Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10"

Transkript

1 Analytische Statistik I Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10

2 Testen Anpassungstests (goodness of fit) Weicht eine gegebene Verteilung signifikant von einer bekannten Verteilung ab? Weicht der Mittelwert oder die Standardabweichung einer gegebenen Stichprobe signifikant von einem anderweitig gegebenen Mittelwert oder Standardabweichung ab? Unterschiedstests Weicht eine gegebene Verteilung signifikant von einer anderen ebenfalls gegebenen Verteilung ab?

3 Vorüberlegungen Testen über das Bilden einer Nullhypothese H 0, die widerlegt werden soll der statistische Test erzeugt eine Test- Statistik mit bekannter Verteilung Idee H 0 nimmt an, dass die Teststatistik keinen extremen Wert annimmt Hypothese H1 nimmt an, dass die Teststatistik einen extremen Wert annimmt extrem = weit außen in den Rändern/Flügeln der Distribution

4 Vorüberlegungen "weit draußen" p-wert: Wahrscheinlichkeit aller summierten Teststatistik-Werte vom statistischen Prüfwert q bis zum Ende der Kurve (bzw. Fläche unter der Kurve) Irrtumswahrscheinlichkeit, dass fälschlicherweise H 1 angenommen wird Festlegung: Signifikanzniveau α p=0.05 (95%) p=0.01 (99%) p=0.001 (99,9%)

5 Normalverteilung library(languager) shadenormal.fnc(qnts= c(0.025,0.975))

6 Schätzen des Mittelwerts Problem: die Varianz eines Merkmals in der Grundgesamtheit ist unbekannt Vorgehen: Schätzen aufgrund von einer Stichprobenvarianz Beobachtung: der standardisierte Mittelwert normalverteilter Daten ist bei dieser Schätzung nicht mehr normalverteilt, sondern weist für kleine Werte des Parameters n eine größere Breite und Flankenbetonung der Mittelwert ist t-verteilt ( Students t-verteilung ) Hypothesentests, bei denen die t-verteilung Verwendung wird: verschiedene t-tests

7 t-verteilung Code: siehe ab Folie 9. df = degrees of freedom. Anzahl der frei veränderbaren Parameter. Hier: n

8 t-verteilung

9 t-verteilung

10 t-verteilung mit zunehmender Anzahl an Freiheitsgraden df (d.h. veränderbaren Parametern), nähert sich die t-verteilung der Normalverteilung an ab df>30 ist der Unterschied redundant das heißt, ab einer Datengrundlage von mehr als 30 Dateneinheiten können selbst bei unbekannter Varianz Tests verwendet werden, die auf der Normalverteilung basieren

11 Code für die t-verteilungsfolien x=seq(-6,6,0.1) # Intitialisierung # par(mfrow=c(2,2)) # mehrere Diagramme y1=dt(x,2) # df=2 # 1. Diagramm plot(x,y1, xlab="x", ylab="dichte", ylim=c(0,0.4), type="l", main="t-verteilung (df=2)") # 2. Diagramm plot(x,y1, xlab="x", ylab="dichte", ylim=c(0,0.4), type="l", main="t-verteilung (df=2,df=5)") y2=dt(x,5) # df=5 lines(x,y2, type="l", lty= 2) # lty: line type # 3. Diagramm plot(x,y1, xlab="x", ylab="dichte", ylim=c(0,0.4), type="l", main="t-verteilung (df=2,df=5 vgl.dnorm)") lines(x,y2, type="l", lty= 2) y3=dnorm(x) # vgl. Normalverteilung lines(x,y3, type="l", lty= 3)

12 Anpassungstest Fall 1 eine abhängige Variable auf Verhältnisniveau Test: sind die Daten normalverteilt? Methode Shapiro-Wilk-Test, shapiro.test() Ablaufschema 1. Formulieren der Hypothesen 2. Graphische Betrachtung 3. Ermittlung der Prüfstatistik W und der Irrtumswahrscheinlichkeit p

13 Beispiel: Anpassungstest: Fall 1 Spracherwerbsdaten des Russischen zur Aspekthypothese (vgl. Stoll und Gries, Ms.) anfänglich starke Korrelation von Präsens und imperfektivem Aspekt sowie Präteritum und perfektivem Aspekt Frage: wie entwickelt sich das Korrelationsmaß über die Zeit? Test: sind die Korrelationsmaße von 117 Aufnahmen normalverteilt? eine abhängige Variable auf Verhältnisniveau Normalverteilung?

