Wurzel b bedeutet: Suche die Zahl, die mit sich selbst multipliziert gerade die Zahl ergibt, die unter der Wurzel steht.

Größe: px
Ab Seite anzeigen:

Download "Wurzel b bedeutet: Suche die Zahl, die mit sich selbst multipliziert gerade die Zahl ergibt, die unter der Wurzel steht."

Transkript

1 /0 Areitsltt Wurzel edeutet: Suhe die Zhl, die mit sih selst multipliziert gerde die Zhl ergit, die unter der Wurzel steht. Also: - suhe eine Zhl, die mit sih selst multipliziert, genu ergit. Die Lösung ist, denn ergit. = 8, denn 8 8 = = 2, denn 2 2 = d e Besonders einfh sind die Qudrtwurzeln. Denn dzu musst du nur die Qudrtzhlen uswendig können. Nun knn mn er us jeder elieigen positiven Zhl der Welt die Wurzel ziehen. Aus negtiven Zhlen ist ds niht möglih. --->???? Wir sollten im Unterriht erst einml klären, wrum ds so ist. Hst du shon eine Idee? Aufge ) ) 2 ) 8 d) e) 02 f) 2 Aufge 2 Berehne die Qudrtwurzel us folgenden Zhlen: ) 20; 2; 220; 20; 20 ) 0; 8; ; ; 2 Aufge Berehne die Qudrtwurzel us folgenden Zhlen: ( ; = Pltzhlter! ) ) 0, ; 0, ;,2 ; 2,0 ; 0, ), ;, ; 2, ;, ;,2 Aufge Berehne die Qudrtwurzel us folgenden Zhlen: ) ; ; ; ; ; ; ) ; ; ; ; ; ; Aufge Berehne die Qudrtwurzel us folgenden Zhlen: ) ; ; ; ; ; ) ; ; ; ; ; Aufge Berehne die Qudrtwurzel us folgenden Zhlen: ) 8 ; 222 ; 2 ) 22 ; 2 ; 22

2 /0 Nme : Areitsltt Informtionen Ntürlih knn niht nur us Qudrtzhlen die Wurzel ziehen, sondern uh us jeder elieigen positiven Zhl. Im Ergenis knn mn einen wihtigen Untershied eohten: Aufge: Nimm deinen Tshenrehner und löse folgende Wurzeln: ) 2 ) Wie untersheiden sih eide Ergenisse? Berehne die Wurzeln us folgenden Zhlen ohne Tshenrehner : ) 8 ) ) d) e) 2 f) 2 Berehne die Wurzeln us folgenden Zhlen mit dem Tshenrehner: ) 2 ) 20 ) 0 d) e) 0000 f) Berehne die Wurzeln us folgenden Zhlen mit dem Tshenrehner: ) 20 ) 8 ) 0 d) e) 82 f) 0 Berehne die Wurzeln us folgenden Zhlen mit dem Tshenrehner: ) 8 ) ) d) 8 e) 2 f) Mn knn uh die Wurzel us einer Wurzel usrehnen. Dzu erehnet mn zuerst die erste Wurzel us und zieht us dem Ergenis dieser Aufge noh einml die Wurzel. Rehne eenso: = = 2 ) ) 20 ) d) 20 e) f) g) 0 h) 2 i) 28 j) 02 Bestimme die Wurzel ohne Tshenrehner: ) () 2 ) ( ) 2 ) (2 2 ) d) e) f) ( 2) 2 2 g) 8 2 h), 2 i) ( ) 2 2 f) 0, 2 2 ( )2 2

3 /0 Nme : Areitsltt Wurzelgesetze Merke: Die Zhl, die unter dem Wurzelzeihen steht, nennt mn Rdiknt. (W) Mn multipliziert zwei Wurzeln, indem mn die Rdiknten multipliziert und dnn die Wurzel zieht: $ = $ für lle Zhlen, m 0 Wende nun ei llen Aufgen ds erste Wurzelgesetz (W) n und rehne die Wurzel us:. ) ) 2 ) d) e) 28 f) 2. ) 2 2 ) ) 2 d) e) 00 f) 2 2. ) 2 ) ) 0 2, d) 28, 8 e) 2 f). ) ) 2 ) 2 22 d) 8 e) 8 f) 02, 0. ) 8 $ 8 ) 2 $ 2 ) 0 $ d) 2 $ e) $ 20 f) $ 28 g) $ h), $ 0 i) 0, $ 2, j) $. ) 8 2 ) 2 8 ) 2, d) 8, 8 e) 2 2 f) ) 2 ) 28 8 ) 8 8 d) 8, 2 e) 2, f) Auh Kommzhlen können Lösungen sein: ) 2 ) 8 ) 2 2 d) 28 e) 2 f) 2. Auh Kommzhlen können Lösungen sein: ) ), ) 2 d) e) 2 f) 2 8

4 /0 Nme : Areitsltt Wurzelgesetze (W2) Mn dividiert zwei Wurzeln, indem mn die Rdiknten dividiert und dnn die Wurzel zieht: : = : für lle Zhlen, m 0 für lle Zhlen, 0 = m Wende nun ei llen Aufgen ds zweite Wurzelgesetz (W2) n und rehne die Wurzel us. Behte, dss sih uh Kommzhlen ls Lösungen ergeen können:. ) 00 : 0 ) 000 : 0 ) 0000 : 0 d) 0000 : 00 e) 0000 : 00 f) : ) 00 : ) 00 : ) 0000 : 0 d) 0000 : 00 e) 000 : f) 000 : 0. ) 0 : ) 00 : ) 000 : 0 d) 0000 : e) 00 : 2, f) 000 : 2,. ) 00 : ) 0 : 0, ) 00 : 0, 0 d) : 0, 0 e) 000 : 0 f) : 0. ) : ) 200 : 2 ) 0 : d) 2 : e) 20 : f) : g) : h) : 0 i) 2, : 0, j) 2, : 0,. ) ) ) d) e) f) g) h) 2 i) j) k) l) ) 28 : ) : ) : 2 d) 0 : e) : f) 8 :. 2 ) ) ) d) 8. ) : ) : ) 2 : 2 d) : 2 e) 2 : f) 2 : e) f) g) h) i) j) k) l) 2,2 0,,, 8 2, 2,

