Anwendungsmöglichkeiten von Lernverfahren

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Anwendungsmöglichkeiten von Lernverfahren"

Transkript

1 Künstlche Neuronale Netze Lernen n neuronalen Netzen 2 / 30 Anwendungsmöglcheten von Lernverfahren Prnzpelle Möglcheten Verbndungsorentert 1 Hnzufügen neuer Verbndungen 2 Löschen bestehender Verbndungen 3 Modfzeren bestehender Verbndungen Schwellwertorentert 4 Modfzeren des Schwellwerts enes Neurons Funtonsorentert 5 Modfzeren der Propagerungs-, Atverungs- oder Ausgabefunton enes Neurons Struturorentert 6 Hnzufügen neuer Neuronen 7 Löschen bestehender Neuronen Künstlche Neuronale Netze Lernen n neuronalen Netzen 3 / 30 Anwendungsmöglcheten von Lernverfahren Verbndungsorentertes Lernen Möglcheten 1 Hnzufügen neuer Verbndungen 2 Löschen bestehender Verbndungen 3 Modfzeren bestehender Verbndungen Varanten 1 und 2 snd Spezalfälle von 3: Wähle Gewcht w 0 bzw. w = 0 3 st am häufgsten angewandte Form des Lernens Schwellwertorentertes Lernen Möglchet 4 Modfzeren des Schwellwerts enes Neurons Glecht prnzpell 3 Wrd üblcherwese mt 3 erledgt Transformaton des Schwellwertes n wetere Engangsvarable

2 Künstlche Neuronale Netze Lernen n neuronalen Netzen 4 / 30 Anwendungsmöglcheten von Lernverfahren Funtonsorentertes Lernen Möglchet: Änderung der Propagerungs-, Atverungs- oder Ausgabefunton enes Neurons Funtonen edoch mest unveränderlch Selten angewandte Form des Lernens Struturorentertes Lernen Möglcheten 6 Hnzufügen neuer Neuronen 7 Löschen bestehender Neuronen Bsher selten angewandte Varante, gewnnt zunehmend an Interesse Ermöglcht de Topologe des Netzes zu optmeren Lernarten Künstlche Neuronale Netze Lernen n neuronalen Netzen 5 / 30 Dre Arten des Lernens n neuronalen Netzen werden unterscheden Überwachtes Lernen supervsed learnng Bestärendes Lernen renforcement learnng Unüberwachtes Lernen unsupervsed learnng Zel Nach wederholter Präsentaton der Engaben soll das Netz de Assozaton selbständg durchführen önnen Unbeannte, ähnlche Engaben sollen ebenfalls lassfzert werden Generalserung

3 Überwachtes Lernen Künstlche Neuronale Netze Lernen n neuronalen Netzen 6 / 30 Idee Zu eder Engabe der Tranngsmenge st de rchtge bzw. beste Ausgabe beannt Externer Lehrer gbt dem Netz de entsprechenden Paare vor Nötg Varaton der Gewchte des Netzes ann durch Verglech der Soll- und Ist-Ausgaben berechnet werden Pro Schnellstes Lernverfahren Contra Vollständg spezfzerte Engabe- und Ausgabemuster müssen beannt sen Bologsch ncht plausbel Bestärendes Lernen Künstlche Neuronale Netze Lernen n neuronalen Netzen 7 / 30 Idee Zu eder Engabe der Tranngsmenge wrd durch den externen Lehrer nur angegeben, ob se rchtg oder falsch lassfzert wurde Netz muss orrete Ausgabe durch passende Varaton der Gewchte selbst lernen Pro Bologsch plausbler Ausgabemuster müssen ncht vollständg beannt sen Contra Deutlch langsamer als überwachtes Lernen

4 Künstlche Neuronale Netze Lernen n neuronalen Netzen 8 / 30 Unüberwachtes Lernen Idee Es exstert en externer Lehrer Dem Netz werden nur Engabemuster präsentert Lernen gescheht ausschleßlch durch Selbstorgansaton, das Netz versucht ähnlche Engaben n ähnlche Kategoren zu lassfzeren Pro Bologsch plausbelste Varante Contra Ncht mmer abwendbar Künstlche Neuronale Netze Der Bacpropagaton Algorthmus 9 / 30 Der Bacpropagaton Algorthmus Motvaton Zel Anwendbaret enschchtger Netze st star engeschränt, ledglch lnear separerbare Muster önnen lassfzert werden Be mehrschchtgen Netzen st vorgestellte Delta-Lernregel ncht anwendbar Für edes Neuron werden Soll- und Ist-Ausgaben verglchen Soll-Ausgaben snd nur für de Ausgabeschcht beannt Delta-Lernregel st nur für enschchtge Netze mt lnearer Atverungsfunton defnert Fnde ene Lernregel für mehrschchtge Netze Nutze äquvalent zur Delta-Regel en Gradentenabstegsverfahren