14 Anpassungstest: Fall 1 Hypothesen H 0 : Die Datenpunkte weisen eine Normalverteilung auf; W = 1. H 1 : Die Datenpunkte weisen keine Normalverteilung auf; W 1. eine abhängige Variable auf Verhältnisniveau Normalverteilung?

15 Anpassungstest: Fall 1 Graphische Betrachtung: eine abhängige Variable auf Verhältnisniveau Normalverteilung? # Datei: /Users/cluser/Korpuslinguistik/_sflwr/_inputfiles/g_data_chapters_1-5/ _tempus-aspekt.txt Russisch=read.table(file=file.choose(), header=t) attach(russisch) hist(tempus_aspekt, xlim=c(0, 1), freq=f, xlab="tempus-aspekt-korrelation", ylab="dichte", main="") 20. lines(density(tempus_aspekt))

16 Anpassungstest: Fall 1 Prüfstatistik shapiro.test(tempus_aspekt) eine abhängige Variable auf Verhältnisniveau Normalverteilung? Shapiro-Wilk normality test data: TEMPUS_ASPEKT W = , p-value = p>0.05 H 0 gilt: Daten sind normalverteilt H 1 darf nicht angenommen werden

17 Anpassungstest: Fall 1 eine abhängige Variable auf Verhältnisniveau Normalverteilung? Schriftliche Zusammenfassung der Ergebnisse "Die Verteilung der Cramers V-Werte [des Korrelationsmaßes] für die Tempus-Aspekt- Korrelation bei diesem Kind weicht gemäß einem Shapiro-Wilk-Test nicht signifikant von der Normalverteilung ab: W= 0,9942; p = 0,9132." (nach Gries 2008: 156)

18 Weiterer Test auf Normalverteilung Quantile-quantile Plot Quantilen der Standardnormalverteilung auf der x- Achse Quantilen der beobachteten Verteilung auf der y- Achse Bei Normalverteilung bildet Plot eine diagonale Linie (unabhängige von Mittelwert und Standardabweichung) ermöglicht eine intuitive "positive" Überprüfung von Normalverteilung, ersetzt aber nicht einen statistischen Test

19 Weiterer Test auf Normalverteilung Unsere Beispieldaten: qqnorm(tempus_aspekt) qqline(tempus_aspekt)

20 Anpassungstest: Fall 2 Fall 2 eine abhängige Variable auf Nominal- oder Kategorialniveau Frage: sind zwei Ausprägungen einer Variable gleich häufig? Test: sind die Daten so verteilt, dass sie einer bekannten Verteilung entsprechen? Methode: Chi-Quadrat-Test; chisq.test()

21 Anpassungstest: Fall 2 Methode: Chi-Quadrat-Test; chisq.test() Voraussetzungen Alle Beobachtungen sind von einander unabhängig 80% der erwarteten Häufigkeiten sind größer oder gleich 5 Alle erwarteten Häufigkeiten sind größer als

22 Anpassungstest: Fall 2 Methode: Chi-Quadrat-Test; chisq.test() Ablaufschema 1. Formulierung der Hypothesen 2. Tabellierung der beobachteten Häufigkeiten; graphische Betrachtung 3. Ermitteln der Häufigkeiten, die gemäß H 0 zu erwarten wären. 4. Testen der Voraussetzungen 5. Berechnen der Abweichungsmaße für alle beobachteten Häufigkeiten 6. Summierung der Abweichungsmaße zur Ermittlung der Prüfstatistik χ 2 7. Ermittlung der Freiheitsgrade df und der Irrtumswahrscheinlichkeit p

23 Anpassungstest: Fall 2 Beispiel Worstellungsalternation a. He picked up the book Verb-Partikel-direktes_Objekt b. He picked the book up Verb-direktes_Objekt-Partikel Frage Beide Konstruktionen werden von vielen für bedeutungsgleich gehalten. Sind sie gleich häufig?