5 /0 Nme : Areitsltt Aufge ) $ ) $ ) $ 2 d) $ e) 0, $ 2 f) 2 $ 0, 8 g) $ 0, 0 h) 0, $, i) 2, $, j) $ 8 $ k) $ 0, 0 $ l) ( ) $ ( ) $ = $ = $ 8 = 8 Aufge 2 Zerlege zunähst den Rdiknten in kleine Qudrtzhlen ) ) ) 2 d) 2 e) 00 f) 08 g) 2 h) 08 i) 2 = 2 $ = 2 $ =... Aufge ) 20 : ) : ) 800 : 00 d) : e) 00 : f) 0 : 2, g) 0, 8 : 0,2 h), 2 : 0,0 i), 8 : 0,08 : = : = = Aufge 8, 8 0, 0,8 ) ) ) d), e) f) g) h) 2,,, 2, 0,00 0,008 i) j) k) l),2 2, 0,0 0,0 2 = 2 = = 2, 2 Aufge Git die einshränkende Bedingung n - Vereinfhe dnn. ) n $ n ) y $ y ) z $ z d) $ e) $ 2 f) yx 2 $ y g) 20 $ h) y 2 $ y 2 i) x $ y 2 x j) 0, 0 $ 0, 2 k) 2 x $ 0 x l) : m) y : y n) 2 : o) y : y p) Aufge x 2 n : nm2 ) 8y 2 ) y 2 x 2 ) d) 2 n 2 m e) z 2 y 2 x 2 8 f) x2 y g) u v w 2 h), 2 Aufge ) 2 y 2 0,00 x 2 y 00 x ) y ), y 2 x d) z 8, u x 2 v

6 8 /0 Nme : Areitsltt Teilweises Wurzelziehen Es git Zhlen, us denen mn ohne Tshenrehner keine Wurzelziehen knn. Aer mn knn den Rdiknten zerlegen, so dss eine Multipliktionsufge entsteht. Dei ist es wihtig, dss einer der eiden Fktoren eine Qudrtzhl ist. Aus dieser Qudrtzhl knn mn die Wurzel ziehen. Betrhtet folgendes Beispiel : 2 = $ = $ = 2 $. Zerlege den Rdiknten in ein Produkt. Behte dei, dss ein Fktor eine Qudrtzhl sein muss. 2. Wende nun ds. Wurzelgesetz (W) n.. Ziehe nun die Wurzel us der Qudrtzhl. Lsse die 2. Wurzel stehen. Löse nun die folgenden Aufgen ) 2 ) ) 0 d) 20 e) 2 f) 80 g) 2 h) 2 ) ) 80 ) 8 d) e) 20 f) g) 80 h) 8 ) 88 ) ) 280 d) 22 e) 2 f) 2 g) 2888 h) 8 ) ) ) 00 d) e) 2 2 f) 8 g) h) ) ) ) 2 d) e) 8 f) g) 8 h) ) 0 2 ) ) 00 d) Nun musst du shon etws nhdenken ) ) ) 2 d) 200 e) 0 f) 0 g) 280 h) 2 8 Ds geht ntürlih uh mit Buhsten... ) 2 ) ) z d) x 2 y e) 2 2 f) y g) x h) d i) 2 j) x k) 2 l) z ) 8 2 ) 8 ) d d) y 2 x e) 2v 2 f) 2xzy g) stu h) i) 2 j) 8g k) yx 2 l)

7 /0 Nme : Areitsltt Bringe einen Fktor unter eine Wurzel Keine Pnik, die She ist gnz einfh! Betrhte einfh einml ds folgende Beispiel: 2 $ = $ = $ = 2. Qudriere den Fktor vor der Wurzel / Shreie ihn unter eine Wurzel 2. Wende ds 2. Wurzelgesetz rükwärts n.. Multipliziere die eiden Fktoren unter der Wurzel Löse nun die folgenden Aufgen nh dieser Vorshrift: ) 2 ) ) $ $ $ 0 $ 28 $ $ d) 0, e) 2 f) 2 ) ) 2 ) $ 28 $ $ $ 22 $ $ d) 2 e) 2 f) ) 0 $, ) $, ), $ 2, d),2 $, 2 e) 0, $ 0, f),2 $, ) $ 8 ) $ ) $ 8 d) $ 2 e) 2 $ f) $ 22 2 $ 2 $ ) ) ) d) $ e) $ 2 f) ) ) ) $ 2 $ 8 $ $ 8 $ 8 $ 2 $ 2 $ 8 d) e) f) Ds geht ntürlih uh mit Buhsten: ) x $ ) y $ ) z $ 2 d) $ 2 e) $ f) $ 2 g) s 2 $ h) ut $ i) x 2 z 2 $ j) yxz 2 $ 2 k) v 2 $ 8 l) wq $ 8 ) $ ) 2 $ x ) $ yx d) $ s e) 2 $ hg f) $ g) 2 $ de h) $ i) $ z j) 8 $ xs k) $ uy l) $ pq Behte: x 2 = x x = x ) x $ v ) y $ xy ) z $ xyz d) $ e) $ f) 2 $ g) s 2 $ st h) ut $ uv i) x 2 z 2 $ z j) yxz 2 $ xy k) v 2 $ wv l) wq $ q

8 20/0 Nme : Areitsltt Umformen von Wurzeltermen Von der Alger her weißt du ereits, dss mn Terme durh usklmmern oder usmultiplizieren vereinfhen knn. Dies funktioniert uh ei Wurzeltermen: A B C 8 $ + 2 $ ( + 2 ) $ 2 ( + ) $ (8 + 2) $ $ $ 2 $ + $ 0 $ $ $ + $ 2 + = 2 + ) $ + $ ) 0 $ + $ ) $ + $ d) $ 2 $ 2 ) $ + $ ) 2 $ + $ ) 2 $ + 8 $ d) y $ x z $ x ) (8 + ) $ ) ( + ) $ ) ( 2 ) $ 2 d) (8 + ) $ ) ( + ) $ ) + $ ) (x 2 ) $ d) + $ ) ( 8 + ) $ ) ( ) $ ) ( + 2 ) $ d) ( + 2 ) $ ) + $ ) + $ ) $ d) + $ Vereinfhe die Wurzelterme durh Zusmmenfssen gleiher Glieder. ) $ + $ ) 8 $ + 2 $ ) x $ + yx $ d) y $ zy +z$ zy e) $ + 2 $ f) 2 $ $ g) z $ 2 + zy $ 2 h) y $ xzy xz $ xzy i) $ j) yx + yx $ yx k) x $ z yx $ z l), $ +, $ m) $ + 2 $ n) + x $ o) 2 $ + 2 $ p) $ $ 8 Vereinfhe ) $ x + $ x ) 2y + y ) x y + x + y d) 8 $ y + $ y + e) x + + x f) z z g) 2 $ + 2 h) 2 z + 2 8z i) y x + x + y j) $ ds + $ ds ds k) 00y + y 2 + l) 0 +