5 Künstlche Neuronale Netze Der Bacpropagaton Algorthmus 10 / 30 Idee Lege Testmuster an und berechne Output Berechne aus errechneten Output und gewünschten Output mt Hlfe der Fehlerfunton den Fehler Tele desen Fehler n den Bacpropagaton Schrtten von der Ausgansschcht aus auf de Gewchte n den vorhergehenden Schchten auf und modfzere dese so, dass der Fehler reduzert wrd. Vorwärtsgerchtete Propagerung des Engabemusters x 1 y 1 x 2 y 2 x n y m N hdden 1 2 N n N hdden h-1 N hdden N out Bacpropagaton des Fehlers Vorgehen Künstlche Neuronale Netze Der Bacpropagaton Algorthmus 11 / 30 Der Bacpropagaton Algorthmus sucht das Mnmum der Fehlerfunton enes bestmmten Lernproblems Führt dazu Gradentenabsteg auf der Fehleroberfläche durch Gradent der Fehlerfunton muss somt für alle Punte des Gewchtsraums exsteren, d.h. de partellen Abletungen der Fehlerfunton nach den enzelnen Gewchten müssen überall defnert sen

6 Künstlche Neuronale Netze Der Bacpropagaton Algorthmus 12 / 30 Herletung Fehlerfunton De Fehlerfunton st ene Funton der Gewchte EW = Ew 11,..., w N N Der Gesamtfehler st de Summe über alle Tranngsmuster p be gegebenen Gewchten w E = p E p Häufg wrd als Fehler enes enzelnen Tranngsmusters p der quadratsche Fehler über alle Neuronen berechnet E p = 1 2 t p o p 1 2 t p o p bezechnet de Soll-Ausgabe / Lernengabe teachng nput bezechnet de Ist-Ausgabe des Neurons be Muster p Der Fator 1/2 dent der Erlechterung der nachfolgenden Rechnung Herletung Korretur der Gewchte Künstlche Neuronale Netze Der Bacpropagaton Algorthmus 13 / 30 De Gewchtsänderung wrd durch de Fehlerfunton bestmmt, deren Mnmum gesucht st Der Gradent lefert an eder Stelle ener Funton den Vetor n Rchtung der stärsten Stegung Da der mnmale Fehler gesucht st, werden de Gewchte um enen Bruchtel des negatven Gradenten orrgert W = η EW EW zegt n Rchtung des stelsten Absteges η wrd Lernfator oder Schrttwete genannt Für en enzelnes Argument glt also w = η EW w = η p E p W w 2

7 Künstlche Neuronale Netze Der Bacpropagaton Algorthmus 14 / 30 Herletung der Bacpropagaton Regel Der Fehler E st n Glechung 1 edoch als Funton des Outputs o ausgedrüct, wobe o p = f act net p 3 De Netzengabe net p des -ten Neurons be Muster p st defnert durch de gewchtete Summe des Outputs der vorhergehenden Neuronen net p = o p w 4 Mt der Kettenregel ann de partelle Abletung aus Glechung 2 somt umgeformt werden zu E p w = E p w 5 da E p W = E p net p W Künstlche Neuronale Netze Der Bacpropagaton Algorthmus 15 / 30 Herletung der Bacpropagaton Regel Für den zweten Fator aus Glechung 5 ergbt sch mt Gl. 4 w = w o p w = o p 6 da de partelle Abletung nur nach ener Komponente der Summe gebldet wrd Weterhn defnert man den ersten Fator von Glechung 5 als Fehlersgnal = E p Durch Ensetzen der Glechungen 6 und 7 n Glechung 5 folgt für Glechung 2 7 w = η p o p batch Lernen 8 p w = ηo p onlne Lernen 9