24 Hypothesen Anpassungstest: Fall 2 H 0 : Die Häufigkeit der Variablenausprägungen der Variable Konstruktion sind identisch; die Variation in der gezogenen Stichprobe ist zufällig. H 1 : Die Häufigkeiten der Variablenausprägungen der Variable Konstruktion sind nicht identisch; die Variation in der Stichprobe ist nicht zufällig. In statistischer Form: H 0 : n V PART DO = n V DO PART H 1 : n V PART DO n V DO PART eine abhängige Variable auf Nominal-/Kategorialniveau Chi-Quadrat-Verteilung?

25 Anpassungstest: Fall 2 eine abhängige Variable auf Nominal-/Kategorialniveau Tabellierung der beobachteten Häufigkeiten Experiment Beschreibungen von Bildern (Peters 2001) Chi-Quadrat-Verteilung? Verb-Partikel-direktes_Objekt 247 Verb-direktes_Objekt-Partikel 150 pie(vpcs, labels=c("verb- Partikel-Direktes Objekt", "Verb-Direktes Objekt- Partikel"))

26 Anpassungstest: Fall 2 eine abhängige Variable auf Nominal-/Kategorialniveau Chi-Quadrat-Verteilung? Ermitteln der Häufigkeiten, die gemäß H 0 zu erwarten wären. Verb-Partikel-direktes_Objekt 198,5 Verb-direktes_Objekt-Partikel 198,5 In R: VPCs.erw<-rep(sum(VPCs)/length(VPCs), length(vpcs)) Testen der Voraussetzungen: OK

27 Anpassungstest: Fall 2 Berechnen der Abweichungsmaße für alle beobachteten Häufigkeiten und Summierung der Abweichungsmaße zur Ermittlung der Prüfstatistik χ 2 Chi " Quadrat = # 2 = In R: eine abhängige Variable auf Nominal-/Kategorialniveau Chi-Quadrat-Verteilung? ( beobachtet " erwartet) 2 $ n i=1 erwartet! sum(((vpcs-vpcs.erw)^2)/vpcs.erw) ca. 23,

28 Einschub: Werte von χ 2 Große Abweichung höherer Chi-Quadrat-Wert Keine Abweichung Chi-Quadrat-Wert = 0 Statistische Hypothesen - reformuliert H 0 : χ 2 = 0. H 1 : χ 2 >

29 Anpassungstest: Fall 2 Interpretation des Chi-Quadrat-Werts Ermittlung der Freiheitsgrade df und der Irrtumswahrscheinlichkeit p df =1 Kritische χ 2 -Werte für p zweiseitig eine abhängige Variable auf Nominal-/Kategorialniveau Chi-Quadrat-Verteilung? p=0,05 p=0,01 p=0,001 df=1 3,841 6,635 10,827 df=2 5,991 9,21 13,815 df=3 7,815 11,345 16,

30 Kritische Werte in R erstellen # ermittle den kritischen Chi-Quadrat-Wert fuer p=0,05, 0,01 und 0,001 (bei df=1) qchisq(c(0.05, 0.01, 0.001), 1, lower.tail=f) [1] # ermittle die kritischen Chi-Quadrat-Wert fuer p=0,05, 0,01 und 0,001 (bei df=1, df=2 und df=3) p.werte<-matrix(rep(c(0.05, 0.01, 0.001), 3), byrow=t, ncol=3) df.werte<-matrix(rep(1:3, 3), byrow=f, ncol=3) qchisq(p.werte, df.werte, lower.tail=f) [,1] [,2] [,3] [1,] [2,] [3,] (Gries 2008: 160)

31 Anpassungstest: Fall 2 Interpretation des Ergebnisses 23,7 > 10,827 Ablehnung der Nullhypothese "Die Verteilung der beiden Konstruktionen weicht gemäß einem Chi-Quadrat-Anpassungstest hoch signifikant von der erwarteten Gleichverteilung ab (χ 2 =23,7; df= 1; p zweiseitig < 0,001): Die Konstruktion V-PTK-DO wurde 247 Mal beobachtet, obwohl sie nur 199 Mal erwartet wurde. Die Konstruktion V-DO-PTK wurde nur 150 Mal beobachtet, obwohl sie 199 Mal erwartet wurde." (nach Gries 2008: 161)