9 2 /0 Nme : Areitsltt GENERALPROBE Aufge Berehne die Qudrtwurzel us folgenden Zhlen: ) 20; 2; 220; 20; 20 ) 0; 8; ; ; 2 Aufge 2 Berehne die Qudrtwurzel us folgenden Zhlen: ) ; ; 8 ; 2 ; ; 2 ; ) ; ; ; ; 800 ; ; Aufge 8 ) 0 ) ) d) 0 e) Aufge Wende die Wurzelgesetze n Aufge Wende die Wurzelgesetze n 8 ) ) ), 2,, 2, d) d) e) Aufge ) n $ n ) y $ y ) z $ z d) $ Aufge e) $ 2 f) yx 2 $ y,,8, g) 20 $ h) y 2 $ y 2 Aufge ) ) ) d) e) ) n : nm2 ) 2 x : y 2 x Teilweises Wurzelziehen ) 2 ) 80 ) 2 d) e) 80 f) g) h) i) 00 j) k) l) Bringe den Fktor unter die Wurzel ) 2 $ 2 ) $ ) $ d) $ e) $ 2 e) 2 $ Ds geht ntürlih uh mit Buhsten... ) 2 ) ) h d) 2 e) y 2 f) p

5.2 Quadratische Gleichungen

5.2 Quadratische Gleichungen Mthemtik mit Mthd MK..0 0_0_Qud_Gleih.xmd Einfhe qudrtishe Gleihungen. Qudrtishe Gleihungen ef.: Eine Gleihung, in der x höhstens qudrtish (in der zweiten Potenz) vorkommt, heißt qudrtishe Gleihung. Gewöhnlihe

Mehr

5.6 Gleichsetzungsverfahren

5.6 Gleichsetzungsverfahren .6 Gleihsetzungsverfhren Verfhren: Beide Gleihungen des Gleihungssystems werden nh derselen Vrilen ufgelöst und die entsprehenden Terme werden einnder gleihgesetzt. Beispiele (G x ) ) () x + y () x - y

Mehr

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B Erkundungen Terme vergleihen Forshungsuftrg : Fläheninhlte von Rehteken uf vershiedene Arten erehnen Die Terme () is (6) eshreien jeweils den Fläheninhlt von einem der drei Rehteke. Ordnet die Terme den

Mehr

SS 2018 Torsten Schreiber

SS 2018 Torsten Schreiber SS 08 orsten Shreier 8 Beim inneren Produkt ) wird komponentenweise multipliziert und die entstehenden Produkte nshließend. Somit hndelt es sih um keine d nur eine Zhl Sklr) ls Lösung heruskommt. Ds Sklrprodukt

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN. Dienstag

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN. Dienstag Lösungen Dienstg -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN Dienstg Blok.. - 4 3y 6 3-6y 3-3 y -. - 3y 4 - y 9 - y -93. y 0,,y Sämtlihe Lösungsmethoden liefern hier whre Aussgen. Z. Bsp. «0 0».

Mehr

Das kleine 9er-Einmaleins mit den 10 Fingern lernen.

Das kleine 9er-Einmaleins mit den 10 Fingern lernen. Ws? Multiplizieren 9er-Finger-Einmleins Wozu? Ds kleine 9er-Einmleins mit den 10 Fingern lernen. 1. Beide Hände mit usgestrekten Fingern zeigen nh oen. 2. Die Dumen zeigen nh ußen (Hndflähen zum Gesiht).

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6.1 Voremerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Oertionen. Sie heen sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Shufhprinzip (Folie 137) Automten und formle Sprhen Notizen zu den Folien Im Blok Ds Shufhprinzip für endlihe Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl von

Mehr

Umstellen von Formeln und Gleichungen

Umstellen von Formeln und Gleichungen Umstellen von Formeln und Gleihungen. Ds Zusmmenfssen von Termen edeutet grundsätzlih ein Ausklmmern, uh wenn mn den Zwishenshritt niht immer ufshreit. 4 6 = (4 6) =. Steht eine Vrile, nh der ufgelöst

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2013 Montg 15.4 $Id: dreiek.tex,v 1.5 2013/04/15 09:12:15 hk Exp hk $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

Summen und Produkte 19

Summen und Produkte 19 1 9 mthuh 1 LU 19 Areitsheft weitere Aufgen «Zustznforderungen» 201 Vereinfhe die folgenden Terme. A + + + + + = 2 + 3 + = + 2d + 2 + d = e + 2f + d + e + d = 3 + 3 = 3( + ) 6 3 + 3d = 3( + d) 2d + 2e

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6. Vorbemerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Opertionen. Sie heben sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1.

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1. Trigonometrie In diesem Themenereih wenden wir uns den Winkeln im rehtekigen Dreiek zu. Du hst uf deinem Tshenrehner siher shon die Tsten sin, os und tn gesehen. Doh ws edeuten sie? Ds wollen wir herusfinden.

Mehr

Lineare Gleichungssysteme mit 3 und mehr Variablen

Lineare Gleichungssysteme mit 3 und mehr Variablen Linere Gleihungssysteme mit un mehr rilen Beispiel 1 mit rilen: 11 Zunähst estimmt mn ie rile, ie mn ls Erste eliminieren will. In iesem Fll soll von hinten nh vorn vorgegngen weren,.h. zuerst soll rile

Mehr

Übungen zu Wurzeln III

Übungen zu Wurzeln III A.Nenner rtionl mchen: Nenner ist Qudrtwurzel: 5 bc 1.).).).) 5.) 1 15 9 bc.).) 8.) 9.) 10.) 5 5 B.Nenner rtionl mchen: Nenner ist höhere Wurzel: 1 1 9 5 1 1.).).).) 5.).) 5 C.Nenner rtionl mchen: Nenner

Mehr

Summen und Produkte 19

Summen und Produkte 19 1 9 mthuh 1 LU 19 Areitsheft weitere Aufgen «Zustznforderungen» 201 Vereinfhe die folgenden Terme. A + + + + + = 2 + 3 + = + 2d + 2 + d = e + 2f + d + e + d = B 5r + 3(r + s) + 4r + 2s + s + s = 5r + 3(r

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Mathematische Probleme, SS 2018 Dienstag 5.6. $Id: dreieck.tex,v /06/05 15:41:51 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2018 Dienstag 5.6. $Id: dreieck.tex,v /06/05 15:41:51 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2018 Dienstg 5.6 $Id: dreiek.tex,v 1.43 2018/06/05 15:41:51 hk Exp $ 2 Dreieke 2.1 Dreiekserehnung mit Seiten und Winkeln Am Ende der letzten Sitzung htten wir den sogennnten Kongruenzstz

Mehr

Seminarstunden S-Std. (45 min) Nr. Modul Theorie Übungen. 13 Bruchrechnung 1 5

Seminarstunden S-Std. (45 min) Nr. Modul Theorie Übungen. 13 Bruchrechnung 1 5 Mthemtik Grundlgen Mthemtik Grundlgen für Industriemeister Seminrstunden S-Std. ( min) Nr. Modul Theorie Üungen Inhlt.... Allgemeines..... Ehte Brühe..... Unehte Brühe.... Erweitern und Kürzen von Brühen....

