Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015

Größe: px
Ab Seite anzeigen:

Download "Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015"

Transkript

1 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015

2 1 Mengen 2 Relationen 3 Abbildungen 4 Algebraische Strukturen Verknüpfungen Monoide Beispiel: Restklassen Exkurs: Formale Sprachen 5 Ordnungen und spezielle Relationen

3 FM2 (WS 2014/15, Geck) 49 Verknüpfungen: Assoziativität, Kommutativität Als Operatoren oder Verknüpfungen werden Abbildungen bezeichnet, die gleichartige oder ähnliche Objekte miteinander verbinden (meist unär oder binär). Beispiele:, d dx, ; +,,, Die Argumente heißen Operanden. Definition 4.1 (Assoziativität, Kommutativität) Eine binäre Verknüpfung : X X X ist assoziativ, wenn (x y) z = x (y z) für alle x, y, z X gilt; kommutativ, wenn x y = y x für alle x, y X gilt. Beispiele 4.2 Die Addition ist assoziativ und kommutativ. Die Komposition ist assoziativ, aber nicht kommutativ. Vereinigung und Schnittbildung sind assoziativ und kommutativ. Die Division ist weder assoziativ noch kommutativ. Aufgabe Geben Sie ein Gegenbeispiel zur Kommutativität der Komposition von Abbildungen an.

4 FM2 (WS 2014/15, Geck) 50 Verknüpfungen: Distributivität Bemerkung: Assoziative Verknüpfungen erlauben das Weglassen von Klammern ohne Änderung des Ergebnisses: (a + (b + (c + d))) = (a + b) + (c + d) = a + b + c + d. Kommutative Verknüpfungen erlauben beliebige Reihenfolgen der Operanden ohne Änderung des Ergebnisses: a + b + c + d = d + c + b + a. Definition 4.3 (Distributivität) Seien, : X X X zwei Verknüpfungen. Die Verknüpfung ist distributiv über, wenn für alle x, y, z X gilt: Beispiele 4.4 x (y z) = (x y) (x z) } {{ } linksdistributiv Die Multiplikation ist distributiv über der Addition: und (x y) z = (x z) (y z). } {{ } rechtsdistributiv a (b + c) = (a b) + (a c) Die Vereinigung ist distributiv über dem Schnitt, M (N Q) = (M N) (M Q), und ebenso der Schnitt über der Vereinigung (Aufgabe 1.3b)).

5 Umformulierung: Die Menge der Polynome ist also unter der (argumentweisen) Addition und der Komposition für Funktionen abgeschlossen, nicht jedoch unter Division. FM2 (WS 2014/15, Geck) 51 Verknüpfungen: Abgeschlossenheit Situation: Verknüpfung ist auf einer Menge X definiert, man betrachtet eine Teilmenge Y X Frage: Ist die Verknüpfung von Operanden aus Y selbst in Y? Beispiel 4.5 Betrachte Z mit der Subtraktion und Teilmenge N 0, dann gibt es n, m N 0, sodass (n m) N 0. Betrachte die Menge F aller Funktionen f : R R mit der Komposition und der Teilmenge P der Polynome, P = {p : R R p(x) = a n x n +...+a 1 x 1 +a 0 für alle x R, wobei n N 0, a n,..., a 0 R}, dann ist (p + q) P, und es ist (p q) P, aber es gibt p, q P, sodass (p/q) P ist. Definition 4.6 (Für f, g F ist (f + g)(x) = f (x) + g(x)) Sei : X n X eine n-stellige Verknüpfung auf X. Eine Teilmenge Y X heißt abgeschlossen unter, wenn für alle y 1,..., y n Y auch (y 1,..., y n ) Y gilt.

6 FM2 (WS 2014/15, Geck) 52 Monoide Definition 4.7 Eine Halbgruppe (M, ) ist eine Menge M mit einer assoziativen Verknüpfung : M M M. Ein Element e M heißt neutral bezüglich, wenn e m = m = m e für alle m M gilt. Ein Monoid (M,, e) ist eine Halbgruppe (M, ) mit neutralem Element e. Beispiele 4.8 ( P(X),, ) ist für jede Menge X ein Monoid: X = X = X. (N 0, +, 0) ist ein Monoid: 0 + n = n = n + 0. (N, +) ist eine Halbgruppe ohne neutrales Element. (N,, 1) ist ein Monoid: 1 n = n = n 1.

