon in Vrinte 1 stellen wir die Personen durch einen Grphen G dr und stellen fest, dss es zu Beginn zwei benchbrte Knoten gibt, die entweder beide mit j oder beide mit nein stimmen und folglich ihre Stimme 3

4 niemls ändern. Wir färben jetzt diese beiden Knoten rot. Für lle nderen Knoten gilt folgende Regel: Wenn ein Knoten P zu einem roten Knoten benchbrt ist und in der (n + 1)-ten Abstimmung seine Stimme gegenüber der n-ten Abstimmung nicht ändert, dnn wird P in der (n + 1)-ten Abstimmung rot gefärbt. Wir zeigen nun, dss rote Knoten ihre Stimme niemls ändern: Angenommen, lle Knoten, die in der n-ten Abstimmung rot sind, ändern ihre Stimme nicht, und P wird in der (n+1)-ten Abstimmung rot mrkiert. Dnn ht P seine Stimme entweder nicht geändert, weil P mit seinem roten Nchbrn übereinstimmt, oder weil P mit seinem nderen Nchbrn übereinstimmt. In beiden Fällen ht P mindestens einen Nchbrn, der mit P übereinstimmt und wird folglich seine Stimme niemls ändern. Per Induktion folgt nun, dss kein roter Knoten jemls seine Stimme ändert. Sei nun r n die Anzhl der roten Knoten in der n-ten Abstimmung. Offenbr ist r n+1 r n. Wir zeigen, dss r n streng monoton steigt, solnge es noch Knoten gibt, die nicht rot sind: Dzu sei P ein Knoten, der in der n-ten Abstimmung nicht rot ist, ber zu einem roten Knoten R benchbrt ist. Nch der Regel wird P nur dnn nicht rot gefärbt, wenn P seine Stimme ändert. Dies knn nur dnn pssieren, wenn P und R nicht übereinstimmen. D R seine Stimme ber nicht ändert, stimmen P und R dnn in der (n + 1)-ten Abstimmung überein, und P wird rot gefärbt. Es sind lso irgendwnn lle Knoten rot gefärbt. B) Pltziert mn die 24 Personen so, dss jeder zwei Nchbrn ht, die beim letzten Ml nders ls die Person selbst bgestimmt hben, so ändert jede Person bei jeder erneuten Abstimmung ihre Meinung. Ds entspricht einem Grphen, dessen Knoten bwechselnd weiß und schwrz sind, wobei die Anzhl der schwrzen und weißen Knoten gleich ist. (Die Gesmtzhl der Knoten ist gerde). 4

5 Musterlösung zu Aufgbe 3 (Klssenstufe 9/10) Aufgbe. Sophie und Emre versuchen, in ein Qudrt mit vorgegebener Seitenlänge sechs gleich große Kreise so einzuzeichnen, dss sie möglichst groß sind, sich ber nicht gegenseitig schneiden. Sophie zeichnet die Kreise so wie in Abbildung (), Emre so wie in Abbildung (b). A) Gib ds Verhältnis der Kreisrdien zur Seitenlänge in beiden Fällen n. B) Wer ht die größeren Kreise gezeichnet? Begründe Deine Antwort! D C D C M M A () B A (b) B Lösung zu Aufgbe 3. A) Wir führen einige Bezeichnungen ein; siehe dzu Abb. (c) und (d), ist die Seitenlänge des Qudrtes, r der Rdius der Kreise. In der Zeichnung von Sophie seien H, E, G die Mittelpunkte der Kreise k 1, k 2 und k 3. K ist der Berührpunkt von k 1 mit BD und J ist der Berührpunkt von k 2 mit CD. F ist der Schnittpunkt von AC und GH. Dnn ergibt sich: Ds Dreieck EJC ist gleichschenklig-rechtwinklig mit Kthetenlänge r. Die Dreiecke EF G und EF H sind gleichschenklig-rechtwinklig mit Hypothenusenlänge 2r. Außerdem ist F M = r. Dmit folgt Ds ergibt 2 2 = CM = CE + EF + F M = r 2 + r 2 + r. r = 2 2 ( ) = = ( 4 )

6 D k k 2 1 H E r C J D k 1 P r C K F M G k 3 M S R Q k 2 A B A B (c) (d) In der Zeichnung von Emre seien P und S die Mittelpunkte der Kreise k 1 und k 2. Der Mittelpunkt von BC sei Q, und ds Lot von P uf MQ hbe den Fußpunkt R. Dnn ist MS = RQ = r, P S = 2r und P R = 2 r. Wir wenden den Stz des Pythgors uf ds Dreieck SRP n: ( ) 2 ( ) 2 2 2r + 2 r = 4r 2. Umstellen nch r gibt die qudrtische Gleichung r 2 3r = 0 mit den beiden Lösungen r 1/2 = 2 ( 3 ± ) 7, von denen wegen r 1 = 2 ( ) > ber nur r2 in Betrcht kommt. B) Wir behupten, dss Sophie die größeren Kreise gezeichnet ht. Dzu müssen wir beweisen, dss gilt: ( 4 ) 2 > ( 3 ) 7. (1) 14 2 Letzteres folgt der Reihe nch us den Umformungen 4 ( 2 > 7 3 ) > > > > 578, (2) 6