Mehr

Rechnerlösungen gibt es zu den Aufgaben 6 bis 10. Ausführliche Berechnungsbeispiele und vieles mehr gibt es unter

Rechnerlösungen gibt es zu den Aufgaben 6 bis 10. Ausführliche Berechnungsbeispiele und vieles mehr gibt es unter R. Brinkmnn http://rinkmnn-du.de eite.0.0 Lösungen Bruhrehnung I mit dem GTR CAIO fx-cg 0 Rehnerlösungen git es zu den Aufgen 6 is 0. Ausführlihe Berehnungseispiele und vieles mehr git es unter http://www.freiurger-verlg.de/

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie

Mathematik für Studierende der Biologie und des Lehramtes Chemie Verfhren Mthemtik für Studierende der Biologie und des Lehrmtes Chemie Dominik Shillo Universität des Srlndes 6. Vorlesung, 4..7 (Stnd: 4..7, 4:5 Uhr) Shreibe,,n.......... n, n,n Führe den Guÿlgorithmus

Mehr

RESULTATE UND LÖSUNGEN

RESULTATE UND LÖSUNGEN TG TECHNOLOGISCHE GRUNDLAGEN Kpitel 3 Mthemtik Kpitel 3.2 Alger Grundrechenrten RESULTATE UND LÖSUNGEN Verfsser: Hns-Rudolf Niedererger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausge:

Mehr

3.1 Multiplikation Die Multiplikation von algebraischen Termen kennen Sie von früher. Die wichtigsten Punkte seien hier kurz wiederholt:

3.1 Multiplikation Die Multiplikation von algebraischen Termen kennen Sie von früher. Die wichtigsten Punkte seien hier kurz wiederholt: .1 Multipliktion Die Multipliktion von lgerischen Termen kennen Sie von früher. Die wichtigsten Punkte seien hier kurz wiederholt: c Multipliktor Multipliknd Produkt Kommuttivgesetz (Vertuschungsgesetz)

Mehr

Gleichung: 11 + x = 35 Welcher Zahlenwert steckt hinter der Variablen x?

Gleichung: 11 + x = 35 Welcher Zahlenwert steckt hinter der Variablen x? Rettungsring Vrilen & Gleihungen gnz klr: Mthemtik - Ds Ferienheft mit Erfolgsnzeiger Vrilen & Gleihungen Vrilen (,, ) werden uh Uneknnte oder Pltzhlter gennnt. Sie smolisieren einen estimmten Zhlenwert

Mehr

x a 2 (b 2 c 2 ) (a + b 4 + a + weil Klammern nicht geschlossen oder Operationszeichen keine Terme verbinden.

x a 2 (b 2 c 2 ) (a + b 4 + a + weil Klammern nicht geschlossen oder Operationszeichen keine Terme verbinden. Termnlyse Mthemtik. Klsse Ivo Blöhliger Terme Ein wihtiger Teil es mthemtishen Hnwerks esteht rin, Terme umzuformen. Dzu müssen einerseits ie Rehengesetze er reellen Zhlen verinnerliht sein, un nererseits

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT Mthemtik: Mg. Schmid Wolfgng Areitsltt 5. Semester ARBEITSBLATT 5 ORTHOGONALITÄT Ws versteht mn zunächst einml unter orthogonl? Dies ist nur ein nderes Wort für norml oder im rechten Winkel. Ws uns hier

Mehr

9 Vektorprodukt. Dieses Gleichungssystem muss man nun lösen! Das ist allerdings nicht ganz einfach. Die Lösung lautet:

9 Vektorprodukt. Dieses Gleichungssystem muss man nun lösen! Das ist allerdings nicht ganz einfach. Die Lösung lautet: 9 Vektorprodukt 9.1 Ds Vektorprodukt Gegeen seien zwei (komplnre) Vektoren und, die eine Eene ufspnnen. Suht mn einen Vektor n, der uf diese Eene senkreht steht, dnn muss n orthogonl zu und n orthogonl

Mehr

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck 10 1 Grundlgen der Shulgeometrie 13 Ds Dreiek In diesem shnitt findet lles in der ffinen Stndrdeene 2 = R 2 sttt Drei Punkte, und, die niht uf einer Gerden liegen, ilden ein Dreiek Die Punkte,, nennt mn

Mehr

2. Landeswettbewerb Mathematik Bayern 2. Runde 1999/2000

2. Landeswettbewerb Mathematik Bayern 2. Runde 1999/2000 Lndeswettewer Mthemtik Bern Runde 999/000 Aufge Ein Würfel wird durh je einen Shnitt rllel zur order-, Seiten und Dekflähe in ht Quder zerlegt (siehe Skizze) Können sih die Ruminhlte dieser Quder wie :

Mehr

( 3 ( 5. Grundwissen. Die Lösungen zum Grundwissen stehen im Anhang. Mit Brüchen rechnen. 1 Vervollständige die Additionsmauern im Heft.

( 3 ( 5. Grundwissen. Die Lösungen zum Grundwissen stehen im Anhang. Mit Brüchen rechnen. 1 Vervollständige die Additionsmauern im Heft. 6 Die Lösungen zum stehen im nhng. Mit rühen rehnen 1 Vervollständige die dditionsmuern im Heft. ) ) 3 10 3 5 2 erehne. ) 13 65 88 d) 7 13 : 1 65 3 20 3 ) 2 7 1 36 e) 2 1 7 : 15 2 2 15 1 20 ) 2 7 2 1 36

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kohls Mathe-Tandem Geometrie - Partnerrechnen im

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kohls Mathe-Tandem Geometrie - Partnerrechnen im Unterrihtsmterilien in digitler und in gedrukter Form uszug us: Kohls Mthe-Tndem Geometrie - Prtnerrehnen im 9.-10. Shuljhr Ds komplette Mteril finden Sie hier: Shool-Sout.de Mthe-Tndem Geometrie für ds

Mehr

Größter gemeinsamer Teiler und kleinstes gemeinsames Vielfaches

Größter gemeinsamer Teiler und kleinstes gemeinsames Vielfaches Größter gemeinsmer Teiler un kleinstes gemeinsmes Vielfhes 1 Der größte gemeinsme Teiler (ggt) Zu jeer Zhl knn mn ihre Teilermenge ngeen. Τ0 {1; 2; ; 5; 6; 10; 15; 0} Τ {1; 2; ; ; 6; } Die gemeinsmen Teiler

Mehr

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09 Hns U. Simon Bohum, den 7..28 Annette Ilgen Beispiele zur Vorlesung Theoretishe Informtik WS 8/9 Voremerkung: Hier findet sih eine Smmlung von Beispielen und Motivtionen zur Vorlesung Theoretishe Informtik.

