Kählersche Geometrie auf komplexen Mannigfaltigkeiten, Skalarkrümmung und das Yamabe-Problem und Simulationen einer kryogenen Gas-Stopzelle

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kählersche Geometrie auf komplexen Mannigfaltigkeiten, Skalarkrümmung und das Yamabe-Problem und Simulationen einer kryogenen Gas-Stopzelle"

Transkript

1 Kählersche Geometrie auf komplexen Mannigfaltigkeiten, Skalarkrümmung und das Yamabe-Problem und Simulationen einer kryogenen Gas-Stopzelle Technische Universität Dresden Dr. rer. nat. Frank Morherr

2 Was ist Krümmung? Gerade soll Krümmung Null haben. Prototyp Kreis - großer Radius, kleine Krümmung: - kleiner Radius, große Krümmung: Daher liegt nahe zu definieren: Krümmung k = 1/R

3 Wie passt die Gerade hier rein? Erdoberfläche ist gekrümmt, trotzdem hielt sich hartnäckig bis ins 15.Jh. die Ansicht einer Scheibe. Grund: Erdradius so groß, dass man Krümmung auf 1. Blick nicht sieht. Gerade ist Kreis mit großem Radius.

4 Krümmung anderer Kurven der Gestalt Differentialrechnung: y 3.75 Steigung Kurve = Steigung Tangente = Krümmung Kurve = Krümmung des Krümmungskreises x Hängt zusammen mit Was ist der Krümmungskreis? ghghg Annäherung von P und P auf P ergibt Krümmungskreis mit Radius

5 Krümmung mit Vorzeichen Mathematisch positive Richtung ist entgegen dem Urzeigersinn, daher Positiv = Linkskrümmung Steigung der Ableitung wächst Negativ = Rechtskrümmung Steigung der Ableitung fällt

6 Krümmung von Kurven in anderen Darstellungen Für Kurven der Gestalt Beispiel Ellipse mit Parameter t gilt für die Krümmung

7 Schnittkrümmung von Flächen Schnitt von Flächen mit Ebenen ergibt Schnittkurven mit Krümmung Hauptkrümmungen = minimale und maximale Krümmung

8 Gaußsche Krümmung K Theorema Egregium: Gaußkrümmung K hängt nur von der inneren Geometrie der Fläche ab, nicht von dem umgebenden Raum

9 Mittlere Krümmung H Bei Minimalflächen = Flächen minimaler Oberfläche bei vorgegebenem Rand Beispiel: H = 0 Seifenhautgebilde Oberflächenenergie ist minimal

10 Bilder verschiedener Minimalflächen Enneperfläche Scherksche Fläche Katenoid Hennebergfläche

11 Der Riemannsche Krümmungstensor Auf gekrümmten Flächen ändern Vektoren nach Paralleltransport ihre Richtung. Einführung des Symbols als Ableitung des Vektorfeldes Y in Richtung des Vektorfeldes X Riemannscher Krümmungstensor:

12 Einsteinsche Feldgleichung Ric : Riccitensor R : Skalarkrümmung, Spur von Ric, R = 2K, K G.-Krümmung T : Energie-Impuls-Tensor g : Metrik (Abstandsfunktion) Λ : Kosmologische Konstante Spezielle Lösung: Schwarzschildmetrik eines schwarzen Loches:

13 Komplexe Mannigfaltigkeiten Topologische Mannigfaltigkeit mit biholomorphen Kartenwechselhomöomorphismen U offen, Karte (U,φ) Atlas biholomorphe Kartenwechsel

14 De Rham- und Dolbeault-Kohomologie Differenzierbaren n-dim reelle Mannigfaltigkeit M: Basis eines lokalen Tangentialraums Basis des lokalen Cotangentialraumes De Rham-Kohomologiegruppe

15 M komplexe n-dim Mannigfaltigkeit. Basis des lokalen Tangentialraumes Basis des lokalen Cotangentialraumes Zerlegung der n-differentialformen liefert Mit den Operatoren Bekommt man die Dolbeault-Kohomologie-Gruppen

16 Kählermetriken Sei M eine kompakte komplexe Mannigfaltigkeit. Eine hermitesche ( ) Metrik auf M mit zugehöriger Differentialform heißt Kählermetrik, falls ( also ) Eine Kählermetrik heißt Ricci-flach, wenn der Ricci-Krümmungstensor verschwindet, der im Kählerfall folgende Gestalt hat Eigenschaft Kähler-Einstein-Metrik:

17 Kählermetriken und Kohomologie Für Kähler-Metriken mit zugehörigen Kählerformen gilt: d.h. zwei Kähler-Metriken liefern dieselbe Kohomologieklasse in genau dann, wenn Kählerformen sich um Potential unterscheiden löste S.T. Yau das Calabi-Problem für den Fall trivialer erster Chern-Klasse: M kompakte holomorphe Mannigfaltigkeit mit trivialem kanonischen Bündel In jeder Kähler-Klasse existiert ein Ricci-flacher Repräsentant.