7 und die letzte Ungleichung stimmt. Also ht Sophie die größeren Kreise gezeichnet. Bemerkungen: Dss (1) us (2) folgt, knn uch indirekt gezeigt werden, indem von der Negtion von (1) uf die flsche Impliktion 676 < 578 geschlossen wird. Mn knn (1) uch unter Benutzung von Näherungswerten beweisen. In diesem Fll sollten die zum Beweis führenden Ungleichungen ersichtlich gemcht werden, z.b.: Wegen = > 2 ist 2 < 1.48 usw. usf. 7

8 Musterlösung zu Aufgbe 4 (Klssenstufe 9/10) Aufgbe. Gegeben sei eine polygonle Fläche A, deren Rnd den Grundriss eines Museums drstellt. Anhnd des Grundrisses soll entschieden werden, wie viele Museumswärter nötig sind, um ds gesmte Museum zu bewchen (siehe untenstehende Abbildung). Dzu werden möglichst wenige Punkte p 1, p 2,..., p k A ( Wärter ) so verteilt, dss jeder Punkt in A durch eine Gerde, die gnz in A liegt (einschließlich Rnd), mit einem Wärter verbunden werden knn. Beispiel: Optimle Lösung des Museumswärterproblems für ds Außengelände des Bremer Rthuses. Die Wärter sind Kmers, die n den blue Punkten pltziert werden (Quelle: Institut für Betriebssysteme und Rechnerverbund, TU Brunschweig). A) Zeige, dss in drei-, vier- oder fünfeckigen Museen jeweils nur ein Wärter nötig ist, um die gesmte Fläche zu überblicken. B) Es sei n die Anzhl der Ecken des Rndes von A. Zeige, dss dnn nicht mehr ls n/3 Wärter gebrucht werden, die in den Ecken von A sitzen und die die gesmte Fläche einsehen können. Dbei bezeichnet x die Zhl, uf die bgegrundet wird, wenn x keine gnze Zhl ist. 8

9 Hinweis: Zerlege A durch ds Einfügen von Digonlen geeignet in Dreiecksflächen, ohne neue Ecken hinzuzufügen. Dss ds immer geht, drf vorusgesetzt werden. Lösung zu Aufgbe 4. Obwohl die Drei-, Vier- oder Fünfecke nur einen Spezilfll der Aussge us B) drstellen, werden wir beide Aussgen seprt betrchten. A) Für Dreiecke ist die Aussge unmittelbr einsichtig bzw. ebenso für lle konvexen Polygone (nch Definition von Konvexität). Vierecke können höchstens eine konkve Ecke hben, d.h. eine Ecke, deren Innenwinkel größer ist ls 180. Verbindet mn die konkve Ecke eines Vierecks durch eine Digonle mit der gegenüberliegenden Ecke verbinden, entstehen 2 Dreiecke, die von jedem Punkt der gemeinsmen Knte us eingesehen werden können. Fünfecke hben eine Winkelsumme von 540 und hben somit mximl zwei konkve Ecken. Ist ds Fünfeck konvex, gibt es nichts zu beweisen, ds Fünfeck mit nur einer konkven Ecke verhält sich ähnlich zum Viereck. Dss uch bei zwei konkven Ecken ein Wärter usreicht, sieht mn, wenn mn die beiden Ohren des Fünfecks btrennt, indem mn je eine konkve Ecke mit einer Digonlen mit dem gegenüberliegenden Eckpunkt verbindet (siehe Abbildung); ddurch erhält mn eine disjunkte Zerlegung des Fünfecks in drei Dreiecke, die genu einen gemeinsmen Eckpunkt hben; ein Wärter in diesem Punkt knn lle drei Dreiecke einsehen (denn Dreiecke sind konvex), dmit lso ds gesmte Fünfeck. Beispiel: Fünfecke mit 0,1 oder 2 konkven Ecken. B) Mn verfährt so wie unter ) und zerlegt ds Polygon in Dreiecke, indem mn sich nicht schneidende Digonlen einfügt, ohne jedoch weitere Ecken hinzuzufügen; ddurch erhält mn eine Zerlegung des n-ecks in genu n 2 Dreiecke. Die Eckpunkte der Dreiecke werden nun mit Frben R, G, B eingefärbt, so dss jedes Dreieck Ecken in llen drei Frben ht (siehe unten). Wir bezeichnen mit n B, n G, n B die Zhl der roten, grünen und bluen Ecken, wobei wir ohne Einschränkung der Allgemeinheit nnehmen, dss n R n G n B ist; d n R + n G + n B = n ist, muss lso insbesondere n R n/3 gelten. Positioniert mn nun Wärter in den rot eingefärbten Ecken, können sämtliche ngrenzenden Dreiecke eingesehen werden und folglich die gesmte Fläche. Färbbrkeit: Die 3-Färbbrkeit der Tringulierung (genuer: der Ecken der Tringulierung) soll zumindest nstzweise gezeigt werden. Ds geht z.b. wie folgt: 9