8 Künstlche Neuronale Netze Der Bacpropagaton Algorthmus 16 / 30 Herletung der Bacpropagaton Regel Es ergbt sch de selbe Gewchtsorretur we be der batch Verson der Delta-Regel Der Fator st allerdngs omplzerter defnert Erneutes Anwenden der Kettenregel ergbt = E p p E = o p o p 10 Für den zweten Fator folgt mt Glechung 3 o p = f act net p = f actnet p 11 zur Bestmmung des ersten Fators von Glechung 10 snd zwe Fälle zu unterscheden n st en Ausgabeneuron n st en verdectes Neuron Künstlche Neuronale Netze Der Bacpropagaton Algorthmus 17 / 30 Herletung der Bacpropagaton Regel 1. Fall n st en Ausgabeneuron Nach Defnton der Fehlerfunton 1 folgt für de partelle Abletung E p o p = 1 o p 2 t p 2 o p = t p o p 12 da auch her de partelle Abletung nur nach ener Komponente der Summe gebldet wrd Insgesamt ergbt sch also für den Fator = f actnet p t p o p 13

9 Künstlche Neuronale Netze Der Bacpropagaton Algorthmus 18 / 30 Herletung der Bacpropagaton Regel 2. Fall n st en verdectes Neuron De Berechnung der partelle Abletung E p / o p erfolgt ndret unter Nutzung der Kettenregel und Gl. 4 und 7 E p = E p = o p o p o p o p w = w 14 D.h. der Gesamtfehler des Neurons für Muster p setzt sch aus den gewchteten Fehlern aller Nachfolgeneuronen und den Gewchten der Verbndungen von zu desen zusammen Insgesamt ergbt sch also für den Fator = f act net p w 15 Allgemenes Ergebns Künstlche Neuronale Netze Der Bacpropagaton Algorthmus 19 / 30 De Glechungen 13 und 15 ermöglchen ene reursve Berechnung der von den Ausgabeneuronen zurüc bs zu den Engabeneuronen Zusammengefasst folgt de Bacpropagaton Regel onlne Verson De Korretur der Gewchte erfolgt gemäß mt = f act f act net p net p t p p w = ηo p o p falls n st en Ausgabeneuron st, δp w falls n st en verdectes Neuron st.

10 Künstlche Neuronale Netze Der Bacpropagaton Algorthmus 20 / 30 Ergebns für de logstsche Atverungsfunton Wrd de logstsche Funton als Atverungsfunton verwendet, verenfacht sch de Bacpropagaton Regel Es folgt f log x = e x ; f logx = f log x1 f log x f actnet p = f act net p 1 f act net p = o p 1 o p Bacpropagaton Regel logstsche Atverungsft., onlne Verson De Korretur der Gewchte erfolgt gemäß p w = ηo p = o p o p 1 o p 1 o p t p o p mt falls n st en Ausgabeneuron st, δp w falls n st en verdectes Neuron st. Potenzelle Probleme Künstlche Neuronale Netze Der Bacpropagaton Algorthmus 21 / 30 Intalserung der Gewchte Gewchte ener Schcht müssen unterschedlch ntalsert werden Andernfalls önnen sch mt der gegebenen Lernregel ene unterschedlchen Gewchte n der vorhergen Schcht mehr ausprägen, da = o p 1 o p = o p 1 o p = const w w Lösung Zufällge Intalserung symmetry breang Nahe 0, da de Abletung der logstschen Funton dann am größten st Häufg aus dem Intervall [ 1, 1]

11 Potenzelle Probleme Künstlche Neuronale Netze Der Bacpropagaton Algorthmus 22 / 30 Wahl des Dynamberechs Änderung des Dynamberechs der logstschen Funton von [0, 1] zu [ 1, 1] da ansonsten de Gewchtsänderung w abhängg von der Ausgabe o st Im Falle o = 0 ergbt sch ene Gewchtsänderung Be bnären Engabevetoren lefert m Mttel de Hälfte der Neuronen o = 0 Lösung Änderung des Engabeberechs Auf [ 1/2, 1/2] und Hnzufügen enes Schwellwertes, der den Werteberech der Atverungsfunton auf [ 1/2, 1/2] sent o = e net 1 2 Auf [ 1, 1] und tangens hyperbolcus als Atverungsfunton o = tanhnet Potenzelle Probleme Künstlche Neuronale Netze Der Bacpropagaton Algorthmus 23 / 30 Sättgung vermeden Errechbare Soll-Ausgaben wählen 0/1 bzw. -1/1 snd ncht errechbar und leten de Ist-Ausgabe n den gesättgten Berech der Atverungsfunton Bespel Logstsche Funton unpolare, sgmode Atverung Soll-Ausgabe t = 0 Soll-Ausgabe t = 1 o = e net e net = net =! = 0 o = e net e net = 0 net =! = 1