18 Calabi-Yau-Varietäten, speziell K3-Flächen K3-Flächen M: trivial und es existieren keine globalen holomorphen 1-Formen: Suche nach Ricci-flachen Kähler-Metriken motiviert durch Resultat von Y.-T. Siu, 1983: jede K3-Fläche ist kählersch, spezielle K3-Flächen: desingularisierte Kummerflächen.

19 Kummerflächen und Singularitätenauflösung Konstruktion von Kummerflächen mithilfe von algebraischen Tori mit amplem Geradenbündel und eindimensionalem Linearsystem. -Involution operiert auf X durch mit 16 verschiedenen Fixpunkten welche 16 Singularitäten vom Typ liefern. heißt dann singuläre Kummerfläche. Diese hängt noch von der Wahl des Gitters ab. Minimale Auflösung Jede singuläre algebraische Fläche besitzt minimales glattes Modell.

20 Auflösung im Fall (lokale Beschreibung) Cartan: Quotient einer algebraischen Varietät nach endlicher Gruppe ist algebraisch, wird durch invariante Polynome gegeben. Algebra der invarianten Polynome endlich erzeugt. V ist singulär in (0,0,0). Einmaliges Aufblasen in, Übergang zur eigentlich Transformierten liefert lokale Auflösung X X kann mit Totalraum des zweifach tautologischen Geradenbündels auf

21 Desingularisierung der Kummerfläche

22 Ricci-flache Kählermetrik auf der Singularität Kartenwechsel des Bündels ergeben sich zu Wobei reicht,erhält man mittels ist invariant unter Kartenwechseln des Bündels. Lösen von liefert die ricci-flache Kähler-(Einstein)-Metrik Potential: (1)

23 Kummerflächen und Thetafunktionen Einbettung der abelschen Fläche, invariant unter Involution Thetafunktion Für mit zeigt langwierige Rechnung mit wobei

24 Dabei gilt in klassischer Notation für die Koeffizienten Mit den Thetanullwerten Kummerfläche invariant unter folgenden -Automorphismen

25 Sei Einparameterspezialfall von Kummerflächen wobei Kummergleichung wird zu Mit den Tetraederkoordinaten p,q,r,s. 16 Singularitäten entstehen aus unter den Automorphismen.

26 4 reelle Punkte

27 Konstruktion der Kähler-Einstein-Metrik auf der Kummerfläche aus Metrik in den Singularitäten Perioden der Thetafunktionen bestimmen sich aus abelschen Integralen wobei mit 1-Parameter Kummerfl. hat Gestalt Damit lässt sich Metrik in Thetafunktionen ausdrücken.

28 Kummerflächen bzw. Calabi-Yau in der Physik Stringtheorie: Teilchen keine Punkte, sondern vibrierende eindimensionale Objekte. Teilchen: eindimensionale Weltlinie String: zwei dimensionale Weltlinie Es überträgt sich auch der Prozess der Desingulierung (Aufblasung) der Kummerfläche Kompaktifizierung (Einrollen) der Extradimensionen zu den beobachtbaren 4 Dimensionen: Calabi-Yau-Mannigfaltigkeiten Literatur: Paul Aspinwall: K3 Surfaces and String Duality

29 Konstruktion von Kähler-Einstein-Metriken mittels der Monge-Ampére-Gleichung

30 Konstruktion von Kähler-Einstein-Metriken mittels der Monge-Ampére-Gleichung

31 Das Yamabe Problem

32 Kann sich Krümmung wie Wärme verhalten? Der Yamabe-Fluss Yamabe-Problem: Geometrie einer Riemannschen Mannigfaltigkeit soll konform abgeändert werden, dass als Resultat Skalarkrümmung konstant wird. Krümmung soll gleichmäßiger auf der Mannigfaltigkeit verteilt werden, hat also eine Art dissipatives Verhalten Vergleich mit Wärme: Wärme hat grundlegende Eigenschaft, sich im Verlauf der Zeit in einem Raum zu verteilen, bis die Temperatur überall den gleichen Wert hat. Verhalten wird durch Wärmeleitungsgleichung beschrieben Analog zum Wärmefluss: Yamabe-Fluss. Problem: Nicht klar, dass dieser Evolutionsprozess immer erfolgreich verläuft Ausbildung von Singularitäten möglich Mittels Reskalierungstechnik wurde Geometrie in Umgebung eines solchen Blow- Up-Punktes präzise bestimmt. Mannigfaltigkeit sieht an solchen Punkten wie eine Seifenblase fester Größe aus, die sich abschnüren kann Ergebnis mittels Yamabe-Fluss: Seifenblasen können sich nie komplett ausbilden. Yamabe-Fluss deformiert erfolgreich Ausgangsmetrik zur konformen Metrik