10 Beispiel: Tringulierung eines 6-Ecks durch 4 Dreiecke und deren 3-Färbung. Angenommen, wir hben unser Polygon mit n Ecken bereits tringuliert, d.h., wir hben es in n 2 Dreiecke zerlegt. Dnn gibt es nch dem Schubfchprinzip mindestens entweder zwei Dreiecke, die jeweils 2 Knten mit dem Rnd des Polygons gemeinsm hben, oder ein Dreieck, ds sich 3 Knten mit dem Polygon teilt; im zweiten Fll ist ds Polygon selbst ein Dreieck, und es gibt nichts zu zeigen. Im ersten Fll lässt sich eine erlubte Knotenfärbung konstruieren, indem mn zuerst eines der Dreiecke mit 2 gemeinsmen Knten einfärbt und dnn jede weitere freie Ecke eines ngrenzenden Dreiecks mit einer noch nicht vergebenen Frbe einfärbt. D es bei überschneidungsfreien Polygonen keine inneren Ecken gibt und sich je zwei Dreiecke eine Knte teilen, können so die Ecken der Tringulierung vollständig eingefärbt werden, ohne dss Inkonsistenzen entstehen. 10

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Präfixcodes und der Huffman Algorithmus

Präfixcodes und der Huffman Algorithmus Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben

Mehr

2.8. Aufgaben zum Satz des Pythagoras

2.8. Aufgaben zum Satz des Pythagoras Aufgbe 1 Vervollständige die folgende Tbelle:.8. Aufgben zum Stz des Pythgors Kthete 6 1 4 1 13 17 15 Kthete b 8 1 7 8 11 Hypotenuse c 13 9 19 17 Aufgbe Berechne jeweils die Länge der dritten Seite: Aufgbe

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

Übungsheft Mittlerer Schulabschluss Mathematik

Übungsheft Mittlerer Schulabschluss Mathematik Ministerium für Bildung und Kultur des Lndes Schleswig-Holstein Zentrle Abschlussrbeit 011 Übungsheft Mittlerer Schulbschluss Mthemtik Korrekturnweisung Impressum Herusgeber Ministerium für Bildung und

Mehr

Mathematik schriftlich

Mathematik schriftlich WS KV Chur Abschlussprüfungen 00 für die Berufsmtur kufmännische Richtung Mthemtik schriftlich LÖSUNGEN Kndidtennummer Nme Vornme Dtum der Prüfung Bewertung mögliche erteilte Punkte Punkte. Aufgbe 0. Aufgbe

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

Mathematik Brückenkurs

Mathematik Brückenkurs Rumpfskript zur Vorlesung Mthemtik-Brückenkurs /86 Mthemtik Brückenkurs im Fchbereich Informtik & Elektrotechnik Rumpfskript V7 Rumpfskript zur Vorlesung Mthemtik-Brückenkurs /86 Inhltsverzeichnis Mengen...

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich!

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich! Versuchsplnung 22 CRGRAPH www.crgrph.de Grundlgen Die Aufgbe ist es Versuche so zu kombinieren, dss die Zusmmenhänge einer Funktion oder eines Prozesses bestmöglich durch eine spätere Auswertung wiedergegeben

Mehr

Definition Suffixbaum

Definition Suffixbaum Suffix-Bäume Definition Suche nch einer Menge von Mustern Längste gemeinsme Zeichenkette Pltzreduktion Suffixbäume für Muster Alle Pre Suffix-Präfix Übereinstimmung Sich wiederholende Strukturen Definition

Mehr

Mathematik Thema Vielecke

Mathematik Thema Vielecke Them Vielecke Im Jnur 2006 Florin Vetter, Klsse 8, Riegelhof Relschule Seite 1 von 15 INHALTSVERZEICHNES 1. EINLEITUNG 3 2. ARTEN VON VIELECKEN 4 2.1. DREIECK 4 2.2. VIERECK 4 2.2.1. RECHTECK 4 2.2.2.

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 007 im Fch Mthemtik 30. Mi 007 Arbeitsbeginn: 10.00 Uhr Berbeitungszeit: 10 Minuten Zugelssene

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik Boole'sche Algebr Binäre Funktionen, Boole'sche Algebren, Schltlgebr Inhltsübersicht Verknüpfungen der mthemtischen Logik Boole sche Algebren Grundelemente der Schltlgebr Regeln der Schltlgebr Normlformen

Mehr

Das Coulombsche Gesetz

Das Coulombsche Gesetz . ei r = 0 befindet sich eine Ldung Q = 4,0nC und bei r = 40cm eine Ldung Q = 5,0nC ortsfest, so dss sie sich nicht bewegen können. Ds Coulombsche Gesetz Q = 4,0nC Q = 5,0nC r Lösung: Wo muss eine Ldung

Mehr

Schriftliche Überprüfung Mathematik. Gymnasien, Klasse 10

Schriftliche Überprüfung Mathematik. Gymnasien, Klasse 10 Schriftliche Überprüfung Mthemtik, Klsse 0 Schuljhr 009/00 6. Februr 00 Unterlgen für die Lehrerinnen und Lehrer Diese Unterlgen enthlten: I II III Allgemeine Hinweise zur Arbeit Aufgben Erwrtungshorizonte,

Mehr

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30 15 Mtrizenrechnung 15 Mtrizenrechnung 15.1 Mtrix ls Zhlenschem Eine Internetfirm verkuft über einen eigenen Shop Digitlkmers. Es wird jeweils nur ds Topmodel der Firmen Cnon, Nikon und Sony ngeboten. Verkuft