Mehr

01 Proportion Verhältnis Maßstab

01 Proportion Verhältnis Maßstab 5 Ähnlihkeit und Strhlensätze LS 01.M1 01 Proportion Verhältnis Mßst 1 Lies die folgende Informtion sorgfältig. Mrkiere wihtige egriffe und Formeln. ) Proportionle Zuordnung ei einer proportionlen Zuordnung

Mehr

1 Aktivität 1 Sehen ohne Ton (Track 1 bis Und eine Schokolade. )

1 Aktivität 1 Sehen ohne Ton (Track 1 bis Und eine Schokolade. ) Shritte 1/2 interntionl Hinweise für die Kursleiter Film 3:»Die Josuhe«Mteril zu Film 3 Die Josuhe : Film 3,. 05:00 Min. Zustzmteril: Mein Beruf,. 01:30 Min., 5 kurze Sttements zum Them 5 Areitslätter

Mehr

Ober- und Untersummen, Riemann Integrale

Ober- und Untersummen, Riemann Integrale Oer- und Untersummen, Riemnn Integrle 1. Ds Prolem des Fläheninhlts Ausgngspunkt für die Entwiklung des Integrlegriffs wren vershiedene Frgestellungen, u.. ds Prolem der Messung des Fläheninhltes eines

Mehr

4. Lineare Gleichungen mit einer Variablen

4. Lineare Gleichungen mit einer Variablen 4. Linere Gleichungen mit einer Vrilen 4. Einleitung Werden zwei Terme einnder gleichgesetzt, sprechen wir von einer Gleichung. Enthlten eide Terme nur Zhlen, so entsteht eine Aussge, die whr oder flsch

Mehr

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen.

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.1.017 Themen: Reelle Zhlen, Qudrtwurzeln LGS mit drei Unbeknnten Checkliste Ws ich lles können soll Ich knn LGS mit drei Gleichungen und drei Unbeknnten

Mehr

Gruppe A Bitte tragen Sie SOFORT und LESERLICH Namen und Matrikelnr. ein, und legen Sie Ihren Studentenausweis bereit.

Gruppe A Bitte tragen Sie SOFORT und LESERLICH Namen und Matrikelnr. ein, und legen Sie Ihren Studentenausweis bereit. Gruppe A Bitte trgen Sie SOFORT und LESERLICH Nmen und Mtrikelnr. ein, und legen Sie Ihren Studentenusweis ereit. 1. Leistungsüerprüfung AUS DATENMODELLIERUNG (184.685) GRUE A 16.04.2013 Mtrikelnr. Fmiliennme

Mehr

29 Uneigentliche Riemann-Integrale

29 Uneigentliche Riemann-Integrale 29 Uneigentlihe Riemnn-Integrle 29.2 Uneigentlihe Riemnn-Integrle bei einer kritishen Integrtionsgrenze 29.3 Zusmmenhng des uneigentlihen mit dem eigentlihen Riemnn-Integrl 29.5 Cuhy-Kriterium für uneigentlihe

Mehr

Übungsblatt Nr. 2. Lösungsvorschlag

Übungsblatt Nr. 2. Lösungsvorschlag Institut für Kryptogrphie und Siherheit Prof. Dr. Jörn Müller-Qude Dirk Ahenh Tois Nilges Vorlesung Theoretishe Grundlgen der Informtik Üungsltt Nr. 2 svorshlg Aufge 1: Doktor Met in Gefhr (K) (4 Punkte)

Mehr

Kurvenintegrale. (Eine reguläre Kurve besitzt also in jedem Punkt einen nicht verschwindenden Tangentenvektor.)

Kurvenintegrale. (Eine reguläre Kurve besitzt also in jedem Punkt einen nicht verschwindenden Tangentenvektor.) Kurvenintegrle Definition: (Kurve) Eine stetige Abbildung : [, b] R n heißt ein Weg im R n. Ds Bild C := ([, b]) heißt Kurve im R n. Die Punkte () bzw. (b) heißen Anfngsbzw. Endpunkt der Kurve. heißt geshlossener

Mehr

Aufgabe 1. Die Zahl 6 wird aus 3 gleichen Ziffern mit Hilfe der folgenden mathematischen

Aufgabe 1. Die Zahl 6 wird aus 3 gleichen Ziffern mit Hilfe der folgenden mathematischen Deprtment Mthemtik Tg der Mthemtik 5. Juli 008 Klssenstufen 9, 10 Aufge 1. Die Zhl 6 wird us 3 gleihen Ziffern mit Hilfe der folgenden mthemtishen Symole drgestellt: + Addition Sutrktion Multipliktion

Mehr

a) Behauptung: Es gibt die folgenden drei stabilen Matchings:

a) Behauptung: Es gibt die folgenden drei stabilen Matchings: Musterlösung - ufgenltt 1 ufge 1 ) ehuptung: Es git ie folgenen rei stilen Mthings: ies knn mn ntürlih für ein so kleines eispiel urh etrhten ller möglihen 3! = 6 Mthings eweisen. Mn knn er uh strukturierter

Mehr

3 Punkte, Ortsvektoren und Verbindungsvektoren. Zunächst im 2-dimensionalen: A 4 1 , C 2 4. und D 3 1 Koordinatensystem. in einem kartesischen

3 Punkte, Ortsvektoren und Verbindungsvektoren. Zunächst im 2-dimensionalen: A 4 1 , C 2 4. und D 3 1 Koordinatensystem. in einem kartesischen Punkte Ortsvektoren und Verindungsvektoren Punkte Ortsvektoren und Verindungsvektoren Zunähst im -dimensionlen: A 4 Gegeen sind die Punkte B 5 C 4 und D Koordintensystem. in einem krtesishen AB CD d Zu

Mehr

gehört ebenfalls zu einem Paar. Da 5 eine Primzahl und kein anderes Quadervolumen ein Vielfaches von 5 V o

gehört ebenfalls zu einem Paar. Da 5 eine Primzahl und kein anderes Quadervolumen ein Vielfaches von 5 V o Lndeswettewer Mthemtik Bden-Württemerg 999 Runde ufge Ein Würfel wird durh je einen Shnitt rllel zur order-, Seiten und Dekflähe in ht Quder zerlegt (siehe Skizze) Können sih die Ruminhlte dieser Quder

Mehr

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1)

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1) teilung Informtik, Fh Progrmmieren 1 Einführung Dten liegen oft ls niht einfh serier- und identifizierre Dtensätze vor. Stttdessen reräsentieren sie lnge Zeihenketten, z.b. Text-, Bild-, Tondten. Mn untersheidet

Mehr

Grundwissen Mathematik 8.Klasse Gymnasium SOB. Darstellung im Koordinatensystem: Der Kreisumfang ist direkt proportional zu seinem Radius.