7 FM2 (WS 2014/15, Geck) 53 Monoide: Erzeugtes freies Monoid Definition 4.9 Für eine nichtleere Menge Σ ist (Σ,, ε) das von Σ erzeugte freie Monoid, wobei Σ = n N 0 Σ n die Menge aller endlichen Folgen (Tupel) ist, die Konkatenation zwei Folgen durch Hintereinanderschreiben zu einer verknüpft: (σ 1,..., σ k ) (τ 1,..., τ l ) = (σ 1,..., σ k, τ 1,..., τ l ) und ε die leere Folge () ist. Beispiel 4.10 Für Σ = Z ergibt sich beispielsweise (Z,, ε) mit Z = {ε} {(n 1,..., n k ) es gibt ein k N 0 und n 1,..., n k Z} gilt beispielsweise ε, (3), (1, 2), (1, 2, 1, 3, 4) Z (3) (1, 2) = (3, 1, 2), (1, 2) 3 = (1, 2, 3) und ε (1, 2) = (1, 2) Bemerkung: Es handelt sich um ein Monoid, da das Hintereinanderschreiben eine assoziative Verknüpfung ist: ( (1) (2, 3) ) (4, 5) = (1, 2, 3) (4, 5) = (1, 2, 3, 4, 5) = (1) (2, 3, 4, 5) = (1) ( (2, 3) (4, 5) )

8 FM2 (WS 2014/15, Geck) 54 Monoide: Beispiel Restklassen Z n Für jede positive ganze Zahl n N können die ganzen Zahlen mit gleichem Rest bei Division durch n zusammengefasst werden, zur Menge Z n der Restklassen modulo n: Bemerkung: Z n = Z/ n = { [0] n, [1] n,..., [n 1] n }. Die Äquivalenzklassen heißen in diesem Fall Restklassen. Bei festem n, werden die Klammern meist weggelassen (man merkt sich, dass 2 die Klasse [2] n repräsentiert) Beispiel 4.11 Auf dem Quotienten Z n können eine Addition und eine Multiplikation definiert werden: [k 1 ] n [k 2 ] n = [k 1 + k 2 ] n für alle k 1, k 2 Z; [k 1 ] n [k 2 ] n = [k 1 k 2 ] n für alle k 1, k 2 Z. Fakt 4.12 ( Zn,, [0] n ) ist ein Monoid ( Zn,, [1] n ) ist ein Monoid

9 FM2 (WS 2014/15, Geck) 55 Homomorphismen Verknüpfungen definieren eine Struktur unter den Elementen einer Menge. Abbildungen zwischen Monoiden, die diese Struktur respektieren (mit ihr verträglich sind), sind besonders nützlich. Definition 4.13 ((Monoid-)Homomorphismus) Eine Abbildung h : M N zwischen Monoiden (M,, e m ) und (N,, e n ) ist ein (Monoid-)Homomorphismus, wenn h(e m ) = e n und für alle m 1, m 2 M gilt: h(m 1 m 2 ) = h(m 1 ) h(m 2 ). Ein bijektiver Homomorphismus heißt Isomorphismus. Beispiel 4.14 (Restklassen) Die Abbildung h : (Z, +, 0) ( Z n,, [0] n ) mit k (k mod n) ist ein Homomorphismus. Zu zeigen ist h(k 1 + k 2 ) = h(k 1 ) h(k 2 ) für alle k 1, k 2 Z, k 1 = q 1 n + r 1 ; k 2 = q 2 n + r 2 für die eindeutige r 1, r 2 {0,..., n 1}: h(k 1 + k 2 ) = [ (q 1 n + r 1 ) + (q 2 n + r 2 ) ] mod n = [ (q 1 + q 2 )n + (r 1 + r 2 ) ] mod n = (r 1 + r 2 ) mod n = [r 1 + r 2 ] n = [r 1 ] n [r 2 ] n = h(k 1 ) h(k 2 )

10 FM2 (WS 2014/15, Geck) 56 Exkurs: Formale Sprachen Definition 4.15 Ein Alphabet ist eine nichtleere endliche Menge, deren Elemente Zeichen heißen. Ein Wort ist eine endliche Folge über einem Alphabet. Konvention: Bereitet die Unterscheidung der Zeichen keine Probleme, werden Klammern und Kommata weggelassen. Beispiel 4.16 Alphabet {0, 1} mit zwei Zeichen 0 und 1 und der Menge {0, 1} = {ε, 0, 1, 00, 01, 10, 11, 000,... } aller Wörter über {0, 1}; Alphabet {a} mit einem Zeichen a und der Menge {a} = {ε, a, aa, aaa, aaaa,... } aller Wörter über {a}. Bemerkung: Das Konkatenationssymbol wird oftmals weggelassen: Für w 1 = 47 und w 2 = 11 ist w 1 w 2 = w 1 w 2 = Die n-fache Wiederholung eines Wortes w schreiben wir w n : Für w = aab gilt w 3 = aabaabaab

11 FM2 (WS 2014/15, Geck) 57 Exkurs: Formale Sprachen Definition 4.17 Die Länge w eines Wortes ist die Länge der Folge (die Stelligkeit des Tupels). Für ein Wort w Σ und ein Zeichen σ Σ ist # σ (w) die Anzahl der Vorkommen von σ in w. Die Umkehrung w R eines Wortes w = σ 1... σ n ist w R = σ n... σ 1. Beispiele 4.18 ε = 0, 010 = 3, = 8 # a (aabab) = 3, # b (aabab) = 2 (aabab) R = babaa Fakt 4.19 Für jedes Alphabet Σ und jedes Zeichen σ Σ gilt: ( ist ein Homomorphismus von Σ,, ε ) in (Z, +, 0); # ( σ ist ein Homomorphismus von Σ,, ε ) in (Z, +, 0).

12 FM2 (WS 2014/15, Geck) 58 Exkurs: Formale Sprachen Definition 4.20 Eine (formale) Sprache über einem Alphabet Σ ist eine Teilmenge von Σ. Bemerkung: Die leere Sprache (die kein Wort enthält) ist Sprache über jedem Alphabet; ebenso die Sprache {ε} (die nur das leere Wort enthält). Beispiel 4.21 L 1 = {a 2n n N 0 } = {ε, aa, aaaa,... } ist die Menge aller Wörter gerader Länge über dem Alphabet {a} L 2 = {w {a, b} # a (w) > 0} = {a, aa, ab, ba, aaa, aab,... } ist die Menge aller Wörter über dem Alphabet {a, b} mit mindestens einem a Aufgaben Beschreiben Sie die folgenden Sprachen informell: L 3 = {a n b n n N 0 } L 4 = {ww R w {a, b} } L 5 = {w w {o, t}, w = w R }

13 FM2 (WS 2014/15, Geck) 59 Exkurs: Formale Sprachen Die Betrachtung relativ abstrakter formaler Sprachen kann (zum Teil) durch Homomorphismen (eingeschränkte Umbenennungen) gerechtfertigt werden. Fakt 4.22 Ein Homomorphismus von (Σ,, ε) in (Γ,, ε) ist eine Abbildung h : Σ Γ der Form h(ε) = ε h(σ 1... σ n ) = h(σ 1 ) h(σ n ) Bemerkung: Es genügt also, die Bilder von h unter den Zeichen von Σ zu definieren (h : Σ Γ statt h : Σ Γ ), die Fortsetzung auf Σ ergibt sich dann über obige Gleichung. Beispiel 4.23 Sei h 3 : {a, b} {begin, end} mit h 3 (a) = begin, h 3 (b) = end, dann ist h 3 (L 3 ) = {ε, begin end, begin begin end end,... } die Sprache der korrekten Klammerungen von begin- und end-schlüsselwörtern. Aufgabe Sei h 2 : {a, b} {a, b} mit h 2 (a) = aa und h 2 (b) = ε. Bestimmen Sie h 2 (L 3 ). Bestimmen Sie h 2 (L 2 ).

3 Allgemeine Algebren

3 Allgemeine Algebren Grundlagen der Mathematik für Informatiker 1 3 Allgemeine Algebren Definition 3.1 Für eine Menge A nennen wir eine n-stellige Funktion ω : A n A eine n-äre algebraische Operation. Bemerkung zum Fall n

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 4: Formale Sprachen 1 Motivation 2 Rechtsreguläre Grammatiken 3 Exkurs: Abgeschlossenheit 4 Strukturelle Induktion

Mehr

Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz

Formale Grundlagen 2008W. Vorlesung im 2008S  Institut für Algebra Johannes Kepler Universität Linz Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Definition Sei A eine Menge und ɛ A A A eine zweistellige

Mehr

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Grundlagen)

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Grundlagen) WS 2014/15 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Grundlagen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 2: Logik 1 Prädikatenlogik (Einleitung) 2 Aussagenlogik Motivation Grundlagen Eigenschaften Eigenschaften Normalformen

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 1: Wiederholung 1 Mengen 2 Abbildungen 3 Exkurs Beweistechniken 4 Relationen Definition Operationen Eigenschaften Äquivalenzrelationen

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 3: Kodierung 1 Motivation 2 Exkurs Grundlagen formaler Sprachen 3 Grundlagen 4 Beispielkodierungen FM2 (WS 2014/15,

Mehr

Gruppen. Kapitel Operationen Definiton Gruppe, symmetrische Gruppen. Gruppen und Untergruppen, Lernziele 1. Erzeugendensysteme,

Gruppen. Kapitel Operationen Definiton Gruppe, symmetrische Gruppen. Gruppen und Untergruppen, Lernziele 1. Erzeugendensysteme, Kapitel 1 Gruppen 1.1 Operationen Lernziele 1. Gruppen und Untergruppen, Erzeugendensysteme, Operationen und Bahnen 1.1.1 Definiton Gruppe, symmetrische Gruppen Definition 1.1. Sei G eine nicht leere Menge

Mehr

Übung: Teilmengen. Beweis: Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge)

Übung: Teilmengen. Beweis: Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge) 15 Übung: Teilmengen seien Mengen. Zu zeigen ist: wenn Beweis: dann auch Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge) für alle

Mehr

Operationen. auch durch. ausgedrückt. ist die Trägermenge der Operation. Mathematik I für Informatiker Algebren p.1/21

Operationen. auch durch. ausgedrückt. ist die Trägermenge der Operation. Mathematik I für Informatiker Algebren p.1/21 Operationen Eine Operation auf einer Menge ist eine Abbildung ist dabei die Menge aller -Tupel mit Einträgen aus. Man nennt auch durch die Stelligkeit der Operation ; dies wird ausgedrückt. Die Menge ist

Mehr

Diskrete Strukturen. Restklassenringe WS 2013/2014. Vorlesung vom 24. Jänner 2014

Diskrete Strukturen. Restklassenringe WS 2013/2014. Vorlesung vom 24. Jänner 2014 Diskrete Strukturen WS 2013/2014 Vorlesung vom 24. Jänner 2014 Thomas Vetterlein Institut für Wissensbasierte Mathematische Systeme Johannes-Kepler-Universität Linz 10.1 Die Modulo-n-Relation Definition

Mehr

Allgemeine Algebren. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Allgemeine Algebren. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Allgemeine Algebren Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Operationen Eine Operation auf einer Menge A ist eine Abbildung f : A n A. A n ist dabei

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2 Lösungsblatt 3. April 2 Einführung in die Theoretische Informatik

Mehr

Algebra für Informationssystemtechniker

Algebra für Informationssystemtechniker Algebra für Informationssystemtechniker Prof. Dr. Fachrichtung Mathematik Institut für Algebra www.math.tu-dresden.de/ baumann Ulrike.Baumann@tu-dresden.de 23.04.2018 9. Vorlesung Halbgruppe Monoid Gruppe

Mehr

Mathematische Grundlagen der Computerlinguistik Algebren

Mathematische Grundlagen der Computerlinguistik Algebren Mathematische Grundlagen der Computerlinguistik Algebren Dozentin: Wiebke Petersen 5. Foliensatz Wiebke Petersen math. Grundlagen 116 Algebren (algebraische Strukturen) Eine Algebra A ist eine Menge A

Mehr

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen TEIL II: GRUPPEN In der modernen Algebra versucht man die Zahlen (Z, Q, R, ) durch die Konzentration auf Rechenoperationen (+,,... ), oder allgemeiner auf strukturelle Eigenschaften dieser Operationen,

Mehr

Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Algebraische Strukturen

Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Algebraische Strukturen Diskrete Strukturen Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Algebraische Strukturen Verknüpfungen Satz x, y, z N x + (y + z) = (x + y) + z x + y = y + x x (y z) = (x y) z 1

Mehr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen

Mehr

Teilbarkeitslehre und Restklassenarithmetik

Teilbarkeitslehre und Restklassenarithmetik Vorlesung Teilbarkeitslehre und Restklassenarithmetik.1 Gruppentheorie WiewirinVorlesung2gesehenhaben,hatdieMengeZmitderAdditiongewisse Eigenschaften. Wir fassen nun bestimmte Eigenschaften zusammen und

Mehr

Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen 9

Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen 9 Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen 9 Satz 3.1.15 Sei N eine Natürliche Zahl. Dann gilt S =! := 1 2. (D.h. -Fakultät Elemente.) Beweis : Um eine bijektive Abbildung σ : {1} {1} zu erhalten,

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 3 (WS 2010/2011) Abgabetermin: Donnerstag, 4. November.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 3 (WS 2010/2011) Abgabetermin: Donnerstag, 4. November. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 3 (WS 2010/2011) Abgabetermin: Donnerstag, 4. November http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Im Folgenden

Mehr

1 Mathematische Grundbegriffe

1 Mathematische Grundbegriffe 1 1 Mathematische Grundbegriffe 1.1 Relationen und Funktionen Seien A 1,..., A n Mengen. Ein n-tupel über A 1,..., A n ist eine Folge (a 1,..., a n ) von Objekten a i A i, für i = 1,..., n. Zwei n-tupel

Mehr

Übersichtsblatt Hertrampf/Bahrdt. 1 Mathematische Aussagen. Theoretische Informatik I WS2018/19

Übersichtsblatt Hertrampf/Bahrdt. 1 Mathematische Aussagen. Theoretische Informatik I WS2018/19 Theoretische Informatik I WS2018/19 Übersichtsblatt Hertrampf/Bahrdt Institut für Formale Methoden der Informatik Theoretische Informatik Universität Stuttgart 1 Mathematische Aussagen Um mathematische

Mehr

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen Inhaltsverzeichnis Teil II: Gruppen 2 3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen.................. 2 3.1.1 Gruppen.......................................... 2 3.1.2 Untergruppen.......................................

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen)

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen TEIL II: GRUPPEN In der modernen Algebra versucht man die Zahlen (Z, Q, R, ) durch die Konzentration auf Rechenoperationen (+,,... ), oder allgemeiner auf strukturelle Eigenschaften dieser Operationen,

Mehr

WS 20013/14. Diskrete Strukturen

WS 20013/14. Diskrete Strukturen WS 20013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Skriptum EINFÜHRUNG IN DIE ALGEBRA

Skriptum EINFÜHRUNG IN DIE ALGEBRA Skriptum EINFÜHRUNG IN DIE ALGEBRA 1 Günter Lettl SS 2016 1. Algebraische Grundbegriffe 1.1 Verknüpfungen Definition 1. Es sei M eine nicht leere Menge. a) Eine Verknüpfung (oder (binäre) Operation) auf

Mehr

Mathematik für Informatiker I,

Mathematik für Informatiker I, Teil II Algebra 70 Kapitel 8 Gruppen 8.1 Bedeutung in der Informatik Gruppen sind abstrakte Modelle für Mengen, auf denen eine Verknüpfung (etwa Addition oder Multiplikation) definiert ist. Allgemeine

Mehr

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung)

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung) Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Kapitel I. Gruppen 1 Grundlegende Definitionen (Wiederholung) 1.1 Definition. Eine Gruppe ist ein Paar

Mehr

2 Aufbau des Zahlensystems

2 Aufbau des Zahlensystems 2 Aufbau des Zahlensystems 2.1 Die natürlichen Zahlen N Das Abzählen von Mengen ist eine uralte menschliche Betätigung und so hat der berühmte Ausspruch Kroneckers (1823-1892) Die Zahlen hat der liebe

Mehr

5. Gruppen, Ringe, Körper

5. Gruppen, Ringe, Körper 5. Gruppen, Ringe, Körper 5.1. Gruppen Die Gruppentheorie, als mathematische Disziplin im 19. Jahrhundert entstanden, ist ein Wegbereiter der modernen Mathematik. Beispielsweise folgt die Gruppe, die aus

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 1 Mengen 2 Relationen Definition Operationen Eigenschaften Äquivalenzrelationen Mehrstellige Relationen 3 Abbildungen 4

Mehr

01. Gruppen, Ringe, Körper

01. Gruppen, Ringe, Körper 01. Gruppen, Ringe, Körper Gruppen, Ringe bzw. Körper sind wichtige abstrakte algebraische Strukturen. Sie entstehen dadurch, dass auf einer Menge M eine oder mehrere sogenannte Verknüpfungen definiert

Mehr

6.1 Präsentationen von Gruppen

6.1 Präsentationen von Gruppen 244 6.1 Präsentationen von Gruppen Es geht jetzt um die Beschreibung von Gruppen durch Erzeugende und Relationen, also z. B. um die genaue Beschreibung dessen, was Zeilen wie die folgende bedeuten: G :=

Mehr

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe 1 Halbgruppen Übersicht 11 Definitionen 5 12 Unterhalbgruppen 8 13 InvertierbareElemente 9 14 AllgemeinesAssoziativ-undKommutativgesetz 11 15 PotenzenundVielfache 11 16 Homomorphismen,Isomorphismen 12

Mehr

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe

1 Halbgruppen. 1.1 Definitionen. Übersicht Ein Beispiel einer Halbgruppe 1 Halbgruppen Übersicht 11 Definitionen 5 12 Unterhalbgruppen 8 13 InvertierbareElemente 9 14 AllgemeinesAssoziativ-undKommutativgesetz 11 15 PotenzenundVielfache 11 16 Homomorphismen,Isomorphismen 12

Mehr

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung

Mehr

Reguläre Ausdrücke. Michael Jäger. 4. April 2017

Reguläre Ausdrücke. Michael Jäger. 4. April 2017 Reguläre Ausdrücke Michael Jäger 4. April 2017 Zeichenketten und Sprachen Ein Alphabet ist eine endliche Menge von Symbolen. Beispiele: 1. Σ 1 = {0, 1} 2. Σ 2 = {a, b, c, d, e, f, g, h, i, j, k, l, m,

Mehr

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung

Mehr

3.2 Operationen von Gruppen auf Mengen und Faktorgruppen

3.2 Operationen von Gruppen auf Mengen und Faktorgruppen Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen 16 wohldefiniert, ein Gruppen-Homomorphismus, injektiv und surjektiv ist. ( Dies ist eine Anwendung vom Satz 2.4.1.) Siehe die Aufgaben (Blatt 6). 3.2 Operationen

Mehr

Klassische Algebra. Gesucht sind die Lösungsmengen der folgenden Gleichungen: x n + a n 1 x n a 1 x + a 0 = 0 (a 0,...

Klassische Algebra. Gesucht sind die Lösungsmengen der folgenden Gleichungen: x n + a n 1 x n a 1 x + a 0 = 0 (a 0,... Klassische Algebra Gesucht sind die Lösungsmengen der folgenden Gleichungen: x n + a n 1 x n 1 + + a 1 x + a 0 = 0 (a 0,..., a n 1 Q) Formeln für n {1, 2, 3, 4} sind bekannt. Abel, Galois: Für n N mit

Mehr

Algebraische Strukturen. Idee. Gruppen, Ringe, Körper... (Teschl/Teschl Abschnitt 3.2, siehe auch Kap. 4)

Algebraische Strukturen. Idee. Gruppen, Ringe, Körper... (Teschl/Teschl Abschnitt 3.2, siehe auch Kap. 4) Algebraische Strukturen Gruppen, Ringe, Körper... (Teschl/Teschl Abschnitt 3.2, siehe auch Kap. 4) Idee Formalisierung von Strukturen, die in verschiedenen Bereichen der Mathematik und ihrer Anwendungen

Mehr

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr

: G G G. eine Abbildung. Gelten die folgenden Eigenschaften, so nennen wir (G,,e) eine Gruppe: (x,y) x y

: G G G. eine Abbildung. Gelten die folgenden Eigenschaften, so nennen wir (G,,e) eine Gruppe: (x,y) x y 5 GRUPPEN 5 Gruppen Hier fehlt eine schöne Einleitung oder ein motivierendes Beispiel. Definition [5.1] Sei G eine nicht-leere Menge, e G ein (ausgezeichnetes) Element in G und : G G G eine Abbildung.

Mehr

Automatentheorie und Formale Sprachen

Automatentheorie und Formale Sprachen Automatentheorie und Formale Sprachen Mengen, Alphabete, Wörter, formale Sprachen Dozentin: Wiebke Petersen 29.4.2009 Wiebke Petersen Automatentheorie und formale Sprachen SoSe 09 Mengen Definition 1.

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Vorlesung 6: Gruppen und Homomorphismen

Vorlesung 6: Gruppen und Homomorphismen Vorlesung 6: Gruppen und Homomorphismen Gabriele Link 11.11.2013 Gabriele Link Vorlesung 6: Gruppen und Homomorphismen 1 Erinnerung: Verknüpfung Gegeben sei eine Menge M. Eine (innere) Verknüpfung auf

Mehr

4. Übung zur Linearen Algebra I -

4. Übung zur Linearen Algebra I - 4. Übung zur Linearen Algebra I - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. WS 2009-10. Aufgabe 13 Auf dem Cartesischen Produkt Z Z werden 2 Verknüpfungen, definiert durch: Man zeige: (a

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Kapitel III Ringe und Körper

Kapitel III Ringe und Körper Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem

Mehr

IT-Security. Teil 9: Einführung in algebraische Strukturen

IT-Security. Teil 9: Einführung in algebraische Strukturen IT-Security Teil 9: Einführung in algebraische Strukturen 08.05.17 1 Literatur und Videos [9-1] http://www.iti.fh-flensburg.de/lang/krypto [9-2] Forster, Otto: Algorithmische Zahlentheorie. 2. Auflage,

Mehr

Formale Sprachen, Automaten, Prozesse SS 2010 Musterlösung - Übung 1 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Sprachen, Automaten, Prozesse SS 2010 Musterlösung - Übung 1 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof aa Dr J Giesl Formale Sprachen, Automaten, Prozesse SS 2010 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Hausaufgaben sollen in Gruppen von je 2 Studierenden aus dem gleichen Tutorium

Mehr

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau, Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel

Mehr

1.5 Restklassen, Äquivalenzrelationen und Isomorphie

1.5 Restklassen, Äquivalenzrelationen und Isomorphie Lineare Algebra I WS 2015/16 c Rudolf Scharlau 39 1.5 Restklassen, Äquivalenzrelationen und Isomorphie In diesem Abschnitt wird zunächst der mathematische Begriff einer Relation kurz und informell eingeführt.

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 26. November 2014 Was kommt nach den natürlichen Zahlen? Mehr als die natürlichen Zahlen braucht man nicht, um einige der schwierigsten

Mehr

Grundbegriffe der Informatik Tutorium 2

Grundbegriffe der Informatik Tutorium 2 Grundbegriffe der Informatik Tutorium 2 Tutorium Nr. 16 Philipp Oppermann 9. November 2014 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

C: Algebraische Strukturen

C: Algebraische Strukturen C: Algebraische Strukturen Algebra: Rechnen. Menge mit Verknüpfungen: (N 0, +), (R, +, ), (P(X),, ), (R n n, +, ) Informatik: Boolsche Algebren Relationenalgebra (Datenbanken) Computeralgebra 29 Gruppen

Mehr

2 Zahlbereichserweiterungen I

2 Zahlbereichserweiterungen I 2 Zahlbereichserweiterungen I Obwohl wir in den vergangenen Kapiteln schon andere Zahlen als die natürlichen Zahlen benutzt haben, wollen wir auch auf diese noch einmal einen grundsätzlichen Blick werfen.

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Im Folgenden

Mehr

1 Algebraische Grundbegriffe

1 Algebraische Grundbegriffe 1 Algebraische Grundbegriffe Eine Algebra besteht aus einer Trägermenge S sowie eineroder mehreren Operationen. Eine Operation ist dabei eine k-stellige Abbildung, d.h. es gilt für eine Operation f f S

Mehr

Vorlesung Diskrete Strukturen Abbildungen

Vorlesung Diskrete Strukturen Abbildungen Vorlesung Diskrete Strukturen Abbildungen Bernhard Ganter WS 2009/10 Hashfunktionen Wenn eine Datenbank Millionen von Dokumenten enthält und immer neue dazu kommen, stellt sich folgendes Problem: Bei neuen

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 36 Andreas Gathmann 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will so kann es sinnvoll sein zunächst kleinere einfachere Mengen (bzw. Gruppen) zu betrachten

Mehr

Vorkurs Theoretische Informatik

Vorkurs Theoretische Informatik Vorkurs Theoretische Informatik Einführung in die Grundideen und in die Mengenlehre Arbeitskreis Theoretische Informatik Montag, 01.10.2018 Fachgruppe Informatik Übersicht 1. Allgemeines Organisatorisches

Mehr

Vorlesung Diskrete Strukturen Abbildungen

Vorlesung Diskrete Strukturen Abbildungen Vorlesung Diskrete Strukturen Abbildungen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung in die

Mehr

Serie 3: Ringe, Körper, Vektorräume

Serie 3: Ringe, Körper, Vektorräume D-MATH Lineare Algebra I HS 2016 Dr. Meike Akveld Serie 3: Ringe, Körper, Vektorräume 1. Im Folgenden sei n N und Z n bezeichne die Menge der Äquivalenzklassen von Z bezüglich der Relation: k n l n k l

Mehr

1.5 Halbgruppen, Monoide und Gruppen

1.5 Halbgruppen, Monoide und Gruppen 24 KAPITEL 1. GRUNDLAGEN Definition Eine Abbildung f : X Y ist eine Relation zwischen X und Y so dass für jedes x X genau ein y Y mit x f y existiert. Bemerkung Aus der Schule kennen Sie den Begriff des

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 4: Wörter (und vollständige Induktion) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/29 Überblick Wörter Wörter Das leere Wort Mehr zu

Mehr

3.4 Algebraische Strukturen

3.4 Algebraische Strukturen 3.4 Algebraische Strukturen 9 3.4 Algebraische Strukturen Man sagt, eine Menge hat eine algebraische Struktur, wenn in ihr eine Operation definiert ist, d.h. eine Verknüpfung von zwei Elementen der Menge,

Mehr

3 Allgemeine Algebren

3 Allgemeine Algebren Grundlagen der Matematik für Informatiker 1 Grundlagen der Matematik für Informatiker 2 3 Allgemeine Algebren Definition 3.1 Für eine Menge A nennen wir eine n-stellige Funktion : A n A eine n-äre algebraisce

Mehr

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } }

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } } Mengen Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung aller Elemente: { 1,

Mehr

2 Algebraische Grundstrukturen

2 Algebraische Grundstrukturen 30 2 Algebraische Grundstrukturen Definition. Eine Verknüpfung auf einer Menge G ist eine Abbildung : G G G (a, b) a b. Schreibweise. a b, a b, ab, a + b. Beispiele. (i) G = N : N N N (a, b) a + b. G =

Mehr

Axiomatische Beschreibung der ganzen Zahlen

Axiomatische Beschreibung der ganzen Zahlen Axiomatische Beschreibung der ganzen Zahlen Peter Feigl JKU Linz peter.feigl@students.jku.at 0055282 Claudia Hemmelmeir JKU Linz darja@gmx.at 0355147 Zusammenfassung Wir möchten in diesem Artikel die ganzen

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 13.07.2018 Klassische Algebra Gesucht sind die Lösungsmengen der folgenden Gleichungen: x n + a n 1 x n 1 + + a 1 x + a 0 = 0 (a 0,..., a n 1 Q) Formeln für n

Mehr

Algebraische Strukturen

Algebraische Strukturen Algebraische Strukturen Eine kommutative Gruppe (G, ) ist eine Menge G, auf der eine Verknüpfung (ein zweistelliger Operator) deniert ist (d. h. zu a, b G ist a b G deniert), welche bestimmten Regeln genügt

Mehr

4. Übung zur Vorlesung Informatik III am

4. Übung zur Vorlesung Informatik III am 1 4. Übung zur Vorlesung Informatik III am 16.11.2007 Wiederholung Konkatenation 2 Definition Konkatenation Eine endliche Folge w von Symbolen aus Σ heißt Wort. Die Menge aller Wörter über Σ heißt Σ. Sei

Mehr

Zusammenfassung der letzten LVA. Diskrete Mathematik

Zusammenfassung der letzten LVA. Diskrete Mathematik Zusammenfassung Zusammenfassung der letzten LVA Diskrete Mathematik Christina Kohl Georg Moser Oleksandra Panasiuk Christian Sternagel Vincent van Oostrom (Beweisformen) Beweisformen sind etwa (i) deduktive

Mehr

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich. 3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es

Mehr

Lösungen zu Kapitel 8

Lösungen zu Kapitel 8 Lösungen zu Kapitel 8 Lösung zu Aufgabe 1: M offenbar Wir setzen A = M\ A. Für A, B P (M) gilt wegen A, B A B = (A\B) (B\A) = A B + A B, wobei + die disjunkte Vereinigung der beteiligten Mengen bedeutet.

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 1: Grundlagen, Sprachen, Automaten schulz@eprover.org Software Systems Engineering Definition Eine Definition ist eine genaue Beschreibung eines Objektes

Mehr

Universelle Algebra. Zur Erinnerung: Definition von Gruppe, Ring (mit 1), R-Vektorraum.

Universelle Algebra. Zur Erinnerung: Definition von Gruppe, Ring (mit 1), R-Vektorraum. Kapitel 3 Universelle Algebra 3.1 Universelle Algebra als Logik Zur Erinnerung: Definition von Gruppe, Ring (mit 1), R-Vektorraum. Signaturen Eine funktionale Signatur ist eine Menge F von Funktionssymbolen

Mehr

Algebra. Eine Menge A heißt abzählbar, wenn A gilt. Insbesondere sind, und abzählbar, und sind nicht abzählbar (überabzählbar).

Algebra. Eine Menge A heißt abzählbar, wenn A gilt. Insbesondere sind, und abzählbar, und sind nicht abzählbar (überabzählbar). Algebra 1 Mengen 1.1 Operationen A Anzahl der Elemente von A (Mächtigkeit, Betrag, Kardinalität) (A) Potenzmenge von X ( (A) = 2 A ) A B wenn jedes Element von A auch Element von B ist. A = B (A B und

Mehr

Diskrete Mathematik für Informatiker Universität Leipzig WS 2007 / 08. Claus Diem

Diskrete Mathematik für Informatiker Universität Leipzig WS 2007 / 08. Claus Diem Diskrete Mathematik für Informatiker Universität Leipzig WS 2007 / 08 Claus Diem 2 Kapitel 1 Algebraische Strukturen 1.1 Boolesche Ringe und boolesche Algebren Boolesche Ringe Definition Sei X eine Menge

Mehr

Lösungen zur Übungsserie 1

Lösungen zur Übungsserie 1 Analysis 1 Herbstsemester 2018 Prof. Peter Jossen Montag, 24. September Lösungen zur Übungsserie 1 Aufgaben 1, 3, 4, 5, 6, 8 Aufgabe 1. Sei X eine endliche Menge mit n Elementen, und sei Y eine endliche

Mehr

Vorlesung Algebra I. Inhaltsverzeichnis 1. Einleitung 1 2. Gruppen Einleitung

Vorlesung Algebra I. Inhaltsverzeichnis 1. Einleitung 1 2. Gruppen Einleitung Vorlesung Algebra I Christian Lehn Inhaltsverzeichnis 1. Einleitung 1 2. Gruppen 5 1.1. Vorkenntnisse Gruppen 1. Einleitung Definition. Es sei G eine Menge. Eine Verknüpfung auf G ist eine Abbildung :

Mehr

BA-INF 011 Logik und Diskrete Strukturen WS 2013/14 Mögliche Klausuraufgaben Stand vom

BA-INF 011 Logik und Diskrete Strukturen WS 2013/14 Mögliche Klausuraufgaben Stand vom Prof. Dr. Norbert Blum Elena Trunz Informatik V BA-INF 011 Logik und Diskrete Strukturen WS 2013/14 Mögliche Klausuraufgaben Stand vom 5.2.2014 Bitte beachten Sie, dass die tatsächlichen Klausuraufgaben

Mehr

2. Teil: Diskrete Strukturen

2. Teil: Diskrete Strukturen 2. Teil: Diskrete Strukturen Kenntnis der Zahlenbereiche N, Z, Q, R, C setzen wir voraus. Axiomatische Einführung von N über Peano-Axiome. Z aus N leicht abzuleiten. Wie wird Q definiert? R ist der erste

Mehr

KAPITEL 1. Einleitung

KAPITEL 1. Einleitung KAPITEL 1 Einleitung Als Einstieg in die Vorlesung möchte ich zunächst zeigen, dass aus den Grundvorlesungen schon eine ganze Fülle von Beispielen algebraischer Strukturen bekannt sind. Von diesen Beispielen

Mehr

f ist sowohl injektiv als auch surjektiv.

f ist sowohl injektiv als auch surjektiv. Bemerkungen: Wir erinnern uns an folgende Definitionen: Eine Funktion f : U V heißt injektiv, wenn gilt: ( x, y U)[x y f(x) f(y)] Eine Funktion f : U V heißt surjektiv, wenn gilt: ( y V x U)[y = f(x)]

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Theoretische Informatik und Logik, VU 4.0 (Teil1: Berechenbarkeit, Formale Sprachen und Komplexitätstheorie)

Theoretische Informatik und Logik, VU 4.0 (Teil1: Berechenbarkeit, Formale Sprachen und Komplexitätstheorie) 185.278 Theoretische Informatik und Logik, VU 4.0 (Teil1: Berechenbarkeit, Formale Sprachen und Komplexitätstheorie) Marion OSWALD (marion@logic.at) unter Mitwirkung von Chris FERMÜLLER, Rudi FREUND, Alexander

Mehr

30 Ringe und Körper Motivation Definition: Ring. Addition und eine. Häufig gibt es auf einer Menge zwei Verknüpfungen: eine

30 Ringe und Körper Motivation Definition: Ring. Addition und eine. Häufig gibt es auf einer Menge zwei Verknüpfungen: eine 30 Ringe und Körper 30.1 Motivation Häufig gibt es auf einer Menge zwei Verknüpfungen: eine Addition und eine Multiplikation. Beispiele: (Z, +, ) hier gibt es sogar noch eine Division mit Rest. (IR, +,

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie Prof. Dr. Sebastian Iwanowski DM4 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 4: Zahlentheorie Beutelspacher 5 Lang 7, Biggs 20, 22, 23 (jeweils teilweise,

Mehr