Mehr

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften Vorkurs Mthemtik Fchhochschule Frnkfurt, Fchereich Fchhochschule Frnkfurt m Min Fchereich Informtik und Ingenieurwissenschften Vorkurs Mthemtik Sie finden lle Mterilien sowie ergänzende Informtionen unter

Mehr

3. Ganzrationale Funktionen

3. Ganzrationale Funktionen 3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)

Mehr

Der Goldene Schnitt. III. Der Goldene Schnitt in der Mathematik

Der Goldene Schnitt. III. Der Goldene Schnitt in der Mathematik Der Goldene Schnitt III. Der Goldene Schnitt in der Mthemtik 1. Herleitung des Goldenen Schnitt Per Definition des Goldenen Schnitt gilt: b = b. (>b>0) Nch der Drstellung (s.o.) gilt, wenn S (der mittlere

Mehr

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist . Ohm = LED leuchtet wenn chlter gedrückt ist 2. Ohm = NICH ( = NO ) LED leuchtet wenn chlter nicht gedrückt ist = ist die Negtion von? Gibt es so einen kleinen chlter (Mikrotster)? 2. Ohm = UND LED leuchtet

Mehr

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss Einser-Flächen HEINZ KLAUS STRICK Online-Ergänzung MNU 66/7 (15.10.01) Seiten 1 5, ISSN 005-5866, Verlg Klus Seeberger, Neuss 1 HEINZ KLAUS STRICK Einser-Flächen Die bgebildeten Figuren hben eines gemeinsm:

Mehr

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen Seminr Quntum Computtion - Finite Qunten-Automten und Qunten-Turingmschinen Sebstin Scholz sscholz@informtik.tu-cottbus.de Dezember 3. Einleitung Aus der klssischen Berechenbrkeitstheorie sind die odelle

Mehr

Grundwissen Mathematik 7I

Grundwissen Mathematik 7I Winkel m Kreis Grundwissen themtik 7I Rndwinkelstz Der Winkel heißt ittelpunktswinkel über der Sehne []. Die Winkel n sind die Rndwinkel über der Sehne []. lle Rndwinkel über einer Sehne eines Kreises

Mehr

( 3) k ) = 3) k 2 3 für k gerade

( 3) k ) = 3) k 2 3 für k gerade Aufgbe : ( Pute Zeige Sie mithilfe des Biomische Lehrstzes: ( 3 ( 3 ist für lle N eie türliche Zhl Lösug : Nch dem biomische Lehrstz gilt: ( 3 Somit ergibt sich ( 3 ( 3 ( ( 3 bzw ( 3 ( ( 3 ( ( 3 ( ( 3

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme Bruchterme und gebrochen rtionle Funktionen Der Quotient zweier Terme Es ist ist 3 : 4 3 und. 4 : 3 4 3 4 Dehnt mn die Bruchschreibweise uf Terme us, dnn erhält mn sog. Bruchteme. ² ( + ) : (3 + 4) + 3

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Prof. Dr.Ing. W. Scheideler Brückenkurs Mthemtik WS 0/ us und überrbeitet von B. Eng. Sevd Hppel und Dipl.Ing. Jun Rojs Prof. Dr.Ing. W. Scheideler Inhltsverzeichnis Brüche, Potenzen und Wurzeln. Brüche..

Mehr

Limit Texas Hold em. Meine persönlichen Erfahrungen

Limit Texas Hold em. Meine persönlichen Erfahrungen Limit Texs Hold em Meine persönlichen Erfhrungen Dominic Dietiker c Drft dte 21. September 2010 Inhltsverzeichnis 1. Spielnleitung...................................... 1 1.1 Der Spielverluf....................................

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Mtrizen und Determinnten Im bschnitt Vektorlgebr Rechenregeln für Vektoren Multipliktion - Sklrprodukt, Vektorprodukt, Mehrfchprodukte wurde in einem Vorgriff bereits eine interessnte mthemtische Konstruktion

Mehr

Vorlesungsskript Mathematik I für Wirtschaftsingenieure

Vorlesungsskript Mathematik I für Wirtschaftsingenieure Vorlesungsskript Mthemtik I für Wirtschftsingenieure Verfsserin: HSD Dr. Sybille Hndrock TU Chemnitz Fkultät für Mthemtik e-mil: hndrock@mthemtik.tu-chemnitz.de Wintersemester 2005/06 Litertur [] Dllmnn,

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

Musterlösung zur Musterprüfung 2 in Mathematik

Musterlösung zur Musterprüfung 2 in Mathematik Musterlösung zur Musterprüfung in Mthemtik Diese Musterlösung enthält usführliche Lösungen zu llen Aufgben der Musterprüfung in Mthemtik sowie Hinweise zum Selbstlernen. Literturhinweise ) Bosch: Brückenkurs

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

1 Räumliche Darstellung in Adobe Illustrator

1 Räumliche Darstellung in Adobe Illustrator Räumliche Drstellung in Adobe Illustrtor 1 1 Räumliche Drstellung in Adobe Illustrtor Dieses Tutoril gibt Tips und Hinweise zur räumlichen Drstellung von einfchen Objekten, insbesondere Bewegungspfeilen.