Grundwissen Mathematik 8.Klasse Gymnasium SOB. Darstellung im Koordinatensystem: Der Kreisumfang ist direkt proportional zu seinem Radius. Gymso 1 Grundwissen Mthemtik 8.Klsse Gymnsium SOB 1.Funktionle Zusmmenhänge 1.1.Proportionlität Ändern sih ei einer Zuordnung die eiden Größen im gleihen Verhältnis, so spriht mn von einer direkten Proportionlität.

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeihne ds Dreiek ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erehne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und C(8

Mehr

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN MONTAG. 1. Bemerkungen: Klammern von innen nach aussen auflösen; Punkt vor Strich a) =

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN MONTAG. 1. Bemerkungen: Klammern von innen nach aussen auflösen; Punkt vor Strich a) = Lösngen Montg -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN MONTAG Blok. Bemerkngen: Klmmern von innen nh ssen flösen; Pnkt vor Strih nd 0. / /. π d 9 9 99 00 Bemerkng z d Geht h ohne TR! Kürzen

Mehr

DEMO. Algebraische Kurven 2. Ordnung ohne xy-glied INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL

DEMO. Algebraische Kurven 2. Ordnung ohne xy-glied INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.   FRIEDRICH W. BUCKEL Algerische Kurven. Ordnung ohne x-glied Üersicht üer lle möglichen Formen und Gleichungen Text Nr. 5301 DEO tnd 1. Juli 016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR CHULATHEATIK 5301 Algerische Kurven.

Mehr

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften Vorkurs Mthemtik Fchhochschule Frnkfurt, Fchereich Fchhochschule Frnkfurt m Min Fchereich Informtik und Ingenieurwissenschften Vorkurs Mthemtik Sie finden lle Mterilien sowie ergänzende Informtionen unter

Mehr

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-CHSE Wie wir die Fläche zwischen einer Funktion und der -chse erechnen, hen wir rechentechnische ereits geklärt.

Mehr

Binomische Formeln 1. Veranschauliche die erste binomische Formel grafisch! Vervollständige! x 3. Matthias Apsel, 2008

Binomische Formeln 1. Veranschauliche die erste binomische Formel grafisch! Vervollständige! x 3. Matthias Apsel, 2008 Mtthis Apsel, 008 Binomische Formeln P Vernschuliche die erste inomische Formel grfisch! Vervollständige! ) c d) y) y) ) ) y)y ) y y ) c d) y) y) y) y) Vernschuliche die erste inomische Formel grfisch!

Mehr

Lesen. Fit in Deutsch.2. circa 30 Minuten. Dieser Test hat drei Teile. In diesem Prüfungsteil findest du Anzeigen, Briefe und Artikel aus der Zeitung.

Lesen. Fit in Deutsch.2. circa 30 Minuten. Dieser Test hat drei Teile. In diesem Prüfungsteil findest du Anzeigen, Briefe und Artikel aus der Zeitung. Fit in Deutsh.2 Üungsstz 01 Kndidtenlätter ir 30 Minuten Dieser Test ht drei Teile. In diesem Prüfungsteil findest du Anzeigen, Briefe und Artikel us der Zeitung. Zu jedem Text git es Aufgen. Shreie m

Mehr

5.6 Additionsverfahren

5.6 Additionsverfahren 5.6 Additiosverfhre Prizip Die eide Gleihuge werde so umgeformt, dss ei der Additio der eide Gleihuge eie Vrile wegfällt. Es müsse h der Umformug lso i eide Gleihuge gleih viele x oder gleih viele y (er

Mehr

Relationen: Äquivalenzrelationen, Ordnungsrelationen

Relationen: Äquivalenzrelationen, Ordnungsrelationen TH Mittelhessen, Sommersemester 202 Lösungen zu Üungsltt 9 Fchereich MNI, Diskrete Mthemtik 2. Juni 202 Prof. Dr. Hns-Rudolf Metz Reltionen: Äquivlenzreltionen, Ordnungsreltionen Aufge. Welche der folgenden

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Grundlagen der Algebra

Grundlagen der Algebra PH Bern, Vorbereitungskurs MATHEMATIK Vorkenntnisse 0 Grundlgen der Algebr Einleitung Auf den nchfolgenden Seiten werden grundlegende Begriffe und Ttschen der Algebr erläutert: Zhlenmengen, Rechenopertionen,

Mehr

2. Das Rechnen mit ganzen Zahlen (Rechnen in )

2. Das Rechnen mit ganzen Zahlen (Rechnen in ) . Ds Rechnen mit gnzen Zhlen (Rechnen in ).1 Addition und Subtrktion 5 + = 7 Summnd Summnd Summe 5 - = Minuend Subtrhend Differenz In Aussgen mit Vriblen lssen sich nur gleiche Vriblen ddieren bzw. subtrhieren.

Mehr

Bruchrechnung. W. Kippels 6. Dezember Inhaltsverzeichnis. 1 Vorwort 2. 2 Einleitung 3

Bruchrechnung. W. Kippels 6. Dezember Inhaltsverzeichnis. 1 Vorwort 2. 2 Einleitung 3 Bruchrechnung W. Kippels 6. Dezemer 08 Inhltsverzeichnis Vorwort Einleitung Die Bruchrechenregeln. Addition gleichnmiger Brüche........................ Addition ungleichnmiger Brüche.......................

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9 Regiomontnus - Gymnsium Hßfurt - Grundwissen Mthemtik Jhrgngsstufe 9 Wissen und Können Zhlenmengen N Z Q R ntürliche gnze rtionle reelle Aufgen, Beispiele, Erläuterungen N, Z, Q, R Wurzeln (Qudrtwurzel)

Mehr

Prüfungsteil Schriftliche Kommunikation (SK)

Prüfungsteil Schriftliche Kommunikation (SK) SK Üerlik und Anforderungen Üerlik und Anforderungen Prüfungsteil Shriftlihe Kommuniktion (SK) Üerlik und Anforderungen Worum geht es? In diesem Prüfungsteil sollst du einen Beitrg zu einem estimmten Them

Mehr

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis.