33 Bilder: Seifenblasen und Schwarze Löcher

34 Bilder: Seifenblasen und Schwarze Löcher

35 Flüsse in Anwendung: Simulation einer kryogenen Gasstoppzelle für den Super-FRS für FAIR mit ANSYS-FLUENT Ziel: Effektives Abstoppen von aus dem Super-Fragmentseparator kommenden Spaltprodukten in einer Gasstoppzelle zur Weiterleitung in die Radio-Frequenz- Quadrupole zur Weiterleitung in das Multi-ToF und die Detektoren

36 Simulations-Prozedur Berechnen des elektrischen Feldes mit FEM-Software COMSOL Gasdynamische Rechnung mit FEM/FVM- Software ANSYS-FLUENT Ausblick: Importieren der elektrischen- und gasdynamischen Parameter in ITSIM Simulation der individual Teilchenpfade und Optimierung Theoretische Beschreibung des Gasflusses Modell für Gas-Fluss Rechnungen Boltzmann-Gleichung: Beschreibt die statistische Entwicklung in Zeit und Ort der Dichte-Verteilung der Teilchen Kann für jeden Gas-Fluss genutzt werden Berechnung ist sehr zeitaufwendig Kontinuum-Beschreibung (Navier-Stokes- Gleichung) Beschreibung des Gas-Flusses Ist nicht exakt für Gase mit geringem Druck Kann von der Boltzmann-Gleichung abgeleitet werden Berechnung ist weniger zeitaufwendig

37 Comput. Fluid Dynamics (CFD) (Finite Vol.) Methode Kontinuitätsgleichung: Erhaltung der Masse: Impuls-Gleichung: Erhaltung des Impulses Energie-Gleichung: Erhaltung der Energie Innere- und kinetische Energie Potentielle Energie Druck Reibung Wärmeleitung 1. Diskretisierung der Gleichungen 2. Gleichungen werden gelöst in Ort und Zeit bis die Lösung konvergiert und stationär ist 3. Gekoppelte Lösung: Löst Masse-, Impuls- und Energie- Gleichung simultan

38 Simulationen

Krümmung in der Mathematik und Physik

Krümmung in der Mathematik und Physik Krümmung in der Mathematik und Physik Kählersche Geometrie auf komplexen Mannigfaltigkeiten Dr. rer. nat. Frank Morherr Justus Liebig Universität Gießen Was ist Krümmung? Gerade soll Krümmung Null haben.

Mehr

Krümmung in der Mathematik und Physik. Relativitätstheorie im Alltag

Krümmung in der Mathematik und Physik. Relativitätstheorie im Alltag Krümmung in der Mathematik und Physik Relativitätstheorie im Alltag Justus-Liebig-Universität Giessen Dr. Frank Morherr Was ist Krümmung? Gerade soll Krümmung Null haben. Prototyp Kreis - großer Radius,

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Rand der Fläche = Linie. suggestive Notation. "Zirkulation pro gerichteter Fläche" Vorschau: Eine komplexe Funktion sei nur von der Kombination

Rand der Fläche = Linie. suggestive Notation. Zirkulation pro gerichteter Fläche Vorschau: Eine komplexe Funktion sei nur von der Kombination Zusammenfassung: Satz von Stokes Satz v. Stokes: Flussintegral der Rotation = Linienintegral Fläche Rand der Fläche = Linie Symbolisch: suggestive Notation Geometrische Definition der Rotation: "Zirkulation

Mehr

und "komplex differenzierbar" ( existiert) in. Dann gelten (u.a.):

und komplex differenzierbar ( existiert) in. Dann gelten (u.a.): C8: Komplexe Analysis (KA) Saff & Snyder, Fundamentals of Complex Analysis", Prentice Hall, 1976. Motivation: Differenzieren und Integrieren in der komplexen Ebene Vorschau: Eine komplexe Funktion abhängig,

Mehr

Krümmung in der Mathematik und Physik

Krümmung in der Mathematik und Physik de.wikipedia.org/wiki/nichteuklidische_geometrie www.scilogs.de/die-sankore-schriften/files/geometriendesunivefrsums.jpg Krümmung in der Mathematik und Physik Relativitätstheorie im Alltag Wolfram Mathworld

Mehr

PD Dr. R. Schätzle 9.4.2001 Dr. A. Karlsson. Funktionentheorie II SS 2001

PD Dr. R. Schätzle 9.4.2001 Dr. A. Karlsson. Funktionentheorie II SS 2001 ETH Zürich Departement der Mathematik PD Dr. R. Schätzle 9.4.2001 Dr. A. Karlsson Funktionentheorie II SS 2001 1.Übung AUFGABE 1: Zeigen Sie, daß die Riemannschen Flächen CI und D := {z CI z < 1 } mit

Mehr

Vorschau: Eine komplexe Funktion sei nur von der Kombination. und "komplex differenzierbar" ( existiert) in. Dann gelten (u.a.):

Vorschau: Eine komplexe Funktion sei nur von der Kombination. und komplex differenzierbar ( existiert) in. Dann gelten (u.a.): C8: Komplexe Analysis (KA) Saff & Snyder, Fundamentals of Complex Analysis", Prentice Hall, 1976. Motivation: Differenzieren und Integrieren in der komplexen Ebene Vorschau: Eine komplexe Funktion sei