12 Potenzelle Probleme Künstlche Neuronale Netze Der Bacpropagaton Algorthmus 24 / 30 Da der Bacpropagaton Algorthmus en Gradentenverfahren st, treten de berets beannten Probleme auf Generelle Probleme von Gradentenverfahren Hängenbleben n loalen Optma Flache Plateaus Oszllaton Verlassen guter Mnma Beobachtung Das Auftreten deser Probleme st star abhängg von der Wahl des Lernfators η Potenzelle Probleme Künstlche Neuronale Netze Der Bacpropagaton Algorthmus 25 / 30 Hängenbleben n loalen Optma Globales Optmum wrd ncht errecht Lösung: Mehrfaches Ausführen mt verschedenen ntalen Gewchten EW w

13 Potenzelle Probleme Flache Plateaus Künstlche Neuronale Netze Der Bacpropagaton Algorthmus 26 / 30 Klener Gradent lene Lernrate Plateaus önnen evtl. ncht von enem loalen Mnmum unterscheden werden EW w Potenzelle Probleme Oszllaton Künstlche Neuronale Netze Der Bacpropagaton Algorthmus 27 / 30 Großer Gradent ann zum Übersprngen des Mnmums führen EW w

14 Potenzelle Probleme Künstlche Neuronale Netze Der Bacpropagaton Algorthmus 28 / 30 Verlassen guter Mnma Großer Gradent ann zum Verlassen des Enzugsberechs des Mnmums führen EW w Künstlche Neuronale Netze Der Bacpropagaton Algorthmus 29 / 30 Modfaton der Bacpropagaton Regel Momentum Term Führe enen Term α p w t en, der berets zuvor vollzogene Gewchtsänderungen be der atuellen Berechnung berücschtgt Zel p w t + 1 = ηo p + α p w t Plateaus Beschleungung durch Erhöhen der Gewchtsänderung w Oszllaton Verlangsamung durch Senen der Gewchtsänderung w Typsche Werte für α snd 0.6 bs 0.9 Bacpropagaton mt Momentum Term wrd auch als onugerter Gradentenabsteg bezechnet

15 Künstlche Neuronale Netze Der Bacpropagaton Algorthmus 30 / 30 Verglech der Lernregeln Perzeptron Lernregel Nur be enschchtgen Netzen anwendbar Bnäre Atverungsfunton Korretur der Gewchte: p w = ηo p Delta Lernregel Nur be enschchtgen Netzen anwendbar Lneare Atverungsfunton Korretur der Gewchte: p w = ηo p Bacpropagaton Lernregel Be mehrschchtgen Netzen anwendbar t p t p o p o p Sgmode Atverungsfunton stetg und überall dfferenzerbar Korretur der Gewchte: p w = ηo p

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar. . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Aspekte zur Approximation von Quadratwurzeln

Aspekte zur Approximation von Quadratwurzeln Aspete zur Approxmaton von Quadratwurzeln Intervallschachtelung Intervallhalberungsverfahren Heron-Verfahren Rechnersche und anschaulche Herletung Zusammenhang mt Newtonverfahren Monotone und Beschränthet

Mehr

Die Leistung von Quicksort

Die Leistung von Quicksort De Lestung von Qucsort Jae Hee Lee Zusammenfassung Der Sorteralgorthmus Qucsort st als ens der effzenten Sorterverfahren beannt. In deser Ausarbetung werden wr sene Komplextät zuerst möglchst präzse schätzen

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

1 = Gl.(12.7) Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare Rohrströmung die Rohrreibungszahl

1 = Gl.(12.7) Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare Rohrströmung die Rohrreibungszahl 0. STRÖMUNG INKOMPRESSIBLER FLUIDE IN ROHRLEITUNGEN Enführung Vorlesung Strömungslehre Prof. Dr.-Ing. Chrstan Olver Pascheret C. O. Pascheret Insttute of Flud Mechancs and Acoustcs olver.pascheret@tu-berln.de