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis. . Wurzel Ds Wurzelziehe (Rdiziere) ist die Umkehrug des Potezieres. Durch Berechug der etsprechede Wurzel etsteht wieder der Wert der Bsis. poteziere Wurzel ziehe. Die Qudrtwurzel Ds Ziehe der Qudrtwurzel

Mehr

2.1 Motivation, Zurückführung auf ein Doppelintegral. Wir betrachten einen zylindrischen Körper K, der von der Fläche

2.1 Motivation, Zurückführung auf ein Doppelintegral. Wir betrachten einen zylindrischen Körper K, der von der Fläche Kpitel 2 Ds Flähenintegrl 2.1 Motivtion, Zurükführung uf ein Doppelintegrl Wir betrhten einen zylindrishen Körper K, der von der Flähe z f(x, y, seitlih von einer Zylinderflähe mit Erzeugenden prllel zur

Mehr

Übungssatz 01 FIT IN DEUTSCH 1. Kandidatenblätter/Prüferblätter ISBN: FIT1_ÜS01_Kandidaten-/Prueferblaetter_Oktober_2005

Übungssatz 01 FIT IN DEUTSCH 1. Kandidatenblätter/Prüferblätter ISBN: FIT1_ÜS01_Kandidaten-/Prueferblaetter_Oktober_2005 FIT IN DEUTSCH 1 Üungsstz 01 Kndidtenlätter/Prüferlätter KASTNER AG ds medienhus FIT1_ÜS01_Kndidten-/Prueferletter_Oktoer_2005 ISBN: 3-938744-76-6 Fit in Deutsh.1 Üungsstz 01 Teil 1 Du hörst drei Nhrihten

Mehr

Download VORSCHAU. Trigonometrie an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges.

Download VORSCHAU. Trigonometrie an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downlod Mro Bettner, Erik Dinges Trigonometrie n Sttionen Üungsmteril zu den Bildungsstndrds Downloduszug us dem Originltitel: Trigonometrie n Sttionen Üungsmteril zu den Bildungsstndrds Dieser Downlod

Mehr

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z Reltionen, 11 Reltionen Reltion ist einfch gesgt eine Beziehung zwischen Elementen von Mengen. In der Geometrie sind z.b. die Reltionen "ist gleich", "ist senkrecht zu", "ist prllel zu" eknnt. Die letzten

Mehr

1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3.

1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3. 5 5. Einführung Die Gleichung x 9 ht die Lösung. x 9 Z 9 x Die Gleichung x ht die Lösung. x Z x Definition Die Gleichung x, mit, Z und 0, ht die Lösung: x x Ist kein Vielfches von, so entsteht eine neue

Mehr

Download. Trigonometrie an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Trigonometrie an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Downlod Mro Bettner, Erik Dinges Trigonometrie n Sttionen Üungsmteril zu den Bildungsstndrds Downloduszug us dem Originltitel: Trigonometrie n Sttionen Üungsmteril zu den Bildungsstndrds Dieser Downlod

Mehr

ISAC. Computer Algebra für Brüche --- angepasst an Ausbildungszwecke

ISAC. Computer Algebra für Brüche --- angepasst an Ausbildungszwecke ISAC Computer Alger für Brühe --- ngepsst n Ausildungszweke Stefn Krnel skrnel@ist.tugrz.t Institut für Mthemtik TU Grz Österreih July 0 00 Astrt Rehnen mit Brühen ist ein grundlegender Teil des Mthemtikunterrihts.

Mehr

1 Mein Wissen aus der 3. Klasse Beispiele

1 Mein Wissen aus der 3. Klasse Beispiele Mein Wissen us er. Klsse eispiele en Lösungen sin Wortteile zugeornet. Sie ergeen er Reihe nh einen mthemtishen egriff, en u in er. Klsse erehnen wirst! ei rzhlung wir vom Preis eines utos % Preisnhlss

Mehr

a) Potenzieren ausgesprochen als Beispiel a b = c a = Basis a hoch b = c 4 3 = 64 b = Exponent c = Potenzwert

a) Potenzieren ausgesprochen als Beispiel a b = c a = Basis a hoch b = c 4 3 = 64 b = Exponent c = Potenzwert 8. Potenzen 8. Einführung in Potenzen / Wurzeln / Logrithmen Neen den klssischen Grundrechenopertionen git es weitere Opertionen, welche Beziehungen zwischen Zhlen schffen: Potenzieren Rdizieren Wurzelziehen)

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

x + z y = 6 x 2 + z 2 y 2 = 36 x 3 + z 3 2y 3 = 1 x + z = y + 6 x 2 + z 2 = y x 3 + z 3 = 2y x 3 + x 2 y + xy 2 + y 3 = 0 x + xy + y = 1

x + z y = 6 x 2 + z 2 y 2 = 36 x 3 + z 3 2y 3 = 1 x + z = y + 6 x 2 + z 2 = y x 3 + z 3 = 2y x 3 + x 2 y + xy 2 + y 3 = 0 x + xy + y = 1 Gleihuge/Ugleihuge sltt Seite Gleihuge Aufge (Wurzel π37) Fide lle e (x, y, z) R 3 des Gleihugssystems M stellt ds System um zu x z y = 6 x z y = 36 x 3 z 3 y 3 = x z = y 6 x z = y 36 x 3 z 3 = y 3 Aus

Mehr

2.14 Kurvendiskussion

2.14 Kurvendiskussion 4 Kurvendiskussion Der Sinn einer Kurvendiskussion ist es, mit möglihst geringem Arbeitsufwnd den wesentlihen Verluf des Grphen einer Funktion zu erkennen Es ist niht sinnvoll, whllos eine große Anzhl

Mehr

ZDfB_Ü01_LV_06 120206. Felix Brandl München ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01. Kandidatenblätter LESEVERSTEHEN ZEIT: 40 MINUTEN

ZDfB_Ü01_LV_06 120206. Felix Brandl München ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01. Kandidatenblätter LESEVERSTEHEN ZEIT: 40 MINUTEN Felix Brndl Münhen ZDfB_Ü01_LV_06 120206 ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01 Kndidtenlätter ZEIT: 40 MINUTEN Zertifikt Deutsh für den Beruf Üungsstz 01 Aufge 1 Bitte lesen Sie den folgenden

Mehr

ARBEITSBLATT 5L-11 BERECHNEN VON RAUMINHALTEN

ARBEITSBLATT 5L-11 BERECHNEN VON RAUMINHALTEN Mthemtik: Mg. Schmid Wolfgng+LehrerInnentem ) Rottion um die -Achse ARBEITSBLATT 5L- BERECHNEN VON RAUMINHALTEN Es geht hier um folgende Aufgenstellung. Eine gegeene Funktion f() soll in einem estimmten

Mehr

2. Das Rechnen mit ganzen Zahlen (Rechnen in )

2. Das Rechnen mit ganzen Zahlen (Rechnen in ) . Ds Rechnen mit gnzen Zhlen (Rechnen in ).1 Addition und Subtrktion 5 + = 7 Summnd Summnd Summe 5 - = 3 Minuend Subtrhend Differenz In Aussgen mit Vriblen lssen sich nur gleiche Vriblen ddieren bzw. subtrhieren.