32 Der Chi-Quadrat-Test in R Ermittlung des genauen p-werts in R pchisq(23.7, 1, lower.tail=f) [1] e-06 Der eigentliche Test chisq.test(vpcs, p=c(0.5, 0.5)) Chi-squared test for given probabilities data: VPCs X-squared = , df = 1, p-value = 1.126e

33 Der Chi-Quadrat-Test in R Ermittlung der gesamten Information von chisq.test() test<-chisq.test(vpcs, p=c(0.5, 0.5)) str(test) Daraus abgeleitet: die erwarteten Häufigkeiten test$expected [1]

34 Schlusskommentar Der Chi-Quadrat-Test ist ein zweiseitiger Test Bei df=1 ist auch ein einseitiger Test möglich durch Halbierung des pchisq()-werts Analoger Test für relative Häufigkeiten: prop.test() Test auf signifikante Abweichungen einer relativen Häufigkeit zu einer erwarteten relativen Häufigkeit

Analytische Statistik: Varianzanpassungstest, Varianzhomogenitätstest. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09

Analytische Statistik: Varianzanpassungstest, Varianzhomogenitätstest. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Analytische Statistik: Varianzanpassungstest, Varianzhomogenitätstest Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Varianzanpassungstest Untersuchung der Streuung einer bzw.

Mehr

Quantitative Auswertung. Korpuslinguistik Dr. Heike Zinsmeister

Quantitative Auswertung. Korpuslinguistik Dr. Heike Zinsmeister Quantitative Auswertung Korpuslinguistik Dr. Heike Zinsmeister 02.12.2011 Analysetypen Deskriptive Statistik Beschreibung der 'Gestalt' von Datenverteilungen Grafische Darstellungen Zentrale Maße (Mittelwert

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

Analytische Statistik II. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09

Analytische Statistik II. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Analytische Statistik II Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Testen Anpassungstests (goodness of fit) Weicht eine gegebene Verteilung signifikant von einer bekannten

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Melanie Kaspar, Prof. Dr. B. Grabowski 1

Melanie Kaspar, Prof. Dr. B. Grabowski 1 7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen

Mehr

Quantitative Auswertung II. Korpuslinguistik Heike Zinsmeister

Quantitative Auswertung II. Korpuslinguistik Heike Zinsmeister Quantitative Auswertung II Korpuslinguistik Heike Zinsmeister 16.12.2011 Unterschiedstest Fall 1: unabhängige Stichproben Daten eine unabhängige Variable auf Nominal- oder Kategorialniveau eine abhängige

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Excel Edition ^ Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

9. StatistischeTests. 9.1 Konzeption

9. StatistischeTests. 9.1 Konzeption 9. StatistischeTests 9.1 Konzeption Statistische Tests dienen zur Überprüfung von Hypothesen über einen Parameter der Grundgesamtheit (bei einem Ein-Stichproben-Test) oder über die Verteilung einer Zufallsvariablen

Mehr

Prüfen von Mittelwertsunterschieden: t-test

Prüfen von Mittelwertsunterschieden: t-test Prüfen von Mittelwertsunterschieden: t-test Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) t-test

Mehr

Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen

Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen Universität Karlsruhe (TH) Forschungsuniversität gegründet 825 Wilcoxon-Rangsummentest oder Mann-Whitney U-Test Motivation In Experimenten ist die Datenmenge oft klein Daten sind nicht normalverteilt Dann

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test 1/29 Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) Matthias Birkner http://www.staff.uni-mainz.de/birkner/biostatistik1516/ 11.12.2015 2/29 Inhalt 1 t-test

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

Tutorial: Homogenitätstest

Tutorial: Homogenitätstest Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite

Mehr

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table("c:\\compaufg\\kredit.

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table(c:\\compaufg\\kredit. Lösung 16.3 Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit

Mehr

Grundlagen von Versuchsmethodik und Datenanalyse

Grundlagen von Versuchsmethodik und Datenanalyse Grundlagen von Versuchsmethodik und Datenanalyse Der Anfang: Hypothesen über Ursache-Wirkungs-Zusammenhänge Ursache Wirkung Koffein verbessert Kurzzeitgedächtnis Gewaltfilme führen zu aggressivem Verhalten

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg : Gliederung 1 Einführung 2 Deskriptive Statistik

Mehr

Überblick über die Tests

Überblick über die Tests Anhang A Überblick über die Tests A.1 Ein-Stichproben-Tests A.1.1 Tests auf Verteilungsannahmen ˆ Shapiro-Wilk-Test Situation: Test auf Normalverteilung H 0 : X N(µ, σ 2 ) H 1 : X nicht normalverteilt

Mehr

Statistische Auswertung der Daten von Blatt 13

Statistische Auswertung der Daten von Blatt 13 Statistische Auswertung der Daten von Blatt 13 Problemstellung 1 Graphische Darstellung der Daten 1 Diskussion der Normalverteilung 3 Mittelwerte und deren Konfidenzbereiche 3 Signifikanz der Behandlung

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Statistik im Bachelor-Studium der BWL und VWL

Statistik im Bachelor-Studium der BWL und VWL Max C. Wewel Statistik im Bachelor-Studium der BWL und VWL Methoden, Anwendung, Interpretation Mit herausnehmbarer Formelsammlung ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY 5.2. Nichtparametrische Tests 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY Voraussetzungen: - Die Verteilungen der beiden Grundgesamtheiten sollten eine ähnliche Form aufweisen. - Die

Mehr

Statistik Einführung // Lineare Regression 9 p.2/72

Statistik Einführung // Lineare Regression 9 p.2/72 Statistik Einführung Lineare Regression Kapitel 9 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Ledold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Lineare Regression

Mehr

Prüfung eines Datenbestandes

Prüfung eines Datenbestandes Prüfung eines Datenbestandes auf Abweichungen einzelner Zahlen vom erwarteten mathematisch-statistischen Verhalten, die nicht mit einem Zufall erklärbar sind (Prüfung auf Manipulationen des Datenbestandes)

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test. und der Wilcoxon-Test

Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test. und der Wilcoxon-Test Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) und der Wilcoxon-Test Dirk Metzler 22. Mai 2015 Inhaltsverzeichnis 1 Wiederholung:

Mehr

Teil I Beschreibende Statistik 29

Teil I Beschreibende Statistik 29 Vorwort zur 2. Auflage 15 Vorwort 15 Kapitel 0 Einführung 19 0.1 Methoden und Aufgaben der Statistik............................. 20 0.2 Ablauf statistischer Untersuchungen..............................

Mehr

Konfidenzintervalle. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09

Konfidenzintervalle. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Konfidenzintervalle Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Münzspiel Experiment 100 Münzwürfe: Stefan gewinnt bei "Kopf" Hypothesen H 0 : Stefan wird so oft gewinnen

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

8. Methoden der klassischen multivariaten Statistik

8. Methoden der klassischen multivariaten Statistik 8. Methoden der klassischen multivariaten Statistik 8.1. Darstellung von Daten Voraussetzungen auch in diesem Kapitel: Grundgesamtheit (Datenraum) Ω von Objekten (Fällen, Instanzen), denen J-Tupel von

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE INHALTS- VERZEICHNIS Vorwort 13 Schreiben Sie uns! 15 1 Statistische Untersuchungen 17 Wozu Statistik? 18

Mehr

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...

Mehr

Aufgabe 1 10 ECTS. y i x j gering mittel hoch n i Hausrat 200 25 0 225 KFZ 0 10 75 85 Unfall 20 35 90 145 Reiserücktritt 40 5 0 45 n j 260 75 165 500

Aufgabe 1 10 ECTS. y i x j gering mittel hoch n i Hausrat 200 25 0 225 KFZ 0 10 75 85 Unfall 20 35 90 145 Reiserücktritt 40 5 0 45 n j 260 75 165 500 Aufgabe 1 Für die Securance-Versicherung liegen Ihnen die gemeinsamen absoluten Häugkeiten der Merkmale X: Schadenshöhe und Y : Versicherungsart für die letzten 500 gemeldeten Schäden vor. 1. Interpretieren

Mehr

Ein bisschen Statistik

Ein bisschen Statistik Prof. Dr. Beat Siebenhaar ein bisschen Statistik 1 Ein bisschen Statistik (orientiert an Hüsler/Zimmermann (006) mit Umsetzung auf die linguistische Fragen) 1. Datentypen und Grafik Grafische Darstellungen

Mehr

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.) ue biostatistik: nichtparametrische testverfahren / ergänzung 1/6 h. Lettner / physik Statistische Testverfahren Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 10. Vorlesung - 017 Quantil der Ordnung α für die Verteilung des beobachteten Merkmals X ist der Wert z α R für welchen gilt z 1 heißt Median. P(X < z α ) α P(X z α ). Falls X stetige zufällige Variable

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE. Markt+Technik

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE. Markt+Technik Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Markt+Technik Vorwort Schreiben Sie uns! 13 15 Statistische Untersuchungen 17 Wozu Statistik? 18 Wirtschaftliche

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Einfaktorielle Versuchspläne 27/40 Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Abweichung Einfach Differenz Helmert Wiederholt Vergleich Jede Gruppe mit Gesamtmittelwert

Mehr

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

Studiendesign/ Evaluierungsdesign

Studiendesign/ Evaluierungsdesign Jennifer Ziegert Studiendesign/ Evaluierungsdesign Praxisprojekt: Nutzerorientierte Evaluierung von Visualisierungen in Daffodil mittels Eyetracker Warum Studien /Evaluierungsdesign Das Design einer Untersuchung

Mehr

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/31

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/31 Verteilungsanalyse Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/31 Datentypen Als Sammeln von Daten bezeichnet man in der Statistik das Aufzeichnen von Fakten. Erhobene Daten klassifziert man

Mehr

Einführung in statistische Testmethoden

Einführung in statistische Testmethoden Einführung in statistische Testmethoden und die Bearbeitung von Messdaten mit Excel 1. Beispielhafte Einführung in den Gebrauch von Testmethoden 2. Typen von Messwerten, Verteilungen 3. Mittelwert, Varianz,

Mehr

Tutorial: Vergleich von Anteilen

Tutorial: Vergleich von Anteilen Tutorial: Vergleich von Anteilen Die Sicherung des Pensionssystems ist in vielen Ländern ein heikles Thema. Noch stärker als der Streit, wer wann welche Pension beziehen können soll, tobt ein Streit, welche

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum)

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum) Skriptum zur Veranstaltung Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik 1. Version (mehr Draft als Skriptum) Anmerkungen, Aufzeigen von Tippfehlern und konstruktive Kritik erwünscht!!!

Mehr

werden können. Wenn der Benutzer zudem eine konkrete Differenz mit praktischen Konsequenzen angibt, berechnet der Assistent den Stichprobenumfang,

werden können. Wenn der Benutzer zudem eine konkrete Differenz mit praktischen Konsequenzen angibt, berechnet der Assistent den Stichprobenumfang, Dieses White Paper ist Teil einer Reihe von Veröffentlichungen, welche die Forschungsarbeiten der Minitab-Statistiker erläutern, in deren Rahmen die im Assistenten der Minitab 17 Statistical Software verwendeten

Mehr

Statistik Musterlösungen

Statistik Musterlösungen Statistik Musterlösungen Regina Tüchler & Achim Zeileis Institut für Statistik & Mathematik Wirtschaftsuniversität Wien 1 Grundbegriffe (1.23) Skript Reaktionen auf Videofilm. Aussagen M, E, P, S h(m)

Mehr

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/35

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/35 Verteilungsanalyse Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/35 Datentypen Als Sammeln von Daten bezeichnet man in der Statistik das Aufzeichnen von Fakten. Erhobene Daten klassifziert man

Mehr

Einfache statistische Testverfahren

Einfache statistische Testverfahren Einfache statistische Testverfahren Johannes Hain Lehrstuhl für Mathematik VIII (Statistik) 1/29 Hypothesentesten: Allgemeine Situation Im Folgenden wird die statistische Vorgehensweise zur Durchführung

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Einfache Statistiken in Excel

Einfache Statistiken in Excel Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 3A Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Mit den Berechnungsfunktionen LG10(?) und SQRT(?) in "Transformieren", "Berechnen" können logarithmierte Werte sowie die Quadratwurzel

Mehr

Bitte schreiben Sie in Druckbuchstaben und vergessen Sie nicht zu unterschreiben. Name, Vorname:. Studiengang/ Semester:. Matrikelnummer:..

Bitte schreiben Sie in Druckbuchstaben und vergessen Sie nicht zu unterschreiben. Name, Vorname:. Studiengang/ Semester:. Matrikelnummer:.. Institut für Erziehungswissenschaft der Philipps-Universität Marburg Prof. Dr. Udo Kuckartz Arbeitsbereich Empirische Pädagogik/Methoden der Sozialforschung Wintersemester 004/005 KLAUSUR FEBRUAR 005 /

Mehr

2. Formulieren von Hypothesen. Nullhypothese: H 0 : µ = 0 Gerät exakt geeicht

2. Formulieren von Hypothesen. Nullhypothese: H 0 : µ = 0 Gerät exakt geeicht 43 Signifikanztests Beispiel zum Gauß-Test Bei einer Serienfertigung eines bestimmten Typs von Messgeräten werden vor der Auslieferung eines jeden Gerätes 10 Kontrollmessungen durchgeführt um festzustellen,

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

Einführung in die statistische Datenanalyse I

Einführung in die statistische Datenanalyse I Einführung in die statistische Datenanalyse I Inhaltsverzeichnis 1. EINFÜHRUNG IN THEORIEGELEITETES WISSENSCHAFTLICHES ARBEITEN 2 2. KRITIERIEN ZUR AUSWAHL STATISTISCH METHODISCHER VERFAHREN 2 3. UNIVARIATE

Mehr

Evaluation der Normalverteilungsannahme

Evaluation der Normalverteilungsannahme Evaluation der Normalverteilungsannahme. Überprüfung der Normalverteilungsannahme im SPSS P. Wilhelm; HS SPSS bietet verschiedene Möglichkeiten, um Verteilungsannahmen zu überprüfen. Angefordert werden

Mehr

Versuchsplanung. Teil 1 Einführung und Grundlagen. Dr. Tobias Kiesling <kiesling@stat.uni-muenchen.de> Einführung in die Versuchsplanung

Versuchsplanung. Teil 1 Einführung und Grundlagen. Dr. Tobias Kiesling <kiesling@stat.uni-muenchen.de> Einführung in die Versuchsplanung Versuchsplanung Teil 1 Einführung und Grundlagen Dr. Tobias Kiesling Inhalt Einführung in die Versuchsplanung Hintergründe Grundlegende Prinzipien und Begriffe Vorgehensweise

Mehr

Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2

Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2 Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2 Dr. Jan-Peter Brückner jpbrueckner@email.uni-kiel.de R.216 Tel. 880 4717 Statistischer Schluss Voraussetzungen z.b. bzgl. Skalenniveau und

Mehr

Tutorial: Anpassungstest

Tutorial: Anpassungstest Tutorial: Anpassungstest An einem Institut gibt es vier UniversitätslehrerInnen, die auch Diplomarbeiten betreuen. Natürlich erfordert die Betreuung einer Diplomarbeit einiges an Arbeit und Zeit und vom

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

Marktforschung I. Marktforschung I 2

Marktforschung I. Marktforschung I 2 Marktforschung I Marktforschung I Einführung in die Testtheorie (Toporowski) Mathematische Grundlagen (Toporowski) Varianzanalyse (Toporowski) Regressionsanalyse (Boztuğ) Diskriminanzanalyse (Hammerschmidt)

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

Stichprobenauslegung. für stetige und binäre Datentypen

Stichprobenauslegung. für stetige und binäre Datentypen Stichprobenauslegung für stetige und binäre Datentypen Roadmap zu Stichproben Hypothese über das interessierende Merkmal aufstellen Stichprobe entnehmen Beobachtete Messwerte abbilden Schluss von der Beobachtung

Mehr

Beispiel: Sonntagsfrage. Einführung in die induktive Statistik. Statistische Tests. Statistische Tests

Beispiel: Sonntagsfrage. Einführung in die induktive Statistik. Statistische Tests. Statistische Tests Beispiel: Sonntagsfrage Vier Wochen vor der österreichischen Nationalratswahl 1999 wurde 499 Haushalten die Sonntagsfrage gestellt: Falls nächsten Sonntag Wahlen wären, welche Partei würden Sie wählen?

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

Wiederholung und ein mehrfaktorielles Verfahren. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09

Wiederholung und ein mehrfaktorielles Verfahren. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Wiederholung und ein mehrfaktorielles Verfahren Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Einstieg und Wiederholung Daten unterscheiden sich in ihrem mathematischen Informationsgehalt!

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Übungsserie Nr. 10 mit Lösungen

Übungsserie Nr. 10 mit Lösungen Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung:

Mehr

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015 Hypothesentests für Erwartungswert und Median Statistik (Biol./Pharm./HST) FS 2015 Normalverteilung X N μ, σ 2 X ist normalverteilt mit Erwartungswert μ und Varianz σ 2 pdf: pdf cdf:??? cdf 1 Zentraler

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

Nachholklausur STATISTIK II

Nachholklausur STATISTIK II Nachholklausur STATISTIK II Name, Vorname: Matrikel-Nr.: Die Klausur enthält zwei Typen von Aufgaben: T e i l A besteht aus Fragen mit mehreren vorgegebenen Antwortvorschlägen, von denen mindestens eine

Mehr

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis:

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis: Inhaltsverzeichnis: Übungsaufgaben zu Kapitel 5... 1 Aufgabe 101... 1 Aufgabe 102... 2 Aufgabe 103... 2 Aufgabe 104... 2 Aufgabe 105... 3 Aufgabe 106... 3 Aufgabe 107... 3 Aufgabe 108... 4 Aufgabe 109...

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

Klausur Statistik Lösungshinweise

Klausur Statistik Lösungshinweise Klausur Statistik Lösungshinweise Prüfungsdatum: 1. Juli 2015 Prüfer: Etschberger, Heiden, Jansen Studiengang: IM und BW Aufgabe 1 14 Punkte Ein Freund von Ihnen hat über einen Teil seiner Daten, die er

Mehr

Stochastik Abitur 2009 Stochastik

Stochastik Abitur 2009 Stochastik Abitur 2009 Stochastik Beilage ea (erhöhtes Anforderungsniveau) ga (grundlegendes Anforderungsniveau) ISBN 978-3-8120-0108-3 und ISBN 978-3-8120-0223-3 1 Aufgabe 2 (ea) Rauchen ist das größte vermeidbare

Mehr

3. Der t-test. Der t-test

3. Der t-test. Der t-test 3 3. Der t-test Dieses Kapitel beschäftigt sich mit einem grundlegenden statistischen Verfahren zur Auswertung erhobener Daten: dem t-test. Der t-test untersucht, ob sich zwei empirisch gefundene Mittelwerte

Mehr

1 Statistische Grundlagen

1 Statistische Grundlagen Konzepte in Empirische Ökonomie 1 (Winter) Hier findest Du ein paar Tipps zu den Konzepten in Empirische 1. Wenn Du aber noch etwas Unterstützung kurz vor der Klausur brauchst, schreib uns eine kurze Email.

Mehr

Übung 4 im Fach "Biometrie / Q1"

Übung 4 im Fach Biometrie / Q1 Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-89070 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 13, 89075 Ulm Tel.

Mehr

Statistik II. Weitere Statistische Tests. Statistik II

Statistik II. Weitere Statistische Tests. Statistik II Statistik II Weitere Statistische Tests Statistik II - 19.5.2006 1 Überblick Bisher wurden die Test immer anhand einer Stichprobe durchgeführt Jetzt wollen wir die statistischen Eigenschaften von zwei

Mehr

Korrelation, Regression und Signifikanz

Korrelation, Regression und Signifikanz Professur Forschungsmethodik und Evaluation in der Psychologie Übung Methodenlehre I, und Daten einlesen in SPSS Datei Textdaten lesen... https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://d15cw65ipcts

Mehr

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler DAS THEMA: INFERENZSTATISTIK II INFERENZSTATISTISCHE AUSSAGEN Standardfehler Konfidenzintervalle Signifikanztests Standardfehler der Standardfehler Interpretation Verwendung 1 ZUR WIEDERHOLUNG... Ausgangspunkt:

Mehr

Fortgeschrittene Statistik Logistische Regression

Fortgeschrittene Statistik Logistische Regression Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E

Mehr