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

c) schwierige freiwillige Zusatzaufgabe (ohne Bonuspunkte): Leiten Sie die allgemeinen iterativen Formeln für S, D, D R und V her.

c) schwierige freiwillige Zusatzaufgabe (ohne Bonuspunkte): Leiten Sie die allgemeinen iterativen Formeln für S, D, D R und V her. Rechnerarchtetur Lösungsvorschlag. Bonusübung oerseester Fachgebet Rechnerarchtetur Prof. R. Hoffann Patrc Edger. Aufgabe: Maße für Barrel-hfter 7 + 7 Punte Gegeben st en Barrel hfter t n= Prozessoren

Mehr

Lineare Regression - Mathematische Grundlagen

Lineare Regression - Mathematische Grundlagen FKULTÄT FÜR MTHEMTIK U TURWISSESCHFTE ISTITUT FÜR PHYSIK FCHGEBIET EXPERIMETLPHYSIK I r. rer. nat. orbert Sten, pl.-ing (FH) Helmut Barth Lneare Regresson - Mathematsche Grundlagen. llgemene Gerade Wr

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

Wie Künstliche Neuronale Netze lernen: Ein Blick in die Black Box der Backpropagation Netzwerke

Wie Künstliche Neuronale Netze lernen: Ein Blick in die Black Box der Backpropagation Netzwerke We Künstlche Neuronale Netze lernen: En Blc n de Blac Box der Bacpropagaton Netzwere von Walter Oberhofer und Thomas Zmmerer November 996 Regensburger Dsussonsbeträge Nr 87 Anschrft der Autoren: Prof Dr

Mehr

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt - Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche

Mehr

Metrische Untersuchung der Wiederverwendung im Content Management. Statische Kennzahlen in der Technischen Redaktion

Metrische Untersuchung der Wiederverwendung im Content Management. Statische Kennzahlen in der Technischen Redaktion Metrsche Untersuchung der Wederverwendung m Content Management Statsche Kennzahlen n der Technschen Redaton W. Zegler 1 [Stand: 14. September 2008] De Enführung von Content Management (CM) Methoden und

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE Karl Rudolf KOCH Knut RIESMEIER In: WELSCH, Walter (Hrsg.) [1983]: Deformatonsanalysen 83 Geometrsche Analyse und Interpretaton von Deformatonen

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Kapitel 4: Lernen als Optimierung. Maschinelles Lernen und Neural Computation

Kapitel 4: Lernen als Optimierung. Maschinelles Lernen und Neural Computation Kaptel 4: Lernen als Optmerung 71 Lernen als Funktonsoptmerung Gegeben: Fehlerfunkton (.a. neg. log Lkelhood) n z.b.: 2 E E ( ) ( ( ) W = f x ; W t ) n = 1 ( ) ( ( ) ( = + ) ( ( W t log f x t f x ) n ;

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Boost-Schaltwandler für Blitzgeräte

Boost-Schaltwandler für Blitzgeräte jean-claude.feltes@educaton.lu 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler

Mehr

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore

Mehr

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i

Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte. Itemanalyse und Itemkennwerte: Itemschwierigkeit P i Itemanalyse und Itemkennwerte De Methoden der Analyse der Itemegenschaften st ncht m engeren Snne Bestandtel der Klassschen Testtheore Im Rahmen ener auf der KTT baserenden Testkonstrukton und -revson

Mehr

-70- Anhang: -Lineare Regression-

-70- Anhang: -Lineare Regression- -70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Facility Location Games

Facility Location Games Faclty Locaton Games Semnar über Algorthmen SS 2006 Klaas Joeppen 1 Abstract Wr haben berets sehr häufg von Nash-Glechgewchten und vor allem von deren Exstenz gesprochen. Das Faclty Locaton Game betet

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. .

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. . Neuronale Netze M. Gruber 7.11.015 Begnnen wr mt enem Bespel. Bespel 1 Wr konstrueren enen Klasskator auf der Menge X = [ 1; 1], dessen Wrkung man n Abb.1 rechts sehen kann. Auf der blauen Telmenge soll

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Kapitel 7: Ensemble Methoden. Maschinelles Lernen und Neural Computation

Kapitel 7: Ensemble Methoden. Maschinelles Lernen und Neural Computation Kaptel 7: Ensemble Methoden 133 Komtees Mehrere Netze haben bessere Performanz als enzelne Enfachstes Bespel: Komtee von Netzen aus der n-fachen Kreuzvalderung (verrngert Varanz) De Computatonal Learnng

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

IGDT: Image Processing Advanced Übungsteil 2

IGDT: Image Processing Advanced Übungsteil 2 IGDT: Imae Processn Advanced Übunstel 2 Raner Schubert Insttut für Bomednsche Bldanalse Vsualserun Ist de alorthmsche Nachbldun dessen was en Maler be der Ereuun enes realstschen Bldes tut! Grundlaen Beleuchtun

Mehr

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung Standortplanung Postonerung von enem Notfallhubschrauber n Südtrol Postonerung von enem Feuerwehrhaus Zentrallagerpostonerung 1 2 Postonerung von enem Notfallhubschrauber n Südtrol Zu bekannten Ensatzorten

Mehr

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften Bassmodul Makroökonomk /W 2010 Grundlagen der makroökonomschen Analyse klener offener Volkswrtschaften Terms of Trade und Wechselkurs Es se en sogenannter Fall des klenen Landes zu betrachten; d.h., de

Mehr

6 Rechnen mit Zahlen beliebig hoher Stellenzahl 7 Intervall-Arithmetik 8 Umsetzung in aktuellen Prozessoren

6 Rechnen mit Zahlen beliebig hoher Stellenzahl 7 Intervall-Arithmetik 8 Umsetzung in aktuellen Prozessoren Inhalt 4 Realserung elementarer Funktonen Rehenentwcklung Konvergenzverfahren 5 Unkonventonelle Zahlenssteme redundante Zahlenssteme Restklassen-Zahlenssteme logarthmsche Zahlenssteme 6 Rechnen mt Zahlen

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS Torsten Schreber e den Ebenen unterscheden wr de und de prmeterfree Drstellung. Wenn wr ene Ebenenglechung durch dre Punkte bestmmen wollen, so müssen de zugehörgen Vektoren sen, d es sonst nur ene

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Die Jordansche Normalform

Die Jordansche Normalform De Jordansche Normalform Danel Hug 29. Aprl 211 KIT Unverstät des Landes Baden-Württemberg und natonales Forschungszentrum n der Helmholtz-Gemenschaft www.kt.edu 1 Zerlegung n Haupträume 2 Fazt und nächstes

Mehr

Nernstscher Verteilungssatz

Nernstscher Verteilungssatz Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.

Mehr

Maße der zentralen Tendenz (10)

Maße der zentralen Tendenz (10) Maße der zentralen Tendenz (10) - De Berechnung der zentralen Tendenz be ategorserten Daten mt offenen Endlassen I - Bespel 1: offene Endlasse Alter x f x f p x p p cum bs 20 1? 3? 6? 6 21-25 2 23 20 460

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT Smulaton von Hybrdfahrzeugantreben mt optmerter Synchronmaschne 1 SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT OPTIMIERTER SYNCHRONMASCHINE H. Wöhl-Bruhn 1 EINLEITUNG Ene Velzahl von Untersuchungen hat sch

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

Dynamisches Programmieren

Dynamisches Programmieren Marco Thomas - IOI 99 -. Treffen n Bonn - Dynamsches Programmeren - Unverstät Potsdam - 8.02.999 Dynamsches Programmeren 957 R. Bellmann: Dynamc Programmng für math. Optmerungsprobleme Methode für Probleme,.

Mehr

13.Selbstinduktion; Induktivität

13.Selbstinduktion; Induktivität 13Sebstndukton; Induktvtät 131 Sebstndukton be En- und Ausschatvorgängen Versuch 1: Be geschossenem Schater S wrd der Wderstand R 1 so groß gewäht, dass de Gühämpchen G 1 und G 2 gech he euchten Somt snd

Mehr

Erwartungswert, Varianz, Standardabweichung

Erwartungswert, Varianz, Standardabweichung RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf.

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf. Ich habe en Bespel ähnlch dem der Ansys-Issue [ansys_advantage_vol_ssue3.pdf durchgeführt. Es stammt aus dem Dokument Rfatgue.pdf. Abbldung 1: Bespel aus Rfatgue.pdf 1. ch habe es manuell durchgerechnet

Mehr

14 Überlagerung einfacher Belastungsfälle

14 Überlagerung einfacher Belastungsfälle 85 De bsher betrachteten speellen Belastungsfälle treten n der Technk. Allg. ncht n rener orm auf, sondern überlagern sch. Da de auftretenden Verformungen klen snd und en lnearer Zusammenhang wschen Verformung

Mehr

4 Digitale Filter und Bildoperationen

4 Digitale Filter und Bildoperationen Dgtale Flter und Bldoperatonen 51 4 Dgtale Flter und Bldoperatonen Blder welche durch ene Kamera augenommen wurden snd otmals ncht drekt ür ene nacholgende Bldanalyse geegnet. Gründe daür snd bespelswese

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

F A C H H O C H S C H U L E W E D E L. Seminararbeit Informatik

F A C H H O C H S C H U L E W E D E L. Seminararbeit Informatik F A C H H O C H S C H U L E W E D E L Semnararbet Informatk n der Fachrchtung Wrtschaftsnformatk Themenberech Künstlche Intellgenz Thema Nr. 3 Dskrmnanzanalyse Engerecht von: Erarbetet m: Patrck Wolf Wedeler

Mehr

Nomenklatur - Übersicht

Nomenklatur - Übersicht Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen

Mehr

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de ERP Cloud SFA ECM Backup E-Commerce ERP EDI Prese erfassen www.comarch-cloud.de Inhaltsverzechns 1 Zel des s 3 2 Enführung: Welche Arten von Presen gbt es? 3 3 Beschaffungsprese erfassen 3 3.1 Vordefnerte

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

Die hierzu formulierte Nullhypothese H lautet: X wird durch die Verteilungsdichtefunktion h(x)

Die hierzu formulierte Nullhypothese H lautet: X wird durch die Verteilungsdichtefunktion h(x) ZZ Lösung zu Aufgabe : Ch²-Test Häufg wrd be der Bearbetung statstscher Daten ene bestmmte Vertelung vorausgesetzt. Um zu überprüfen ob de Daten tatsächlch der Vertelung entsprechen, wrd en durchgeführt.

Mehr

"Zukunft der Arbeit" Arbeiten bis 70 - Utopie - oder bald Realität? Die Arbeitnehmer der Zukunft

Zukunft der Arbeit Arbeiten bis 70 - Utopie - oder bald Realität? Die Arbeitnehmer der Zukunft "Zukunft der Arbet" Arbeten bs 70 - Utope - oder bald Realtät? De Arbetnehmer der Zukunft Saldo - das Wrtschaftsmagazn Gestaltung: Astrd Petermann Moderaton: Volker Obermayr Sendedatum: 7. Dezember 2012

Mehr

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t +  I ) = 0 $  I Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"

Mehr

Einführung in Origin 8 Pro

Einführung in Origin 8 Pro Orgn 8 Pro - Enführung 1 Enführung n Orgn 8 Pro Andreas Zwerger Orgn 8 Pro - Enführung 2 Überscht 1) Kurvenft, was st das nochmal? 2) Daten n Orgn mporteren 3) Daten darstellen / plotten 4) Kurven an Daten

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1 Fnanzwrtschaft Kaptel 3: Smultane Investtons- und Fnanzplanung Prof. Dr. Thorsten Poddg Lehrstuhl für Allgemene Betrebswrtschaftslehre, nsbes. Fnanzwrtschaft Unverstät Bremen Hochschulrng 4 / WW-Gebäude

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

3.3 Lineare Abbildungen und Matrizen

3.3 Lineare Abbildungen und Matrizen 33 LINEARE ABBILDUNGEN UND MATRIZEN 87 33 Lneare Abbldungen und Matrzen Wr wollen jetzt de numersche Behandlung lnearer Abbldungen zwschen Vektorräumen beschreben be der vorgegebene Basen de Hauptrolle

Mehr

Die Transzendenz der Eulerschen Zahl e

Die Transzendenz der Eulerschen Zahl e De Transzendenz der Eulerschen Zahl e nach Jean-Paul Delahaye Der n [1, Seten 21-22] skzzerte Bewes der Transzendenz der Eulerschen Zahl e wrd m folgenden ausgeführt. En alternatver Bewes, der auf Ideen

Mehr

Temporäre Stilllegungsentscheidungen mittels stufenweiser E W U F W O R K I N G P A P E R