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Krümmung in der Mathematik und Physik. Relativitätstheorie im Alltag

Krümmung in der Mathematik und Physik. Relativitätstheorie im Alltag Krümmung in der Mathematik und Physik Relativitätstheorie im Alltag Justus-Liebig-Universität Giessen, 2014 Dr. Frank Morherr Was ist Krümmung? Gerade soll Krümmung Null haben. Prototyp Kreis - großer

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Differentialgeometrie

Differentialgeometrie Alfred Gray Differentialgeometrie Klassische Theorie in moderner Darstellung Aus dem Amerikanischen übersetzt und bearbeitet von Hubert Gollek Mit 277 Abbildungen Spektrum Akademischer Verlag Heidelberg

Mehr

Spezielle Relativitätstheorie, allgemeine Relativitätstheorie, Gravitationslinsen

Spezielle Relativitätstheorie, allgemeine Relativitätstheorie, Gravitationslinsen Spezielle Relativitätstheorie, allgemeine Relativitätstheorie, Gravitationslinsen Workshop MNU-Tagung Leipzig 2016 Technische Universität Dresden Dr. rer. nat. Frank Morherr Albert Einstein und das Universum

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Ein Maß für die Krümmung von Funktionsgraphen Helmut Umla 2015

Ein Maß für die Krümmung von Funktionsgraphen Helmut Umla 2015 Ein Maß für die Krümmung von Funktionsgraphen Helmut Umla 015 Halbkreise Der Kreis mit Mittelpunkt und Radius hat die Gleichung + (Satz des Pythagoras). Die Gleichung nach aufgelöst: ± Der untere Halbkreis

Mehr

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild:

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild: 1.4 Vektoren Jeder Vektor (Vierer-Vektor) lebt an einem bestimmten Punkt der Raumzeit. Dieser lässt sich bei Krümmung nicht einfach verschieben. Betrachte deshalb Menge alle Vektoren an einem Punkt p =

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Differenzierbare und symplektische 4-Mannigfaltigkeiten

Differenzierbare und symplektische 4-Mannigfaltigkeiten Differenzierbare und symplektische 4-Mannigfaltigkeiten 12. Mai 2014 Inhaltsverzeichnis 1 4-Mannigfaltigkeiten und der Satz von Freedman 2 3 4 Mannigfaltigkeiten Im Folgenden geht es um topologische Fragen

Mehr

1 Einleitung. 1.1 Motivation. 6 Differentialgeometrie: Grundlagen Vorlesung 1

1 Einleitung. 1.1 Motivation. 6 Differentialgeometrie: Grundlagen Vorlesung 1 6 Differentialgeometrie: Grundlagen Vorlesung Einleitung. Motivation.. Name of the game Geometer bezeichnet klassisch einen Landvermesser (heute ist eher Geodät gebräuchlich. Die klassische Differentialgeometrie

Mehr

116 KAPITEL 15. INTEGRALSÄTZE

116 KAPITEL 15. INTEGRALSÄTZE 116 APITEL 15. INTEGRALSÄTZE Aufgabe 15.1.3 (Verschwinden des Integrales über eine partielle Ableitung) Es sei U R n offen, ϕ C 0 (U; R). Dann ist für j = 1,..., n U ϕ x j dλ n = 0. Wir erinnern an die

Mehr

5 Die Picardschen Sätze

5 Die Picardschen Sätze 03 5 Die Picardschen Sätze Für eine zweimal stetig differenzierbare reell- oder komplexwertige Funktion f auf einem Gebiet G C ist der Laplace-Operator definiert durch Behauptung: = 4 Beweis: Daraus folgt:

Mehr

26. Der Gaußsche Integralsatz

26. Der Gaußsche Integralsatz 6 26. Der Gaußsche Integralsatz Im Folgenden sei eine k-dimensionale Untermannigfaltigkeit des R n und a 2. 26.1. Tangentialvektoren. Ein Vektor v 2 R n heißt Tangentialvektor an in a, falls es eine stetig

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

Der Big Bang Was sagt die Relativitätstheorie über den Anfang unseres Universums?

Der Big Bang Was sagt die Relativitätstheorie über den Anfang unseres Universums? Der Big Bang Was sagt die Relativitätstheorie über den Anfang unseres Universums? Wir leben in einem Universum, das den Gesetzen der von Einstein gegründeten Relativitätstheorie gehorcht. Im letzten Jahrhundert

Mehr

Differentialgeometrie von Kurven und Flächen

Differentialgeometrie von Kurven und Flächen Differentialgeometrie von Kurven und Flächen Inhaltsverzeichnis:. Hilfsmittel Fritzsche 2. Parametrisierte Kurven Ballnus, 29.0. 3. Ebene Krümmung Ballnus, 05.. 4. Raumkurven Stergiou, 2.. 5. Globale Eigenschaften

Mehr

Die Klein-Gordon Gleichung

Die Klein-Gordon Gleichung Kapitel 5 Die Klein-Gordon Gleichung 5.1 Einleitung Die Gleichung für die Rutherford-Streuung ist ein sehr nützlicher Ansatz, um die Streuung von geladenen Teilchen zu studieren. Viele Aspekte sind aber

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen 1 Allgemeine Grundlagen 1.1 Gleichstromkreis 1.1.1 Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j = di da di da Stromelement 1.1.2 Die

Mehr

!(0) + o 1("). Es ist damit möglich, dass mehrere Familien geschlossener Orbits gleichzeitig abzweigen.