Mehr

Monte Carlo Methoden. Kapitel 3. 3.1 Simple Sampling

Monte Carlo Methoden. Kapitel 3. 3.1 Simple Sampling Kpitel 3 Monte Crlo Methoden Historisch wird der Begriff der Monte Crlo Methode 1947 geprägt [38] 1 und zum ersten MlzweiJhrespäter im Titel einer Veröffentlichung verwendet [39]. Wie der Nme nklingen

Mehr

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht Großübung u Kräften, omenten, Äuivlen und Gleichgewicht Der Körper Ein mterielles Teilgebiet des Universums beeichnet mn ls Körper. Im llgemeinen sind Körper deformierbr. Sonderfll strrer Körper (odellvorstellung)

Mehr

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer!

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer! hben Freunde Deine Zähne sind wie deine sportmnnschft und du bist der Triner! Und jeder Triner weiß, wie wichtig jeder einzelne Spieler ist eine wichtige und schöne Aufgbe! Drum sei nett zu deinen Zähnen

Mehr

Mathematik: Vorwissen und Selbststudium

Mathematik: Vorwissen und Selbststudium Mthemtik: Vorwissen und Selbststudium Prof. Thoms Apel Studienjhr 00/ Lerning nything chnges people; lerning mth mkes big chnge it opens minds nd opens doors. [Hirsh Cohen, SIAM president 983-984] Vorwort

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

Nutzung der Abwärme aus Erneuerbare-Energie-Anlagen

Nutzung der Abwärme aus Erneuerbare-Energie-Anlagen 5 2014 Sonderdruck us BWK 5-2014 Wichtige Kennzhlen und effiziente Plnung für die dezentrle Wärmewende Nutzung der Abwärme us Erneuerbre-Energie-Anlgen Wichtige Kennzhlen und effiziente Plnung für die

Mehr

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse Elemente der Anlysis II: Zusmmenfssung der wichtigsten Definitionen und Ergebnisse J. Wengenroth Dies ist die einzige zugelssene Formelsmmlung, die bei der Klusur benutzt werden drf. Es dürfen Unterstreichungen

Mehr

Analysis 2. Mitschrift von www.kuertz.name

Analysis 2. Mitschrift von www.kuertz.name Anlysis 2 Mitschrift von www.kuertz.nme Hinweis: Dies ist kein offizielles Script, sondern nur eine privte Mitschrift. Die Mitschriften sind teweilse unvollständig, flsch oder inktuell, d sie us dem Zeitrum

Mehr

Brückenkurs MATHEMATIK

Brückenkurs MATHEMATIK Brückenkurs MATHEMATIK Professor Dr. rer. nt. Bernd Bumnn Professor Dr. rer. nt. Ulrich Stein Hochschule für Angewndte Wissenschften Hmburg 5. März 008 VO R B E M E R K U N G E N Liebe Studentin, lieber

Mehr

x usw., wie oben unter 1.) behauptet.]

x usw., wie oben unter 1.) behauptet.] [Anmerkung zur Berechnung im Beispiel: Ersetzen wir die Zhlen der AzM durch die Koeffizienten, 2, 2 und 22, so lässt sich die Rechnung sowohl für ) ls uch b) gnz nlog durchführen, und es ergibt sich z.

Mehr

Gedanken stoppen und entschleunigen

Gedanken stoppen und entschleunigen 32 AGOGIK 2/10 Bertie Frei, Luigi Chiodo Gednken stoppen und entschleunigen Individuelles Coching Burn-out-Prävention Probleme knn mn nie mit derselben Denkweise lösen, durch die sie entstnden sind. Albert

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

Eine Lerneinheit. über. regelmäßige Vielecke. und

Eine Lerneinheit. über. regelmäßige Vielecke. und BLK-Modellversuch SINUS Rheinlnd-Pflz Netzwerkschule Cusnus-Gymnsium Wittlich Fchbereich Mthemtik Kurfürstenstrsse 14 54516 Wittlich Eine Lerneinheit über regelmäßige Vielecke C D C A B E A B A B C D und

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

nach der FIT-Methode HANDBALL LEKTÜRE Mannhard Bech Malte Gertenbach Mehr Stabilität Mehr Kraft Mehr Leistung

nach der FIT-Methode HANDBALL LEKTÜRE Mannhard Bech Malte Gertenbach Mehr Stabilität Mehr Kraft Mehr Leistung Mnnhrd Bech Mlte Gertenbch Athletiktrining nch der FIT-Methode Mehr Stbilität Speziell für den Hndbllsport entwickelt Für bessere Körperbeherrschung, Leistungssteigerung und Verletzungsprävention Ab der

Mehr

Versuchsumdruck. Schaltungsvarianten des Operationsverstärkers

Versuchsumdruck. Schaltungsvarianten des Operationsverstärkers Hchschule STDIENGANG Wirtschftsingenieurwesen Bltt n 6 Aschffenburg Prf. Dr.-Ing.. Bchtler, Armin Huth Versuch 2 Versin. m 23.3.2 Versuchsumdruck Schltungsrinten des Opertinserstärkers Inhlt Verwendete

Mehr

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3 Übungen zur Vorlesung Physiklische Chemie I Lösungsvorschlg zu Bltt 3 Prof. Dr. Norbert Hmpp 1. Aufgbe ) Die gegebene Verteilung besteht nur us diskreten Werten! Die durchgezogene Linie würde nur bei einer

Mehr

v P Vektorrechnung k 1

v P Vektorrechnung k 1 Vektorrechnung () Vektorielle Größen in der hysik: Sklren Größen wie Zeit, Msse, Energie oder Tempertur werden in der hysik mit einer Mßzhl und einer Mßeinheit ngegeen: 7 sec, 4.5 kg. Wichtige physiklische

Mehr

Reader. für den Einsatz in der Wiederholungsphase im Mathematikunterricht der Jahrgangsstufe 11

Reader. für den Einsatz in der Wiederholungsphase im Mathematikunterricht der Jahrgangsstufe 11 Reder für den Einstz in der Wiederholungsphse im Mthemtikunterricht der Jhrgngsstufe Anhng zur schriftlichen Husrbeit zur Zweiten Sttsprüfung für ds Lehrmt n öffentlichen Schulen von Andres Rschke Vorwort

Mehr

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik 2008-06- Klssenrbeit 5 Klsse 0c Mtemtik Lösung Version 2008-06-4 Cindy t 3000 geerbt. ) Den Betrg will sie so nlegen, dss sie in 20 Jren doppelt so viel Geld t. Berecne, zu welcem Zinsstz sie ds Geld nlegen

Mehr

Analysis I/II. Skript zur Vorlesung 2009/2010. Peter Junghanns

Analysis I/II. Skript zur Vorlesung 2009/2010. Peter Junghanns Skript zur Vorlesung Anlysis I/II 9/ Peter Junghnns Hinweis: Ds vorliegende Skript stellt nur ein Gerüst zu den Inhlten der Vorlesung dr. Die Vorlesung selbst bietet weiterführende Erläuterungen, Beweise

Mehr

Abiturprüfung 2007. Mathematik, Leistungskurs 0,02

Abiturprüfung 2007. Mathematik, Leistungskurs 0,02 M LK HT Seite von Nme: Abiturprüfung 007 Mthemti, Leistungsurs Aufgbenstellung: Gegeben ist die Funtion f mit Ein Teil des Grphen von f ist für 0,0 t ft () = t e, t IR. 0 t 5 m Ende der Aufgbe uf Seite

Mehr

Informationen zu den gemeinsamen Fächern im Zentralabitur 2010 in Berlin und Brandenburg. Nr. 1 Mathematik

Informationen zu den gemeinsamen Fächern im Zentralabitur 2010 in Berlin und Brandenburg. Nr. 1 Mathematik Ministerium für Bildung, Jugend und Sport Sentsverwltung für Bildung, Wissenschft und Forschung Informtionen zu den gemeinsmen Fächern im Zentrlbitur 00 in Berlin und Brndenburg Nr..0.009 Beispielufgben

Mehr

TE- und TM-Moden im Wellenleiter. Bachelorarbeit

TE- und TM-Moden im Wellenleiter. Bachelorarbeit TE- und TM-Moden im Wellenleiter Sebstin Rubitzek 30. September 2014 in Grz Bchelorrbeit betreut von Ao.Univ.-Prof. Mg. Dr.rer.nt. Ulrich Hohenester 1 Inhltsverzeichnis 1 Einleitung 3 1.1 Ws ist ein Wellenleiter?......................

Mehr

Sicherheitssysteme Digitale Videoüberwachung

Sicherheitssysteme Digitale Videoüberwachung Sicherheitssysteme Digitle Videoüberwchung PM11 M11_A- 6-4- 1 Sie hben lles unter Kontrolle. Für Objekte ller Größen Viele Unternehmen benötigen mehr ls nur eine punktuelle Videoüberwchung. Kom- Lösungen.

Mehr

FernUniversität Gesamthochschule in Hagen

FernUniversität Gesamthochschule in Hagen FernUniversität Gesmthochschule in Hgen FACHBEREICH MATHEMATIK LEHRGEBIET KOMPLEXE ANALYSIS Prof. Dr. Andrei Dum Proseminr 9 - Anlysis Numerische Integrtion Ulrich Telle Mtrikel-Nr. 474 Köln, den 7. Dezember

Mehr

BÜrO HYPER aufgebautes BÜrOsYsteM

BÜrO HYPER aufgebautes BÜrOsYsteM 5 JAHRE NACHKAUFGARANTIE BÜrO HYPER UFGeBUtes BÜrOsYsteM Gerundete ecken und Knten nch din-fchbericht 147 schreibtisch und ergonomische Mße nch din En 527-1 sthl-orgzrge mit verdeckter Führung, Präzisionsuszüge

Mehr

Sponsored Search Markets

Sponsored Search Markets Sponsored Serch Mrkets ngelehnt n [EK1], Kpitel 15 Seminr Mschinelles Lernen, WS 21/211 Preise Slots b c Interessenten y z 19. Jnur 211 Jn Philip Mtuschek Sponsored Serch Mrkets Folie 1 Them dieses Vortrgs

Mehr

Internationale Ökonomie I Vorlesung 3: Das Riccardo-Modell: Komparative Vorteile und Produktivität (Master)

Internationale Ökonomie I Vorlesung 3: Das Riccardo-Modell: Komparative Vorteile und Produktivität (Master) Interntionle Ökonomie I Vorlesung 3: Ds Riccrdo-Modell: Komprtive Vorteile und Produktivität (Mster) Dr. Dominik Mltritz Vorlesungsgliederung 1. Einführung 2. Der Welthndel: Ein Überblick 3. Ds Riccrdo-Modell:

Mehr

Reguläre Sprachen und endliche Automaten

Reguläre Sprachen und endliche Automaten 2 Reguläre Sprchen und endliche Automten Sei Σ = {, b,...} ein endliches Alphbet. Ein endliches Wort über Σ ist eine Folge w = 0... n 1, wobei i Σ für i = 0,...,n 1. Wir schreiben w für die Länge von w,

Mehr

Endliche Automaten. Prof. Dr. W. Vogler. Sommersemester 2007

Endliche Automaten. Prof. Dr. W. Vogler. Sommersemester 2007 Endliche Automten Prof. Dr. W. Vogler Sommersemester 2007 1 INHALTSVERZEICHNIS i Inhltsverzeichnis 1 Wörter und Monoide 1 2 Endliche Automten 4 3 Anwendung: Diophntische Gleichungen 9 4 Minimierung endlicher

Mehr

Taylorreihen - Uneigentlische Integrale

Taylorreihen - Uneigentlische Integrale Anlysis II für M, LG und Ph, WS 2006/07, Übung 2, Lösungsskizze Gruppenübung Tylorreihen - Uneigentlische Integrle G 5 Berechnen Sie die Tylorreihe mit der Entwicklungsmitte 0 von f (x) = log(x + ), f

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

( 0) ( x) ( ) ( ) ( ) ( ) ( ) ( ) Analysis, analytische Geometrie, Stochastik 1.1 1.1.1. Ableitungen: Wendepunkte: = 24 > 0 konkav konvex fa

( 0) ( x) ( ) ( ) ( ) ( ) ( ) ( ) Analysis, analytische Geometrie, Stochastik 1.1 1.1.1. Ableitungen: Wendepunkte: = 24 > 0 konkav konvex fa Lösungen Abitur Leistungskurs Mthemtik 00 www.mthe-schule.de Seite von P Anlsis, nltische Geometrie, Stochstik. f + + R, R.. Ableitungen: f ' + f ''( ) + Wendepunkte: f '' 0.. 0 W f ''' + + 0 ( + ) 0 f

Mehr

Übungsblatt Gleichungssysteme Klasse 8

Übungsblatt Gleichungssysteme Klasse 8 Üungsltt Gleichungsssteme Klsse 8 Auge : Berechne die Lösungen des Gleichungspres: I II 7 Kontrolliere durch Einseten. Auge : Löse dem Additionsverhren: I 7-6 II 9 Auge : Gegeen ist olgendes linere Gleichungssstem

Mehr

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG)

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG) Sript für die Oerstufe und ds Aitur Bden-Württemerg erufl. Gymnsium (AG, BTG, EG, SG, WG) Mtrizenrechnung, wirtschftliche Anwendungen (Leontief, Mterilverflechtung) und Linere Optimierung Dipl.-Mth. Alexnder

Mehr

Verbrauchswerte. 1. Umgang mit Verbrauchswerten

Verbrauchswerte. 1. Umgang mit Verbrauchswerten Verbruchswerte Dieses Unterkpitel ist speziell dem Them Energienlyse eines bestehenden Gebäudes nhnd von Verbruchswerten (Brennstoffverbräuche, Wrmwsserverbruch) gewidmet. BEISPIEL MFH: Ds Beispiel des

Mehr

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO)

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO) Fchhochschule Düsseldorf SS 2007 Teilfchprüfung Mthemtik Studiengng: Wirtschft Neue Diplomprüfungsordnung (NPO) Prüfungsdtum: 29..2007 Prüfer: Prof. Dr. Horst Peters / Dipl. Volkswirt Lothr Schmeink Prüfungsform:

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

Erweitern. a b. bd + bc. bd = ad+bc. bei ganzzahligem Nenner: Hauptnenner (= kgv der Nenner), z.b. 4 6 + 3 4 = 8 12 + 9. a d = ac

Erweitern. a b. bd + bc. bd = ad+bc. bei ganzzahligem Nenner: Hauptnenner (= kgv der Nenner), z.b. 4 6 + 3 4 = 8 12 + 9. a d = ac F FORMELSAMMLUNG Bruchrechnung Erweitern = Kürzen c c Addition Nenner gleichnmig mchen! + c d = d d + c d = d+c d, speziell + c = +c ei gnzzhligem Nenner: Huptnenner (= kgv der Nenner), zb 4 6 + 3 4 =

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium Schützen Sie diejenigen, die Ihnen m Herzen liegen Risikopremium Verntwortung heißt, weiter zu denken Die richtige Berufswhl, die Gründung einer eigenen Fmilie, die eigenen vier Wände, der Schritt in die

Mehr

Technische Informatik - Hardware

Technische Informatik - Hardware Inhltsverzeichnis Hns-Georg Beckmnn 22 Technische Informtik - Hrdwre Teil : Grundlgen Vorbemerkungen 2 Dezimlzhlen, Dulzhlen, Hexzhlen 3 Umrechnen in Zhlensystemen 4 Addieren zweier Dulzhlen 6 Hlbddierer

Mehr

750 + 142,50 = 892,50 Nettopreis Umsatzsteuer Bruttopreis

750 + 142,50 = 892,50 Nettopreis Umsatzsteuer Bruttopreis 2.7 Verminderter und vermehrter Grundwert 41 Beispiel: Bruttobetrg, Nettobetrg, Umstzsteuer Profirdfhrer Klus kuft sih ein Mountinbike. Ds Fhrrd kostet einshließlih 19 % Umstzsteuer 892,50. Ds Finnzmt

Mehr

Numerische Mathematik I

Numerische Mathematik I Numerische Mthemtik I Dr. Wolfgng Metzler Universität Kssel unter Mitwirkung von Dipl.-Mth. Mrtin Steigemnn Sommersemester 2005 ii c 2005 Dr. Wolfgng Metzler, Fchbereich Mthemtik und Informtik der Universität

Mehr

GRUNDWISSEN MATHEMATIK. Gymnasium Ernestinum Coburg Fachschaft Mathematik

GRUNDWISSEN MATHEMATIK. Gymnasium Ernestinum Coburg Fachschaft Mathematik GRUNDWISSEN MTHEMTIK Gymnsium Ernestinum Coburg Fchschft Mthemtik GM 5.1 Zhlen und Mengen Grundwissen Jhrgngsstufe 5 Mengen werden in der Mthemtik mit geschweiften Klmmern geschrieben: Menge der ntürlichen

Mehr

16.3 Unterrichtsmaterialien

16.3 Unterrichtsmaterialien 16.3 Unterrichtsmterilien Vness D.l. Pfeiffer, Christine Glöggler, Stephnie Hhn und Sven Gembll Mteril 1: Alignieren von Nukleotidsequenzen für die Verwndtschftsnlyse Für eine Verwndtschftsnlyse vergleicht

Mehr

Analysis 2. Vorlesungsskript Sommersemester 2014. Bernd Schmidt. Version vom 15. Oktober 2014

Analysis 2. Vorlesungsskript Sommersemester 2014. Bernd Schmidt. Version vom 15. Oktober 2014 Anlysis 2 Vorlesungsskript Sommersemester 214 Bernd Schmidt Version vom 15. Oktober 214 Institut für Mthemtik, Universität Augsburg, Universitätsstr. 14, 86135 Augsburg, bschmidt@mth.uni-ugsburg.de 1 Inhltsverzeichnis

Mehr

Unterrichts- und Prüfungsplanung M306 Modulverantwortlicher: Beat Kündig Modulpartner: R. Rubin

Unterrichts- und Prüfungsplanung M306 Modulverantwortlicher: Beat Kündig Modulpartner: R. Rubin Dokument Dtum (Version) Gültig für 200 / 0 Seite von 7 Unterrichts- und Prüfungsplnung M306 Modulverntwortlicher: Bet Kündig Modulprtner: R. Rubin Lernschritt-Nr. Hndlungsziele Zielsetzung unter Berücksichtigung

Mehr

F 0 =0, F 1 =1 und F n+1 =F n +F n-1 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,

F 0 =0, F 1 =1 und F n+1 =F n +F n-1 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, F 0 0, F und F n+ F n +F n- 0,,,,,, 8,,, 4,, N A U T I L U S Fiboncci - Zhlen S. Nutilus - Nmen gebend für ds berühmte U-Boot des Kpitäns Nemo us Jules Vernes Romn "0 000 Meilen unter dem Meer" - ist ein

Mehr

http://www.tfh-wildau.de/gerking/arbeiten.html 2005

http://www.tfh-wildau.de/gerking/arbeiten.html 2005 Hllo Ilse, gut nch Huse gekommen? Ich htte Glück, die U-Bhnnschlüsse wren gut. http://www.tfh-wildu.de/gerking/arbeiten.html 5 Sonntgs hbe ich mich dnn erstml mit der Frge beschäftigt, ob Mthemtik und

Mehr

Geometrie und. Lineare Algebra

Geometrie und. Lineare Algebra Geometrie und Linere Algebr für ds Lehrmt Frnz Hofbuer November 04 Vorwort Mit Mthemtik kommt mn frühzeitig in Berührung. Kinder lernen Zählen und Rechnen durch beständiges Wiederholen. Ebenso lernen sie

Mehr

Übungsblatt 1 zum Propädeutikum

Übungsblatt 1 zum Propädeutikum Üungsltt zum Propädeutium. Gegeen seien die Mengen A = {,,,}, B = {,,} und C = {,,,}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geen Sie diese in ufzählender Form n.. Geen Sie lle Teilmengen

Mehr

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium Schützen Sie diejenigen, die Ihnen m Herzen liegen Risikopremium 521310620_1001.indd 1 03.12.09 14:50 Verntwortung heißt, weiter zu denken Die richtige Berufswhl, die Gründung einer eigenen Fmilie, die

Mehr

Hausaufgabe 2 (Induktionsbeweis):

Hausaufgabe 2 (Induktionsbeweis): Prof. Dr. J. Giesl Formle Sprhen, Automten, Prozesse SS 2010 Üung 3 (Age is 12.05.2010) M. Brokshmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden

Mehr

MATHEMATIK GRUNDWISSEN KLASSE 5

MATHEMATIK GRUNDWISSEN KLASSE 5 MATHEMATIK GRUNDWISSEN KLASSE 5 Them NATÜRLICHE ZAHLEN Zählen und Ordnen Ntürliche Zhlen werden zum Zählen und Ordnen verwendet Stefn ist beim 100m-Luf ls 2. ins Ziel gekommen. Große Zhlen und Zehnerpotenzen

Mehr