Temporäre Stilllegungsentscheidungen mittels stufenweiser E W U F W O R K I N G P A P E R Temporäre Stlllegungsentschedungen mttels stufenweser Grenzkostenrechnung E W U F W O R K I N G P A P E R Mag. Dr. Thomas Wala, FH des bf Wen PD Dr. Leonhard Knoll, Unverstät Würzburg Mag. Dr. Stephane

Mehr

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt Kaptel 3 Zwe Personen Spele 3.1 Matrxspele 3.2 Matrxspele n gemschten Strategen 3.3 B Matrxspele und quadratsche Programme 3.4 B Matrxspele und lneare Komplementartätsprobleme 3.1 Matrxspele Wr betrachten

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet.

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet. Determnanten - I Ene Determnante st ene Abbldung, welche ener quadratschen (!) Matrx ene Zahl zuordnet. Wr verwenden n desem Zusammenhang de Schrebwese A = a 2, wobe den -ten Zelenvektor der n n-matrx

Mehr

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines 6 Wandtafeln 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln 6.3.1 Allgemenes Be der Berechnung der auf de enzelnen Wandtafeln entfallenden Horzontalkräfte wrd ene starre Deckenschebe angenommen.

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informatonstheore und Coderung Prof. Dr. Lla Lajm März 25 Ostfala Hochschule für angewandte Wssenschaften Hochschule Braunschweg/Wolfenbüttel Postanschrft: Salzdahlumer Str. 46/48 3832

Mehr

2. Spiele in Normalform (strategischer Form)

2. Spiele in Normalform (strategischer Form) 2. Spele n Normalform (strategscher Form) 2.1 Domnante Strategen 2.2 Domnerte Strategen 2.3 Sukzessve Elmnerung domnerter Strategen 2.4 Nash-Glechgewcht 2.5 Gemschte Strategen und Nash-Glechgewcht 2.6

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) permentalphsk II (Kp SS 007) Zusatvorlesungen: Z-1 n- und mehrdmensonale Integraton Z- Gradent, Dvergen und Rotaton Z-3 Gaußscher und Stokesscher Integralsat Z-4 Kontnutätsglechung Z-5 lektromagnetsche

Mehr

Neuronale Netze in Vorhersage von Rentabilität der Anlagen. 1.1. Entstehen und Entwicklung neuronaler Netze

Neuronale Netze in Vorhersage von Rentabilität der Anlagen. 1.1. Entstehen und Entwicklung neuronaler Netze Marjana Zekc Neuronale Netze n Vorhersage von Rentabltät der Anlagen 1. Methodologe der neuronalen Netze 1.1. Entstehen und Entwcklung neuronaler Netze Neuronale Netze snd ene der Methoden künstlcher Intellgenz,

Mehr

Beschreibende Statistik Mittelwert

Beschreibende Statistik Mittelwert Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )

Mehr

Der Satz von COOK (1971)

Der Satz von COOK (1971) Der Satz von COOK (1971) Voraussetzung: Das Konzept der -Band-Turng-Maschne (TM) 1.) Notatonen: Ene momentane Beschrebung (mb) ener Konfguraton ener TM st en -Tupel ( α1, α2,..., α ) mt α = xqy, falls

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung

Mehr

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen Näherungsverfahren Wederhole den Algorthmusbegrff. Erläutere de Begrffe: Klasse der P-ProblemeP Probleme Klasse der NP-Probleme Probleme Approxmatve Algorthmen Stochastsche Algorthmen ALGORITHMEN Def.:

Mehr

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen P R A K T I K U M.

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen P R A K T I K U M. UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habl. H. Müller-Stenhagen P R A K T I K U M Versuch 9 Lestungsmessung an enem Wärmeübertrager m Glech- und Gegenstrombetreb

Mehr

ω 0 = Protokoll zu Versuch E6: Elektrische Resonanz

ω 0 = Protokoll zu Versuch E6: Elektrische Resonanz Protokoll zu Versuch E6: Elektrsche esonanz. Enletung En Schwngkres st ene elektrsche Schaltung, de aus Kapaztät, Induktvtät und ohmschen Wderstand besteht. Stmmt de Frequenz der anregenden Wechselspannung

Mehr

2 Zufallsvariable und Verteilungen

2 Zufallsvariable und Verteilungen Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem

Mehr