!(0) + o 1(). Es ist damit möglich, dass mehrere Familien geschlossener Orbits gleichzeitig abzweigen. Bifurkationen an geschlossenen Orbits 5.4 167 der Schnittabbldung konstruiert. Die Periode T (") der zugehörigen periodischen Lösungen ergibt sich aus =! + o 1 (") beziehungsweise Es ist also t 0 = T (")

Mehr

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Ulrich Loup 24.03.2006 Prüfungsstoff: Alegebra I, Analysis IV, Graphentheorie I Prüfer: Prof. Dr. Wilhelm Plesken Protokollant: Dipl.

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Fraktale Geometrie: Julia Mengen

Fraktale Geometrie: Julia Mengen Fraktale Geometrie: Julia Mengen Gunnar Völkel 1. Februar 007 Zusammenfassung Diese Ausarbeitung ist als Stoffsammlung für das Seminar Fraktale Geometrie im Wintersemester 006/007 an der Universität Ulm

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 26. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 26. 05.

Mehr

Formel 1 - Rennen am Tiongring

Formel 1 - Rennen am Tiongring BspNr: F0010 Themenbereich Differential- und Integralrechnung Ziele vorhandene Ausarbeitungen Bogenlänge und Krümmung TI-9 (F0010a) Analoge Aufgabenstellungen Übungsbeispiele F0011, F001 Lehrplanbezug

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Umgekehrte Kurvendiskussion

Umgekehrte Kurvendiskussion Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen

Mehr

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.)

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.) Lösungsmethoden gewöhnlicher Dierentialgleichungen Dgl) Allgemeine und partikuläre Lösung einer gewöhnlichen Dierentialgleichung Eine Dierentialgleichung ist eine Gleichung! Zum Unterschied von den gewöhnlichen

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient Vorlesung: Analysis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Niveaumengen und Gradient Wir betrachten differenzierbare reellwertige Funktionen f : R n G R, G offen Zur Vereinfachung

Mehr

FB IV Mathematik Universität Trier. Präsentation von Nadja Wecker

FB IV Mathematik Universität Trier. Präsentation von Nadja Wecker FB IV Mathematik Universität Trier Präsentation von Nadja Wecker 1) Einführung Beispiele 2) Mathematische Darstellung 3) Numerischer Fluss für Diffusionsgleichung 4) Konvergenz 5) CFL-Bedingung 6) Zusammenfassung

Mehr

Simulation von räumlich verteilten kontinuierlichen Modellen

Simulation von räumlich verteilten kontinuierlichen Modellen Vorlesungsreihe Simulation betrieblicher Prozesse Simulation von räumlich verteilten kontinuierlichen Modellen Prof. Dr.-Ing. Thomas Wiedemann email: wiedem@informatik.htw-dresden.de HOCHSCHULE FÜR TECHNIK

Mehr

Softwarepraktikum. zu Elemente der Mathematik. Carsten Rezny 10. 13.06.2014. Institut für angewandte Mathematik Universität Bonn

Softwarepraktikum. zu Elemente der Mathematik. Carsten Rezny 10. 13.06.2014. Institut für angewandte Mathematik Universität Bonn Softwarepraktikum zu Elemente der Mathematik Carsten Rezny Institut für angewandte Mathematik Universität Bonn 10. 13.06.2014 Anmeldung in Basis: 10. 13.06.2014 Organisatorisches Überblick GeoGebra freie

Mehr

1. und 2. Fundamentalform

1. und 2. Fundamentalform 1. und 2. Fundamentalform regulärer Flächen Proseminar Differentialgeometrie Von Daniel Schliebner Herausgabe: 05. Dezember 2007 Daniel Schliebner 1. und 2. Fundamentalform regulärer Flächen Seite 1 6.1

Mehr

2. Klausur zur Funktionentheorie SS 2009

2. Klausur zur Funktionentheorie SS 2009 Aufgabe : Finden Sie ein Beispiel für eine meromorphe Funktion f M(C), die auf den Kreisringen A 0, (0) und A,2 (0) unterschiedliche Laurentreihenentwicklungen besitzt. Beweisen Sie, dass Ihr Beispiel

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

1.6 Implizite Funktionen

1.6 Implizite Funktionen 1 1.6 Implizite Funktionen Wir werden uns jetzt mit nichtlinearen Gleichungen beschäftigen, f(x) = 0, wobei f = (f 1,..., f m ) stetig differenzierbar auf einem Gebiet G R n und m < n ist. Dann hat man

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Achim Rosch, Institut für Theoretische Physik, Köln. Belegt das Gutachten wesentliche fachliche Fehler im KPK?

Achim Rosch, Institut für Theoretische Physik, Köln. Belegt das Gutachten wesentliche fachliche Fehler im KPK? Impulsstrom Achim Rosch, Institut für Theoretische Physik, Köln zwei Fragen: Belegt das Gutachten wesentliche fachliche Fehler im KPK? Gibt es im Gutachten selbst wesentliche fachliche Fehler? andere wichtige

Mehr

Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen)

Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen) Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen) Fachbereich Mathematik Wintersemester 0/0 Prof. Dr. Burkhard Kümmerer./3. November 0 Andreas Gärtner Walter Reußwig

Mehr

EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören:

EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: david vajda 3. Februar 2016 Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: Elektrische Stromstärke I Elektrische Spannung U Elektrischer Widerstand R Ladung Q Probeladung q Zeit t Arbeit

Mehr

Mehr von PLARTHIN gibt's im Internet auf http://plarthin.wordpress.com Literatur: - [1] deutsche, englische Wikipedia (Literaturverweise hierauf gekennzeichnet mit [1, de]; [1, en]) - [2] Spacetime and

Mehr

7.11. Extrema unter Nebenbedingungen

7.11. Extrema unter Nebenbedingungen 7.11. Extrema unter Nebenbedingungen Randextrema Wir haben schon bemerkt, daß die üblichen Tests mit Hilfe von (eventuell höheren) Ableitungen nur Kriterien für (lokale) Extrema im Inneren des Definitionsgebietes

Mehr

Lineare Algebra und analytische Geometrie II (Unterrichtsfach)

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Prof. Dr. D. Rost SS 0 Blatt.06.0 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Abgabe: Dienstag, 0. Juli 0, bis 4:00

Mehr

Elliptische Funktionen, elliptische Kurven und Modulformen Die Weierstraß sche -Funktion. Carina Sobotta

Elliptische Funktionen, elliptische Kurven und Modulformen Die Weierstraß sche -Funktion. Carina Sobotta Elliptische Funktionen, elliptische Kurven und Modulformen Die Weierstraß sche -Funktion Carina Sobotta 7. Oktober 004 Einleitung Elliptische Funktionen erhielten ihren Namen, da sie anfangs bei Untersuchungen

Mehr

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat.

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat. Die k/2 - Formel von Renate Vistorin Zentrales Thema dieses Vortrages ist die k/2 - Formel für meromorphe Modulformen als eine Konsequenz des Residuensatzes. Als Folgerungen werden danach einige Eigenschaften

Mehr

6 Julia-Mengen. 114 Kapitel 2 Konforme Abbildungen

6 Julia-Mengen. 114 Kapitel 2 Konforme Abbildungen 114 Kapitel 2 Konforme Abbildungen 6 Julia-Mengen Sei G C ein Gebiet. Eine holomorphe Abbildung f : G G kann eine holomorphe oder eine meromorphe Funktion auf G sein. Definition. Zwei holomorphe Abbildungen

Mehr

Mathematik I Internationales Wirtschaftsingenieurwesen

Mathematik I Internationales Wirtschaftsingenieurwesen Mathematik I Internationales Wirtschaftsingenieurwesen Funktionen mit mehreren reellen Variablen 18.11.08 Beispiel: Funktionsgebirge Das Beispiel zeigt die Funktion z = y sin(x 2 ) Schnittkurven: Beispiel

Mehr

Mathematik I ITB. Funktionen mit mehreren reellen Variablen. Prof. Dr. Karin Melzer

Mathematik I ITB. Funktionen mit mehreren reellen Variablen. Prof. Dr. Karin Melzer Funktionen mit mehreren reellen Variablen 11.05.09 Beispiel: Funktionsgebirge Das Beispiel zeigt die Funktion z = y sin(x 2 ) Schnittkurven: Beispiel Kegelschnitte Schnittkurve: Kurve, die aus dem Schnitt

Mehr

LIE GRUPPEN EMANUEL SCHEIDEGGER

LIE GRUPPEN EMANUEL SCHEIDEGGER LIE GRUPPEN EMANUEL SCHEIDEGGER Zusammenfassung. Definition einer Lie-Gruppe, Beispiele, invariante Vektorfelder, Lie-Klammer, Lie-Algebra (einer Lie-Gruppe), 1. Definition und erste Beispiele Wir beginnen

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

1 Dein TI nspire CAS kann fast alles

1 Dein TI nspire CAS kann fast alles INHALT 1 Dein kann fast alles... 1 2 Erste Schritte... 1 2.1 Systemeinstellungen vornehmen... 1 2.2 Ein Problem... 1 3 Menü b... 3 4 Symbolisches Rechnen... 3 5 Physik... 4 6 Algebra... 5 7 Anbindung an

Mehr

Das Mathematik-Abitur im Saarland

Das Mathematik-Abitur im Saarland Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die

Mehr

Universität Ulm Abgabe: Donnerstag,

Universität Ulm Abgabe: Donnerstag, Universität Ulm Abgabe: Donnerstag,.5.03 Prof. Dr. W. Arendt Stephan Fackler Sommersemester 03 Punktzahl: 0 Lösungen Elemente der Differenzialgleichungen: Blatt 4. Gradientenfelder. Welche der folgenden

Mehr

Abbildungen zwischen Riemannschen Flächen und ihre Eigenschaften Seminar Funktionentheorie bei Prof. Dr. Janko Latschev

Abbildungen zwischen Riemannschen Flächen und ihre Eigenschaften Seminar Funktionentheorie bei Prof. Dr. Janko Latschev Abbildungen zwischen Riemannschen Flächen und ihre Eigenschaften Seminar Funktionentheorie bei Prof. Dr. Janko Latschev Tobias Vienenkötter 15.01.2014 1 Inhaltsverzeichnis 1 Funktionen auf Riemannschen

Mehr

6 Lösungsverfahren für lineare Gleichungssysteme

6 Lösungsverfahren für lineare Gleichungssysteme 6 Lösungsverfahren für lineare Gleichungssysteme Jörn Loviscach Versionsstand:. März 04, :07 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.jl7h.de/videos.html

Mehr

Stringtheorie: Auf der Suche nach der Weltformel

Stringtheorie: Auf der Suche nach der Weltformel Stringtheorie: Auf der Suche nach der Weltformel Jan Louis Universität Hamburg Sylt, Juli 2005 2 Physik des 20. Jahrhunderts Quantentheorie (QT) Planck, Bohr, Heisenberg,... Physik von kleinen Skalen (Mikrokosmos)

Mehr

1.3 Ein paar Standardaufgaben

1.3 Ein paar Standardaufgaben 1.3 Ein paar Standardaufgaben 15 1.3 Ein paar Standardaufgaben Einerseits betrachten wir eine formale und weitgehend abgeschlossene mathematische Theorie. Sie bildet einen Rahmen, in dem man angewandte

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche" Punkte mit inhomogenen K

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche Punkte mit inhomogenen K Kapitel IV Projektive Geometrie In diesem Kapitel wird eine kurze Einführung in die projektive Geometrie gegeben. Es sollen unendlich ferne Punkte mit Hilfe von homogene Koordinaten eingeführt werden und

Mehr

Basisprüfung, Gruppe A Analysis I/II

Basisprüfung, Gruppe A Analysis I/II Offene Aufgaben. Jeder der folgenden sieben offenen Aufgaben ist eine einzelne thematisch verwandte Single Choice-Aufgabe vorangestellt. Beantworten Sie die Single Choice Aufgabe auf dem Antwortzettel.

Mehr

Abb. 5.10: Funktion und Tangentialebene im Punkt ( ) ( ) ( ) 3.) Die Zahlenwerte und in Gleichung (Def. 5.11) berechnen sich durch ( ) ( )

Abb. 5.10: Funktion und Tangentialebene im Punkt ( ) ( ) ( ) 3.) Die Zahlenwerte und in Gleichung (Def. 5.11) berechnen sich durch ( ) ( ) Abb. 5.0: Funktion und Tangentialebene im Punkt Aus der totalen Differenzierbarkeit folgt sowohl die partielle Differenzierbarkeit als auch die Stetigkeit von : Satz 5.2: Folgerungen der totalen Differenzierbarkeit

Mehr

Volumen und L 2 -Bettizahlen asphärischer Mannigfaltigkeiten

Volumen und L 2 -Bettizahlen asphärischer Mannigfaltigkeiten Volumen und L 2 -Bettizahlen asphärischer Mannigfaltigkeiten Roman Sauer WWU Münster Stuttgart Oktober 2008 Topologie und Geometrie von Mannigfaltigkeiten Topologie: Studium von Eigenschaften und Invarianten,

Mehr

Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche. suggestive Notation. "Ausfluss pro Volumenelement"

Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche. suggestive Notation. Ausfluss pro Volumenelement Zusammenfassung: Satz v. Gauß Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche Volumen Rand des Volumens = Oberfläche Symbolisch: suggestive Notation Geometrische Definition der

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Technische Universität München Lehrstuhl I für Technische Chemie

Technische Universität München Lehrstuhl I für Technische Chemie Technische Universität München Lehrstuhl I für Technische Chemie Klausur WS 2012/2013 zur Vorlesung Grenzflächenprozesse Prof. Dr.-Ing. K.-O. Hinrichsen, Dr. T. Michel Frage 1: Es ist stets nur eine Antwort

Mehr

Wie bügle ich ein Tischtuch? Prof. Dr. Uwe Jannsen

Wie bügle ich ein Tischtuch? Prof. Dr. Uwe Jannsen Auflösungen von Singularitäten, oder: Wie bügle ich ein Tischtuch? Prof. Dr. Uwe Jannsen (Universität Regensburg) Vortrag 10.12.2010 Bayerische Akademie der Wissenschaften Prof. Dr. Uwe Jannsen (Regensburg)

Mehr

6 Differentialgleichungen

6 Differentialgleichungen 88 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Beispiel: Rollender Reifen mit

Beispiel: Rollender Reifen mit Beispiel: Rollender Reifen mit Kinetische Energie: Trägheitsmoment Potenzielle Energie: Zwangsbedingung: konstant nicht-gleitendes Rollen, holonome ZB Erweiterte Lagrange-Fkt.: t-abhängig: Interpretation:

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 Definition: Ein Skalarfeld ordnet jedem Punkt im dreidimensionalen Raum R 3 eine ahl () zu. Unter einem räumlichen Vektorfeld

Mehr

Modulbezeichnung in Englisch Algebra II Qualifikationsstufe/Geberstudien Bachelormodul/ Lehramt Gymnasium. N.N. verantwortlicher. Modulverantwortung /

Modulbezeichnung in Englisch Algebra II Qualifikationsstufe/Geberstudien Bachelormodul/ Lehramt Gymnasium. N.N. verantwortlicher. Modulverantwortung / Algebra II Modulbezeichnung in Englisch Algebra II Qualifikationsstufe/Geberstudien Bachelormodul/ Lehramt Gymnasium 82-105-L-MAT09-H-0610 N.N. Lehramt (H. Fischer) Leistungspunkte (ECTS-Punkte) 5 Gründliches

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

5. Krümmung Der Riemann sche Krümmungstensor

5. Krümmung Der Riemann sche Krümmungstensor 5 Krümmung 51 Der Riemann sche Krümmungstensor Gegeben sei eine Riemann sche Mannigfaltigkeit (M,, ) mit Levi-Civita-Zusammenhang D Der Riemann sche Krümmungstensor von M bezüglich D ist die Abbildung

Mehr

Tarnkappen und mathematische Räume

Tarnkappen und mathematische Räume Tarnkappen und mathematische Räume Stefan Müller-Stach http://hodge.mathematik.uni-mainz.de/ stefan/biblio.html Ein Raum Mathematische Räume Die moderne Mathematik bietet einen universellen Baukasten zur

Mehr

Arbeitsblätter zum Thema Papierfalten und Algebra für den Unterricht Hochbegabter in der Sekundarstufe II

Arbeitsblätter zum Thema Papierfalten und Algebra für den Unterricht Hochbegabter in der Sekundarstufe II Arbeitsblätter zum Thema Papierfalten und Algebra für den Unterricht Hochbegabter in der Sekundarstufe II Robert Geretschläger Graz, Österreich, 2009 Blatt 1 Lösen quadratischer Gleichungen mit Zirkel

Mehr

Frohe Weihnachten und ein gutes neues Jahr!

Frohe Weihnachten und ein gutes neues Jahr! Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]

Mehr

7.4. Gradient, Niveau und Tangentialebenen

7.4. Gradient, Niveau und Tangentialebenen 7.4. Gradient Niveau und Tangentialebenen Wieder sei f eine differenzierbare Funktion von einer Teilmenge A der Ebene R -dimensionalen Raumes R n ) nach R. (oder des n Der Anstieg von f in einem Punkt

Mehr

Kaluza Klein Theorie. Forschungsseminar Quantenfeldtheorie Montag, Jens Langelage

Kaluza Klein Theorie. Forschungsseminar Quantenfeldtheorie Montag, Jens Langelage Kaluza Klein Theorie Forschungsseminar Quantenfeldtheorie Montag, 22.05.2006 Jens Langelage Inhalt 1.) Gravitation und Elektromagnetismus in höheren Dimensionen 2.) Kaluza Klein Miracle 1.) Elektromagnetismus

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

Thermodynamik II. für den Studiengang Computational Engineering Science. H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64

Thermodynamik II. für den Studiengang Computational Engineering Science. H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64 Thermodynamik II für den Studiengang Computational Engineering Science H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64 Inhalt von Thermodynamik II 6. Beziehungen zwischen Zustandsgrößen

Mehr

(Gaußscher Integralsatz)

(Gaußscher Integralsatz) Der Gaußsche Integralsatz Beim Oberflächenintegral O F n da beschreibt der Integrand den senkrechten Durchsatz des Vektorfeldes durch das Flächenelement da. Insgesamt liefert das Integral über eine geschlossene

Mehr

Iterative Methods for Improving Mesh Parameterizations

Iterative Methods for Improving Mesh Parameterizations Iterative Methods for Improving Mesh Parameterizations Autoren: Shen Dong & Michael Garland, SMI 07 Nicola Sheldrick Seminar Computergrafik April 6, 2010 Nicola Sheldrick (Seminar Computergrafik)Iterative

Mehr

Kurzeinführung zum Plotten in Maple

Kurzeinführung zum Plotten in Maple Kurzeinführung zum Plotten in Maple Dies ist eine sehr kurze Einführung, die lediglich einen Einblick in die Visualisierung von Funktionen und Mengen gestatten soll und keinesfalls um Vollständigkeit bemüht

Mehr