Mehr

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können

Mehr

Fragebogen E. Lothar Natter. Effizienzcoaching. Unternehmer und Führungskräfte. Firma: Straße: PLZ: Ort: Telefax: Telefon: www:

Fragebogen E. Lothar Natter. Effizienzcoaching. Unternehmer und Führungskräfte. Firma: Straße: PLZ: Ort: Telefax: Telefon: www: Frgeogen E Lothr Ntter Effizienznlyse für Selstständige, Unternehmer und Führungskräfte Effizienzohing Firm: Strße: PLZ: Ort: Telefon: Telefx: E-Mil: www: Dtum: Shereiter: Untershrift: Pseudonym für die

Mehr

1 Algebra. Addition und Subtraktion. Minuend. Differenz. Subtrahend. In einer Summe darf man die Summanden vertauschen. (Kommutativgesetz)

1 Algebra. Addition und Subtraktion. Minuend. Differenz. Subtrahend. In einer Summe darf man die Summanden vertauschen. (Kommutativgesetz) TG TECHNOLOGISCHE GRUNDLAGEN Seite 1 1 Alger Addition und Sutrktion In einer Summe drf mn die Summnden vertushen. (Kommuttivgesetz) + + Summnd Summ nd Beim ddieren drf mn die Summnden zu Teilsummen zusmmenfssen.

Mehr

Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen

Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen Teil 1: Rechenregeln us der Mittelstufe Allgemeine Termumformungen Kommuttivgesetz: Bei reinen Produkten oder Summen ist die Reihenfolge egl x y z = z y x = x z y =.. x+y+z = z+y+x = x+z+y =.. Ausklmmern:

Mehr

Allgemeines. Mail an muenster.de. Motivation für die Veranstaltung Übung zur Markt und Preistheorie

Allgemeines. Mail an muenster.de. Motivation für die Veranstaltung Übung zur Markt und Preistheorie Allgemeines Nme: Emil: Stefn Shrmm stefn.shrmm@wiwi.uni muenster.de Motivtion für die Vernstltung Üung zur Mrkt und Preistheorie Inhlt der Klusur Vorlesung Skrit und Üung Sehr gut vorzuereiten! Tis zur

Mehr

Grundwissen 6. Klasse

Grundwissen 6. Klasse Grundwissen Mthemtik Klsse / Grundwissen Klsse Positive Brühe ) Grundegriffe z Brühe hen die Form n mit z I N0, n I N z heißt der Zähler, n der Nenner des Bruhes Bezeihnung Bedingung Beispiele Ehter Bruh

Mehr

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/20 08:57:49 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/20 08:57:49 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2015 Montg 20.4 $Id: dreiek.tex,v 1.15 2015/04/20 08:57:49 hk Exp $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

Logarithmen und Logarithmengesetze

Logarithmen und Logarithmengesetze R. Brinkmnn http://brinkmnn-du.de Seite 9.. Logrithmen und Logrithmengesetze Wir betrhten die Gleihung 5 = 5 Auf der linken Seite steht eine Potenz mit der Bsis 5 und dem Eponenten. Auf der rehten Seite

Mehr

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg Arithmetik Lösungen Lö. Kpitel: Arithmetik. Ergenisse mit und ohne Lösungsweg Zu Aufge.: ) 7 ist eine rtionle Zhl, d sie sich ls Bruch us zwei gnzen Zhlen (Nenner 0) drstellen lässt: 7 7. 6 ) Eenso, denn

Mehr

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x Bltt 1: Hilfe zur Umformung von Gleichungen mit vielen Vriblen Im Mthemtikunterricht hben Sie gelernt, wie mn Gleichungen mit einer Vriblen umformt, um diese Vrible uszurechnen. Meistens hieß sie. In Physik

Mehr

Repetitionsaufgaben: Trigonometrische Funktionen

Repetitionsaufgaben: Trigonometrische Funktionen Repetitionsufgen: Trigonometrishe Funktionen Inhltsverzeihnis Zusmmengestellt von Luks Fisher, KSA Voremerkungen und Lernziele....... 2 I. Trigonometrie im Dreiek...... 3 1. Trigonometrie im rehtwinkligen

Mehr

Mathematik PM Rationale Zahlen. Ist a kein Vielfaches von b, so entsteht eine neue Zahl, Bruch oder rationale Zahl genannt. Sie bilden die Menge Q.

Mathematik PM Rationale Zahlen. Ist a kein Vielfaches von b, so entsteht eine neue Zahl, Bruch oder rationale Zahl genannt. Sie bilden die Menge Q. Mthetik PM Rtionle Zhlen Rtionle Zhlen. Einführung Die Gleihung = 9 ht ie Lösung. Z 9 9 Die Gleihung = ht ie Lösung. Z Definition Die Gleihung =, it, Z un 0, ht ie Ist kein Vielfhes von, so entsteht eine

Mehr

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg Arithmetik Lösungen Lö. Kpitel: Arithmetik. Ergenisse mit und ohne Lösungsweg Zu Aufge.: 7 ist eine rtionle Zhl, d sie sich ls Bruch us zwei gnzen Zhlen (Nenner 0) drstellen lässt: 7 7. 6 Eenso, denn 5?

Mehr

Gleitpunktarithmetik Def. (Realisierung einer Maschinenoperation):

Gleitpunktarithmetik Def. (Realisierung einer Maschinenoperation): Gleitpunktrithmetik.. De. Relisierung einer Mshinenopertion: - Berehne ür Mshinenzhlen ds Ergenis der Opertion mit höherer Genuigkeit qusi ekt - Runde dieses Resultt wieder u Mshinenzhl. Ddurh ist der

Mehr

der reellen Zahlen umfasst alle rationalen und irrationalen Zahlen.

der reellen Zahlen umfasst alle rationalen und irrationalen Zahlen. . Zhlen. Die Qudrtwurzel Die Qudrtwurzel ist die positive Lösung der Gleihung Ein Teil der Qudrtwurzeln sind rtionle Zhlen. 0! z.b. 9, 0,0 0, oder, 0 0! 9 heißt Rdiknd ndere dgegen irrtionle Zhlen z. B.,

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c 03.05.0 Elemetre Termumformuge Kommuttivgesetz. + + Etsprehede Umformuge gelte... für Sutrktio ud Divisio iht. Assozitivgesetz 3. ( + + + ( + + + 4. (... (... 5. ( + - + ( - + - 6. (. :. ( :. : Etsprehede

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr