Molekulardynamik-Simulation realer Fluide in Nanokanälen

Größe: px
Ab Seite anzeigen:

Download "Molekulardynamik-Simulation realer Fluide in Nanokanälen"

Transkript

1 Status- und Perspektivseminar des SFB 716 Molekulardynamik-Simulation realer Fluide in Nanokanälen Markt Irsee, 21. September 2009 Martin HORSCH und Jadran VRABEC SFB 716

2 Vortragsgliederung Modellierung unpolarer Fluide in Kohlenstoff-Nanokanälen Simulation von COUETTE- und POISEUILLE-Strömungen Untersuchung nanoskaliger Oberflächeneffekte Kontakt fluider Phasengrenzflächen mit einer Wand

3 Molekulares Modell für Graphit TERSOFF-Potential: u ij ( Aexp( λr ) b (r,r,θ ) Bexp( μr )) = c( rij ) ij ij ik jk ijk ij Bindungslänge: TERSOFF-Potential: 1,461 Å Realer Wert: 1,421 Å RDF neu alt Reskalierte Potentialparameter: Ausblendung Anziehung Abstoßung 1,35 1,40 1,45 1,50 Abstand in Å R = 2,0 Å (1,8 Å) S = 2,35 Å (2,1 Å) μ = 2,275 Å -1 (2,2119 Å -1 ) λ = 3,587 Å -1 (3,4879 Å -1 )

4 Simulation im großkanonischen Ensemble Grand canonical molecular dynamics (GCMD) nach CIELINSKI: Vorgabe von μ, V und T in Teilvolumina Testweise Einsetzung und Löschung von Teilchen abwechselnd mit kanonischen MD-Schritten: P μ ΔU pot V = min 1,exp kt Λ ( N + 1) ins 3 P del 3 μ ΔUpot Λ N = min 1,exp kt V THERMODYNAMIK UND ENERGIETECHNIK LJTS-Fluid (r c = 2,5 σ)

5 High performance computing cacau XC ls1 Mardyn Methan + Graphit ms2 (kleine Teilchenzahlen) Speedup Speedup cacau XC Prozesse Prozesse ohne Lastbalancierung statische Lastbalancierung THERMODYNAMIK UND ENERGIETECHNIK

6 Konfiguration der MD-Simulationen z z POISEUILLE-Strömung: Eine Wand: Das Fluid wird in z-richtung beschleunigt. COUETTE-Strömung: Zwei Wände: Eine Wand wird in z-richtung beschleunigt. -z

7 Konfiguration der MD-Simulationen z POISEUILLE-Strömung: Eine Wand: Das Fluid wird in z-richtung beschleunigt. COUETTE-Strömung: Zwei Wände: Eine Wand wird in z-richtung beschleunigt. -z

8 Resultierende Strömungsprofile lokale z-geschwindigkeit in m/s ,6-0,75 ns 1,05-1,2 ns COUETTE-Strömung y-koordinate in nm POISEUILLE-Strömung 0,45-0,6 ns 0,6-0,75 ns T = 0,95 ε, ρ = 1,005 ρ', v z = 10 m/s, W = 0,353, d = 0,947 (WANG et al.)

9 Einfluss des Kanaldurchmessers

10 MD-Simulation von Tropfen im Gleichgewicht Dampf und Flüssigkeit werden getrennt voneinander äquilibriert. Ein kleiner (n < 10000) Tropfen wird in den Dampf eingesetzt. Das Gleichgewicht stellt sich aufgrund der bereits vorhandenen Phasengrenze sehr schnell ein.

11 Tropfengröße im Gleichgewicht kritische Größe in Atomen Argon 90 K 97 K 110 K 124 K 131 K Druck in kpa CNT (klassische Nukleationstheorie) n 2γ A 3Δμ = 1 3 CNT mit stofflichem Gleichgewicht μ* = μ n 3 Δ 2γ = A [ μ v' ( p )] 1 p σ 3

12 Nukleationsrate aus GCMD-Simulationen K 97 K 90 K 60 ln(j / cm -3 s -1 ) Argon Faktor ,3 1,4 2,0 2,5 3,0 3,5 4,0 Simulation CNT CNT mit μ* = μ S μ THERMODYNAMIK UND ENERGIETECHNIK

13 Heterogene Nukleation LJTS-Fluid: T = 0,9 ε und ρ = 0,0626 / σ³ Nukleationsrate im homogenen System: J hom = 2,0 10 ε m σ 4 Im MD-Simulationslauf detektierbare Raten: THERMODYNAMIK UND ENERGIETECHNIK J > 10 ε m σ 4

14 Konfiguration für die MD-Simulationen Gleichgewichtszustand: Der Meniskus ist ein Kreissegment. YOUNG-Gleichung: cosθ = Verwendetes Wandmodell: An festen Koordinaten über Federn aufgehängtes LJTS-Potential γ vs γ γ vl ls θ POISEUILLE-Strömung: Das Fluid wird in z-richtung beschleunigt. COUETTE-Strömung: Eine Wand wird in z-richtung beschleunigt. Kontaktwinkel: Meniskus zwischen den Wänden

15 Einfluss der ungleichen Wechselwirkung auf θ z-koordinate in σ Dampf Flüssigkeit W = 0,07 W = 0,09 W = 0,1 W = 0,11 W = 0,13 W = 0,14 W = 0, Abstand von der Wand in σ LJTS-Fluid, Wanddichte wie Graphit, T = 0,82 ε harmonisch LJTS LJTS σ FW = σ ε FW = Wε

16 Symmetrie des Kontaktwinkels θ 180 θ 135 LJTS-Fluid, Wanddichte wie Graphit θ(t, E) = T = 0,73 ε T = 0,88 ε T = 1 ε 0,05 0,1 0,119 0,15 W ( T, E + ΔW ) + θ( T, E ΔW ) π θ = 0,2

17 Zusammenfassung Massiv-parallele MD-Simulation erlaubt Extrapolation von der Nanometer- auf die Mikrometerskala. Strömungen durch Nanokanäle können im NVT-Ensemble durch eine gleichförmig wirkende Krafteinwirkung, im abschnittsweisen µvt-ensemble auch durch einen Gradienten des chemischen Potentials induziert werden. Die dispersive Wechselwirkungsenergie zwischen Fluid und Wand lässt sich durch Kontaktwinkelmessungen bestimmen.

Molekulardynamiksimulation nanoskaliger Vorgänge

Molekulardynamiksimulation nanoskaliger Vorgänge Institut für Verfahrenstechnik Molekulardynamiksimulation nanoskaliger Vorgänge Institutsseminar, 10. Juni 2009 M. Horsch, M. Heitzig und J. Vrabec SFB 716 Vortragsgliederung Modellierung unpolarer Fluide

Mehr

Molekulare Simulation gekrümmter Grenzflächen von Fluiden

Molekulare Simulation gekrümmter Grenzflächen von Fluiden Molekulare Simulation gekrümmter Grenzflächen von Fluiden Martin Horsch, Jadran Vrabec und Hans Hasse Frankfurt am Main, 5. Oktober Thermodynamik-Kolloquium Phasengrenzflächen (makroskopisch) Phasen sind

Mehr

Kolloquium Computational Molecular Engineering Kaiserslautern, 9. März 11 Martin Horsch

Kolloquium Computational Molecular Engineering Kaiserslautern, 9. März 11 Martin Horsch Molekulare Methoden für die Simulation von Prozessen an Phasengrenzflächen Kolloquium Computational Molecular Engineering Kaiserslautern, 9. März 11 Martin Horsch Phasengrenzflächen Phasen sind im phänomenologischen

Mehr

Molekulardynamik im metastabilen µvt-ensemble

Molekulardynamik im metastabilen µvt-ensemble Molekulardynamik im metastabilen µvt-ensemble ITT-Institutsseminar Martin Horsch 29. Januar 2008 Untersuchung von Nukleationsprozessen Indirekte Simulation: Monte-Carlo-Simulation Transition Path/Interface

Mehr

Molecular dynamics simulation of confined multiphasic systems

Molecular dynamics simulation of confined multiphasic systems VI. International Conference on Computational Fluid Dynamics Molecular dynamics simulation of confined multiphasic systems St. Petersburg, July 15, 2010 G. C. Lehmann, C. Dan, J. Harting, M. Heitzig, M.

Mehr

Molekulare Simulation gekrümmter Dampf-Flüssigkeits-Grenzflächen

Molekulare Simulation gekrümmter Dampf-Flüssigkeits-Grenzflächen Molekulare Simulation gekrümmter Dampf-Flüssigkeits-Grenzflächen Dortmund, den 16. Juni 11 Martin Horsch, Enyuan Wu und Jadran Vrabec Phasengrenzflächen Phasen sind im phänomenologischen Verständnis die

Mehr

Transportkoeffizienten von Alkoholen und Wasser: Molekulare Simulation und Messungen mit der Taylor-Dispersions Methode

Transportkoeffizienten von Alkoholen und Wasser: Molekulare Simulation und Messungen mit der Taylor-Dispersions Methode ProcessNet Jahrestagung, 8 - September 9, Mannheim Transportkoeffizienten von Alkoholen und Wasser: Molekulare Simulation und Messungen mit der Taylor-Dispersions Methode Gabriela Guevara-Carrión, Jadran

Mehr

Moleküldynamik. Modell: Klassische Mechanik Newtonsche Bewegungsgleichungen. = m a i

Moleküldynamik. Modell: Klassische Mechanik Newtonsche Bewegungsgleichungen. = m a i Mikroskopische Simulation der Molekülbewegungen Moleküldynamik Statistische Mechanik Modell: Klassische Mechanik Newtonsche Bewegungsgleichungen Makroskopische igenschaften des Systems (nergie, Temp, Druck,

Mehr

Molekulardynamiksimulation der Nukleation von CO2

Molekulardynamiksimulation der Nukleation von CO2 Molekulardynamiksimulation der Nukleation von CO Martin Horsch,1 Kai Langenbach,1, Stephan Werth,1 Stefan Eckelsbach,3 Jadran Vrabec3 und Hans Hasse1 1 Lehrstuhl für Thermodynamik, TU Kaiserslautern Chemical

Mehr

Thermodynamik für die Energie- und Verfahrenstechnik mittels molekularer und experimenteller Methoden

Thermodynamik für die Energie- und Verfahrenstechnik mittels molekularer und experimenteller Methoden Thermodynamik für die Energie- und Verfahrenstechnik mittels molekularer und experimenteller Methoden Jadran Vrabec et al. Forschungsgebiete am 1. Molekulare Modellierung und Simulation Stoffeigenschaften

Mehr

Benetzung planarer und strukturierter Oberflächen

Benetzung planarer und strukturierter Oberflächen Benetzung planarer und strukturierter Oberflächen Lehrstuhl für Thermodynamik Autumn School, SFB 926 Landau, den Benetzung: Die Young-Gleichung (Abbildungen: public domain) Dampf (v) Kontaktwinkel Flüssigkeit

Mehr

Molekulare Simulation

Molekulare Simulation Molekulare Simulation und Optimierung Martin Horsch Kaiserslautern, 16. September 2013 MSO-Workshop von ITWM und LTD Optimierung komplexer Systeme Optimierung komplexer Systeme mit einer großen Zahl von

Mehr

Das Mie Potenzial sowie die Form nach Lennard-Jones

Das Mie Potenzial sowie die Form nach Lennard-Jones Das Mie Potenzial sowie die Form nach Lennard-Jones Das Mie Potenzial [Mie.] und das Lennard-Jones Potenzial sind neben allen anderen Molekül Potenzialen wie Buckingham und Morse die bekanntesten Molekül

Mehr

Die Tolmangleichung. Martin Thomas Horsch. Lehrstuhl für Thermodynamik Technische Universität Kaiserslautern

Die Tolmangleichung. Martin Thomas Horsch. Lehrstuhl für Thermodynamik Technische Universität Kaiserslautern Die Tolmangleichung Lehrstuhl für Thermodynamik Technische Universität Kaiserslautern Kaiserslautern, Richard C. Tolman (1881 1948) Tolman-Paradoxon (1917): Velocities greater than that of light.1 1932

Mehr

Molekulare Modellierung und Simulation von Dampf-Flüssigkeits Gleichgewichten sicherheitsrelevanter Mischungen

Molekulare Modellierung und Simulation von Dampf-Flüssigkeits Gleichgewichten sicherheitsrelevanter Mischungen 1 Molekulare Modellierung und Simulation von Dampf-Flüssigkeits Gleichgewichten sicherheitsrelevanter Mischungen S. Miroshnichenko 1, T. Grützner 2, D. Staak 2, J. Vrabec 1 1 Lehrstuhl für Thermodynamik

Mehr

Molekulardynamische Simulation der Keimbildung in übersättigten Gasen

Molekulardynamische Simulation der Keimbildung in übersättigten Gasen Molekulardynamische Simulation der Keimbildung in übersättigten Gasen Martin Horsch 24. November 2006 Institutsseminar 24. Nov. Keimbildung Folie 1 von 15 Vortragsgliederung klassische Keimbildungstheorie

Mehr

Lange Nacht der Wissenschaft Molekülsimulationen zur Risikobewertung von Spurenstoffen im Wasserkreislauf

Lange Nacht der Wissenschaft Molekülsimulationen zur Risikobewertung von Spurenstoffen im Wasserkreislauf Lange Nacht der Wissenschaft Molekülsimulationen zur Risikobewertung von Spurenstoffen im Wasserkreislauf Vedat Durmaz Zuse-Institut Berlin Computational Molecular Design Klassische Moleküldynamik (MD)

Mehr

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden.

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden. Fakultät für Physik der LMU München Prof. Ilka Brunner Vorlesung T4p, WS08/09 Klausur am 11. Februar 2009 Name: Matrikelnummer: Erreichte Punktzahlen: 1.1 1.2 1.3 2.1 2.2 2.3 2.4 Hinweise Die Bearbeitungszeit

Mehr

T. Merker 1, J. Vrabec 2, H. Hasse 1. Lehrstuhl für Thermodynamik (LTD), Technische Universität Kaiserslautern

T. Merker 1, J. Vrabec 2, H. Hasse 1. Lehrstuhl für Thermodynamik (LTD), Technische Universität Kaiserslautern Experimentelle Untersuchung und molekulardynamische Simulation thermodynamischer Eigenschaften von Mischungen bei der heterogen katalysierten Selektivoxidation von Cyclohexan in Kohlendioxid-expandierten

Mehr

Ruprecht-Karls-Universität Heidelberg Vorbereitung zur Diplomprüfung Theoretische Physik

Ruprecht-Karls-Universität Heidelberg Vorbereitung zur Diplomprüfung Theoretische Physik Ruprecht-Karls-Universität Heidelberg Vorbereitung zur Diplomprüfung Theoretische Physik begleitend zur Vorlesung Statistische Mechanik und Thermodynamik WS 2006/2007 Prof. Dr. Dieter W. Heermann erstellt

Mehr

Vorlesung Statistische Mechanik: N-Teilchensystem

Vorlesung Statistische Mechanik: N-Teilchensystem Virialentwicklung Die Berechnung der Zustandssumme bei realen Gasen ist nicht mehr exakt durchführbar. Eine Möglichkeit, die Wechselwirkung in realen Gasen systematisch mitzunehmen ist, eine Entwicklung

Mehr

Hier der Rest der Bearbeitungen zu den Übungsbeispielen. Viel Erfolg beim Test!

Hier der Rest der Bearbeitungen zu den Übungsbeispielen. Viel Erfolg beim Test! Liebe Übungsgruppe! Hier der Rest der Bearbeitungen zu den Übungsbeispielen. Viel Erfolg beim Test! 45) Die Nullpunktsenergie von 3ε kommt daher, dass die drei Oszillatoren im Grundzustand jeweils eine

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

Simulation von Flüssigkeitsbrücken zwischen Nanopartikeln

Simulation von Flüssigkeitsbrücken zwischen Nanopartikeln Simulation von Flüssigkeitsbrücken zwischen Nanopartikeln Michael Dörmann, Hans-Joachim Schmid Lehrstuhl für Partikelverfahrenstechnik Universität Paderborn 03.04.2014 Agenda Motivation Methode Ergebnisse

Mehr

Molekulare Simulationen mit ms2

Molekulare Simulationen mit ms2 Thermodynamik-Kolloquium, Bayreuth 05.10.2010 Molekulare Simulationen mit ms2 S. Deublein 1, G. Guevara-Carion 1, M.Bernreuther 2, E. Elts 3, J. Vrabec 4, H. Hasse 1 1 Lehrstuhl hl für Thermodynamik, TU

Mehr

Kernphysik. Elemententstehung. 2. Kernphysik. Cora Fechner. Universität Potsdam SS 2014

Kernphysik. Elemententstehung. 2. Kernphysik. Cora Fechner. Universität Potsdam SS 2014 Elemententstehung 2. Cora Fechner Universität Potsdam SS 2014 alische Grundlagen Kernladungszahl: Z = Anzahl der Protonen Massenzahl: A = Anzahl der Protonen + Anzahl der Neutronen Bindungsenergie: B

Mehr

Thermodynamik. Christian Britz

Thermodynamik. Christian Britz Hauptsätze der Klassische nanoskaliger Systeme 04.02.2013 Inhalt Einleitung Hauptsätze der Klassische nanoskaliger Systeme 1 Einleitung 2 Hauptsätze der 3 4 Klassische 5 6 7 nanoskaliger Systeme 8 Hauptsätze

Mehr

Herleitung von Randbedingungen an einer gekrümmten Grenzfläche eines porösen Mediums und einer freien Flüssigkeit mit Hilfe von Homogenisierung

Herleitung von Randbedingungen an einer gekrümmten Grenzfläche eines porösen Mediums und einer freien Flüssigkeit mit Hilfe von Homogenisierung Kolloquium zur Diplomarbeit an eines porösen Mediums und freien Flüssigkeit mit Hilfe von Sören Dobberschütz 4092009 Motivation Worum geht es im Folgenden? Gliederung 1 2 Transformationsregeln Transformierte

Mehr

Virialentwicklung. Janek Landsberg Fakultät für Physik, LMU München. Janek Landsberg. Die Virialentwicklung. Verschiedene Potentiale

Virialentwicklung. Janek Landsberg Fakultät für Physik, LMU München. Janek Landsberg. Die Virialentwicklung. Verschiedene Potentiale Die Warum Fakultät für Physik, LMU München 14.06.2006 Die Warum 1 Die Der zweite Virialkoeffizient 2 Hard-Sphere-Potential Lennard-Jones-Potential 3 Warum 4 Bsp. Hard-Sphere-Potential Asakura-Oosawa-Potential

Mehr

Molekulare Simulation von Ionen in wässrigen und nichtwässrigen

Molekulare Simulation von Ionen in wässrigen und nichtwässrigen ProcessNet Jahrestagung Karlsruhe, 13. September 2012 Molekulare Simulation von Ionen in wässrigen und nichtwässrigen i Elektrolytlösungen Steffen Reiser 1, Stephan Deublein 1, Jadran Vrabec 2, Hans Hasse

Mehr

Van der Waals-Theorie und Zustandsgleichung

Van der Waals-Theorie und Zustandsgleichung Van der Waals-Theorie und Zustandsgleichung Eine verbesserte Zustandsgleichung für klassische Gase bei höheren Dichten liefert die Van der Waals-Gleichung. Diese Gleichung beschreibt auch den Phasenübergang

Mehr

Mischphasenthermodynamik Prüfung

Mischphasenthermodynamik Prüfung Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Mischphasenthermodynamik Prüfung 06. 03. 2017 Teil 1 : Fragenteil Gesamte Bearbeitungszeit

Mehr

10. Innere Koordinaten/Kraftfelder

10. Innere Koordinaten/Kraftfelder Computeranwendung in der Chemie Informatik für Chemiker(innen) 10. Innere Koordinaten/Kraftfelder Jens Döbler 2004 "Computer in der Chemie", WS 2003-04, Humboldt-Universität VL10 Folie 1 Dr. Jens Döbler

Mehr

Einführung in Simulationen mit Monte Carlo und Brownscher Dynamik. Martin Oettel Johannes Bleibel

Einführung in Simulationen mit Monte Carlo und Brownscher Dynamik. Martin Oettel Johannes Bleibel Einführung in Simulationen mit Monte Carlo und Brownscher Dynamik Martin Oettel Johannes Bleibel Die Monte Carlo-Methode 1. Beispiel Bestimmung von π 1 1 π = 1 1 dx 1 dy G(x, y) G (x, y) = θ(1 x 2 + y

Mehr

Theoretische Biophysikalische Chemie

Theoretische Biophysikalische Chemie Theoretische Biophysikalische Chemie Thermochemie (und Schwingungsspektroskopie) Christoph Jacob DFG-CENTRUM FÜR FUNKTIONELLE NANOSTRUKTUREN 0 KIT 17.12.2012 Universität deschristoph Landes Baden-Württemberg

Mehr

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen!

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen! Physik 1 / Klausur Anfang SS 0 Heift / Kurtz Name: Vorname: Matrikel-Nr.: Unterschrift: Formeln siehe letzte Rückseite! Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen!

Mehr

Proseminar: Theoretische Physik. und Astroteilchenphysik. Fermi- und Bose Gase. Thermodynamisches Gleichgewicht

Proseminar: Theoretische Physik. und Astroteilchenphysik. Fermi- und Bose Gase. Thermodynamisches Gleichgewicht Proseminar: Theoretische Physik und Astroteilchenphysik Thermodynamisches Gleichgewicht Fermi- und Bose Gase Inhalt 1. Entropie 2. 2ter Hauptsatz der Thermodynamik 3. Verteilungsfunktion 1. Bosonen und

Mehr

Vorlesung Statistische Mechanik: Ising-Modell

Vorlesung Statistische Mechanik: Ising-Modell Phasendiagramme Das Phasendiagramm zeigt die Existenzbereiche der Phasen eines Stoffes in Abhängigkeit von thermodynamischen Parametern. Das einfachste Phasendiagramm erhält man für eine symmetrische binäre

Mehr

1 Innere Rotation von Alkanen

1 Innere Rotation von Alkanen 1 Innere Rotation von Alkanen a Unter Verwendung der Energieniveaus des harmonischen Oszillators schreibt sich die Zustandssumme Q = g n e εn/kbt = = e hω/2k BT = a 0 x n e hωn+ 1 2 /k BT e hωn/kbt = e

Mehr

- 145 - - 146 - - 147 - - 148 - - 149 - - 150 - - 151 - - 152 - - 153 - - 154 - - 155 - - 156 - - 157 - - 158 - - 159 - - 160 - - 161 - - 162 - - 163 - - 164 - - 165 - - 166 - - 167 - - 168 - - 169 - -

Mehr

Klassische und relativistische Mechanik

Klassische und relativistische Mechanik Klassische und relativistische Mechanik Othmar Marti 06. 02. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und relativistische Mechanik

Mehr

Themenschwerpunkt A. Mechanik

Themenschwerpunkt A. Mechanik Frühjahr 010 Einzelprüfungsnummer: 64013 Seite: 1 Themenschwerpunkt A Mechanik Perle auf rotierendem, kreisförmigem Draht Eine Perle der Masse m kann sich reibungsfrei auf einem kreisförmigen Draht bewegen.

Mehr

Klausur-Musterlösungen

Klausur-Musterlösungen Klausur-Musterlösungen 9.7.4 Theoretische Physik IV: Statistische Physik Prof. Dr. G. Alber Dr. O. Zobay. Der in Abb. dargestellte Kreisprozess wird mit einem elektromagnetischen Feld ausgeführt. Abb..

Mehr

9. Moleküle. 9.1 Wasserstoff-Molekül Ion H Wasserstoff-Molekül H Schwerere Moleküle 9.4 Angeregte Moleküle. Physik IV SS

9. Moleküle. 9.1 Wasserstoff-Molekül Ion H Wasserstoff-Molekül H Schwerere Moleküle 9.4 Angeregte Moleküle. Physik IV SS 9.1 Wasserstoff-Molekül Ion H + 9. Wasserstoff-Molekül H 9.3 Schwerere Moleküle 9.4 Angeregte Moleküle 9.1 9.1 Wasserstoff-Molekül Ion H + Einfachstes Molekül: H + = p + e p + Coulomb-Potenzial: Schrödinger-Gleichung:

Mehr

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden.

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden. Fakultät für Physik der LMU München Prof. Ilka Brunner Michael Kay Vorlesung T4, WS11/12 Klausur am 18. Februar 2012 Name: Matrikelnummer: Erreichte Punktzahlen: 1 2 3 4 5 6 Hinweise Die Bearbeitungszeit

Mehr

Besprechung am /

Besprechung am / PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert WS 2017/18 Übungsblatt 10 Übungsblatt 10 Besprechung am 16.01.2018/18.01.2018 Aufgabe 1 Bluttranfusion: Ein Patient benötigt dringend eine Bluttransfusion.

Mehr

Musterlösungen. Theoretische Physik I: Klassische Mechanik

Musterlösungen. Theoretische Physik I: Klassische Mechanik Blatt 1 4.01.013 Musterlösungen Theoretische Physik I: Klassische Mechanik Prof. Dr. G. Alber MSc Nenad Balanesković Hamilton-Funktion 1. Betrachten Sie zwei Massenpunktem 1 undm die sich gemäß dem Newtonschen

Mehr

Einfache Modelle für komplexe Biomembranen

Einfache Modelle für komplexe Biomembranen Einfache Modelle für komplexe Biomembranen Hergen Schultze Disputation am 6. Oktober 2003 Institut für Theoretische Physik Georg-August-Universität Göttingen Φ[ q,p]= ih 1 7 3 7 Hergen Schultze: Einfache

Mehr

Spinodale Entmischung

Spinodale Entmischung Benjamin Andrae Spinodale Entmischung Seminarvortrag im Hauptseminar zur statistischen Mechanik bei Prof. Dr. Erwin Frey Inhalt: Vorbemerkung zur Methode Qualitatives Quantitatives Weiterführendes: Van-der-Waals

Mehr

Physikalische Chemie II

Physikalische Chemie II Physikalische Chemie II Molekulare Quantenmechanik Kondensierte Materie S. Willitsch + W. Meier Quantentheorie, Molekülstruktur Makroskopische Eigenschaften der Materie auf Basis der Thermodynamik Physikalische

Mehr

7 Monte Carlo-Simulationen

7 Monte Carlo-Simulationen 7 Monte Carlo-Simulationen Aufgabe 7.1: Das Lennard-Jones Potential, u(r) = 4ε [ (σ r )12 ( σ r ) 6 ], hat sich als ein recht brauchbares einfaches Modell für die effektive Paarwechselwirkung zwischen

Mehr

2.1 Importance sampling: Metropolis-Algorithmus

2.1 Importance sampling: Metropolis-Algorithmus Kapitel 2 Simulationstechniken 2.1 Importance sampling: Metropolis-Algorithmus Eine zentrale Fragestellung in der statistischen Physik ist die Bestimmung von Erwartungswerten einer Observablen O in einem

Mehr

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Boltzmann-Gas: großkanonisches Ensemble (5+5+5=15 Punkte, schriftlich)

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Boltzmann-Gas: großkanonisches Ensemble (5+5+5=15 Punkte, schriftlich) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zu Moderne Theoretischen Physik III SS 016 Prof. Dr. A. Shnirman Blatt 6 PD Dr. B. Narozhny, P. Schad Lösungsvorschlag

Mehr

Klausur zur Statistischen Physik SS 2013

Klausur zur Statistischen Physik SS 2013 Klausur zur Statistischen Physik SS 2013 Prof. Dr. M. Rohlfing Die folgenden Angaben bitte deutlich in Blockschrift ausfüllen: Name, Vorname: geb. am: in: Matrikel-Nr.: Übungsgruppenleiter: Aufgabe maximale

Mehr

Themenschwerpunkt A. Mechanik

Themenschwerpunkt A. Mechanik Herbst 2011 Einzelprüfungsnummer: 64013 Seite: 1 Themenschwerpunkt A Mechanik Aufgabe 1: Reibung Ein Teilchen der Masse m bewege sich mit der Anfangsgeschwindigkeit v 0 > 0 in x-richtung und soll durch

Mehr

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [ Vorlesung 4 Teilchen im externen Elektromagnetischen Feld Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e v B c ]. 1) Das elektrische

Mehr

Zur Berechnung der Kräfte zwischen Molekülen

Zur Berechnung der Kräfte zwischen Molekülen 0.5 setgray0 0.5 setgray1 Zur Berechnung der Kräfte zwischen Molekülen Georg Jansen Georg.Jansen@uni-due.de Universität Duisburg-Essen Fachbereich Chemie AK Wissenschaftliches Rechnen p.1 Qualitativ ist

Mehr

1.2 Zustandsgrößen, Zustandsänderungen, Gleichgewichtszustand

1.2 Zustandsgrößen, Zustandsänderungen, Gleichgewichtszustand 1.2 Zustandsgrößen, Zustandsänderungen, Gleichgewichtszustand Wie erfolgt die Beschreibung des Zustands eines Systems? über Zustandsgrößen (makroskopische Eigenschaften, die den Zustand eines Systems kennzeichnen)

Mehr

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke)

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Freie Universität Berlin WS 6/7 Fachbereich Physik 4..6 Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Übungsblatt 7: Dichtematrix, Variationsprinzip Aufgabe (5 Punkte) Betrachten Sie ein Gas

Mehr

4.5 KLASSISCHE FLÜSSIGKEITEN 85

4.5 KLASSISCHE FLÜSSIGKEITEN 85 4.5 KLASSISCHE FLÜSSIGKEITEN 85 σ / 2 σ / 2 Abbildung 4.9: Modell der harten Scheiben Wie wir sehen werden, besitzt dieses Modell mehrere Phasen und ist damit ideal zum Studium gewisser Eigenschaften solcher

Mehr

Elektrodynamik (T3p)

Elektrodynamik (T3p) Zusatzaufgaben zur Vorlesung Elektrodynamik (T3p) SoSe 5 Beachten Sie, dass die nachfolgenden Aufgaben nur als zusätzliche Übung und nicht als potenzielle Klausuraufgaben angesehen werden sollten! Aufgabe

Mehr

Experimentalphysik 2

Experimentalphysik 2 Repetitorium zu Experimentalphysik 2 Ferienkurs am Physik-Department der Technischen Universität München Gerd Meisl 5. August 2008 Inhaltsverzeichnis 1 Übungsaufgaben 2 1.1 Übungsaufgaben....................................

Mehr

Molekülmodell und Kraftfelder Kraftfelder MD Simulation: Geschichte MD Simulation: Personen und Programme

Molekülmodell und Kraftfelder Kraftfelder MD Simulation: Geschichte MD Simulation: Personen und Programme Computergestützte Strukturbiologie (Strukturelle Bioinformatik) Kraftfelder Sommersemester 2009 Peter Güntert Molekülmodell und Kraftfelder Geschichte der MD Simulation Kraftfelder: CHARMM, AMBER, GROMOS,...

Mehr

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern TP2: Elektrodynamik WS 2017-2018 Arbeitsblatt 10 21/22.12. 2017 Dipole und Multipole in stationären Feldern Die Multipolentwicklung ist eine hilfreiche Näherung zur Lösung der Poisson Gleichung, wenn eine

Mehr

E 3. Ergänzungen zu Kapitel 3

E 3. Ergänzungen zu Kapitel 3 E 3. Ergänzungen zu Kapitel 3 1 E 3.1 Kritisches Verhalten des van der Waals Gases 2 E 3.2 Kritisches Verhalten des Ising Spin-1/2 Modells 3 E 3.3 Theorie von Lee und Yang 4 E 3.4 Skalenhypothese nach

Mehr

Molekulare Simulationen wässriger Elektrolytlösungen

Molekulare Simulationen wässriger Elektrolytlösungen Thermodynamik-Kolloquium, 05. Oktober 2011 Molekulare Simulationen wässriger Elektrolytlösungen Stephan Deublein 1, Steffen Reiser 1, Jadran Vrabec 2, Hans Hasse 1 1, Technische Universität Kaiserslautern

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten orlesung können Sie sich noch erinnern? Elektrische Feldlinien Das elektrische Feld einer Punktladung Das Feld eines elektrischen Dipols E = Elektrische Felder von

Mehr

Gitterfeldtheoretische Behandlung des harmonischen Oszillators in der Pfadintegralformulierung in Euklidischer Raum-Zeit

Gitterfeldtheoretische Behandlung des harmonischen Oszillators in der Pfadintegralformulierung in Euklidischer Raum-Zeit Gitterfeldtheoretische Behandlung des harmonischen Oszillators in der Pfadintegralformulierung in Euklidischer Raum-Zeit Präsentation zur Bachelorarbeit September 2014 Einleitung Modelle in der Physik

Mehr

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Rang 2 Dyade }{{} σ, τ,... Spannungstensor Differential-Operatoren Nabla- / x Operator / y in kartesischen / Koordinaten

Mehr

6.2 Zweiter HS der Thermodynamik

6.2 Zweiter HS der Thermodynamik Die Änderung des Energieinhaltes eines Systems ohne Stoffaustausch kann durch Zu-/Abfuhr von Wärme Q bzw. mechanischer Arbeit W erfolgen Wird die Arbeit reversibel geleistet (Volumenarbeit), so gilt W

Mehr

Federkraft: F 1 = -bx (b = 50 N/m) Gravitationskraft: F 2 = mg (g = 9,8 m/s 2 )

Federkraft: F 1 = -bx (b = 50 N/m) Gravitationskraft: F 2 = mg (g = 9,8 m/s 2 ) Aufgabe: Schwingung An eine Stahlfeder wird eine Kugel mit der Masse 500g gehängt. Federkraft: F 1 -b (b 50 N/m) Gravitationskraft: F mg (g 9,8 m/s ) m 500g F ma W 1 F( ) d W kin 1 mv b ( t + ϕ ) Acos(

Mehr

Theoretische Chemie (TC II) Computational Chemistry

Theoretische Chemie (TC II) Computational Chemistry Theoretische Chemie (TC II) Computational Chemistry Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Dr. Matthias Ruckenbauer (matruc@theochem.uni-frankfurt.de) Dr. Haleh Hashemi

Mehr

! #!! % & ( )! ! +, +,# # !.. +, ) + + /) # %

! #!! % & ( )! ! +, +,# # !.. +, ) + + /) # % ! #! #!! % & ( )!! +, +,# #!.. +, ) + + /)!!.0. #+,)!## 2 +, ) + + 3 4 # )!#!! ), 5 # 6! # &!). ) # )!#! #, () # # ) #!# #. # ) 6 # ) )0 4 )) #, 7) 6!!. )0 +,!# +, 4 / 4, )!#!! ))# 0.(! & ( )!! 8 # ) #+,

Mehr

Klassische Theoretische Physik III (Elektrodynamik)

Klassische Theoretische Physik III (Elektrodynamik) rev: 1.17 WiSe 017/18 Klassische Theoretische Phsik III Elektrodnamik) Vorlesung: Prof. Dr. D. Zeppenfeld Übung: Dr. M. Sekulla Übungsblatt 8 Ausgabe: Fr, 15.1.17 Abgabe: Fr,.1.17 Besprechung: Mi, 10.01.18

Mehr

Musterlösung zur Probeklausur Theorie 1

Musterlösung zur Probeklausur Theorie 1 Institut für Physik WS 24/25 Friederike Schmid Musterlösung zur Probeklausur Theorie Aufgabe ) Potential In einem Dreiteilchensystem (eine Dimension) wirken folgende Kräfte: F = (x x 2 )x 2 3, F 2 = (x

Mehr

11.2 Die absolute Temperatur und die Kelvin-Skala

11.2 Die absolute Temperatur und die Kelvin-Skala 11. Die absolute Temperatur und die Kelvin-Skala p p 0 Druck p = p(t ) bei konstantem olumen 1,0 0,5 100 50 0-50 -100-150 -00-73 T/ C Tripelpunkt des Wassers: T 3 = 73,16 K = 0,01 C T = 73,16 K p 3 p Windchill-Faktor

Mehr

Tutorium Hydromechanik I + II

Tutorium Hydromechanik I + II Tutorium Hydromechanik I + II WS 2015/2016 Session 3 Prof. Dr. rer. nat. M. Koch 1 Aufgabe 13 (Klausuraufgabe am 07.10.2012) Der bekannte Bergsteiger Reinhold Messner befindet sich mal wieder auf Himalaya

Mehr

Versuch 40: UV-Photoelektronenspektroskopie

Versuch 40: UV-Photoelektronenspektroskopie Versuch 40: UV-Photoelektronenspektroskopie Ort: MZG (Technische Physik), Zi. 0.175 hω k k ϑ ϕ k Probe worum geht s? Messung der elektronischen Bandstruktur E(k) eines 2D-Festkörpers (Graphit) mittels

Mehr

Übungen zur Statistischen Mechanik Wintersemester 2007/08 Übungsblatt 9, Ausgabe , abzugeben bis

Übungen zur Statistischen Mechanik Wintersemester 2007/08 Übungsblatt 9, Ausgabe , abzugeben bis UNIVERSITÄT KONSTANZ Fachbereich Physik Prof. Dr. Matthias Fuchs Raum P 907, Tel. (07531)88-4678 E-mail: matthias.fuchs@uni-konstanz.de Übungen zur Statistischen Mechanik Wintersemester 2007/08 Übungsblatt

Mehr

Statistische Thermodynamik I Lösungen zur Serie 11

Statistische Thermodynamik I Lösungen zur Serie 11 Statistische Thermodynamik I Lösungen zur Serie Verschiedenes 20 Mai 206 Barometrische Höhenformel: Betrachte die rdatmosphäre im homogenen Gravitationspotential M gz der rde Unter der Annahme, dass sich

Mehr

Moderne Theoretische Physik IIIa WS 18/19

Moderne Theoretische Physik IIIa WS 18/19 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik IIIa WS 8/9 Prof. Dr. Alexander Mirlin Lösungen zu Blatt 7 Dr. Stefan Rex Besprechung: 9..9.

Mehr

Bewegung auf Paraboloid 2

Bewegung auf Paraboloid 2 Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 8 vom 17.06.13 Abgabe: 24.06. Aufgabe 34 4 Punkte Bewegung auf Paraboloid 2 Ein Teilchen der Masse m bewege sich reibungsfrei unter

Mehr

Ab-initio Thermodynamik

Ab-initio Thermodynamik Institut für Theoretische Physik Technische Universität Clausthal 4. Dezember 2004 Hintergrund Für kommende Transistorgenerationen ( 2013) müssen Oxide (z.b: Ba x Sr 1 x TiO 3 ) epitaktisch auf Halbleitern

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name: Vorname: Matrikelnummer: Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12:

Mehr

8.5 Symmetrische Polynome, Diskriminate und Resultante

8.5 Symmetrische Polynome, Diskriminate und Resultante 332 85 Symmetrische Polynome, Diskriminate und Resultante Ein weiteres Verfahren zur Feststellung, ob mehrfache Wurzeln vorliegen, ist die Betrachtung der Diskriminante, deren Einführung jetzt vorbereitet

Mehr

Übungen zur Vorlesung Physikalische Chemie II Lösungsvorschlag zu Blatt 5

Übungen zur Vorlesung Physikalische Chemie II Lösungsvorschlag zu Blatt 5 Wintersemester 006 / 007 04.1.006 1. Aufgabe Die Wellenfunktionen unterscheiden sich gar nicht. Während der Lösung der elektronischen Schrödingergleichung werden die Kerne als ruhend betrachtet. Es kommt

Mehr

Technische Universität Kaiserslautern Fachbereich Maschinenbau und Verfahrenstechnik Lehrstuhl für Thermodynamik

Technische Universität Kaiserslautern Fachbereich Maschinenbau und Verfahrenstechnik Lehrstuhl für Thermodynamik Technische Universität Kaiserslautern Fachbereich Maschinenbau und Verfahrenstechnik Lehrstuhl für Thermodynamik Adresse Erwin-Schrödinger-Straße 44 67663 Kaiserslautern Deutschland Telefon +49 631 205-3497

Mehr

Einführung in die Neutronenstreuung. Robert Georgii Forschungsneutronenquelle Hans Maier-Leibnitz TU München

Einführung in die Neutronenstreuung. Robert Georgii Forschungsneutronenquelle Hans Maier-Leibnitz TU München Einführung in die Neutronenstreuung Robert Georgii Forschungsneutronenquelle Hans Maier-Leibnitz TU München Literatur Sehr empfehlenswert: Neutron scattering: A Primer by Roger Pynn Los Alamos Science

Mehr

Nanoplasma. Nano(cluster)plasmen

Nanoplasma. Nano(cluster)plasmen Nano(cluster)plasmen Nanoplasma Neben der Rumpfniveauspektroskopie an Clustern bietet FLASH die Möglichkeit Cluster unter extremen Bedingungen im Feld eines intensiven Röntgenpulses zu studieren (Nano)Plasmaphysik

Mehr

9. Thermodynamik. 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala. 9.4 Wärmekapazität

9. Thermodynamik. 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala. 9.4 Wärmekapazität 9. Thermodynamik 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala 93 9.3 Thermische h Ausdehnung 9.4 Wärmekapazität 9. Thermodynamik Aufgabe: - Temperaturverhalten von Gasen,

Mehr

15 Reale Gase; Virialentwicklung

15 Reale Gase; Virialentwicklung Woche 3 5 Reale Gase; Virialentwicklung Klassisches Bild, wechselwirkende Teilchen. Clusterentwicklung als Ausgangspunkt für die Näherungsverfahren (Mayer,937) Modell: Einatomiges klassisches Gas, symmetrische

Mehr

Unterscheidung zwischen elektrostatischen und elektroviskosen Effekten bei der Durchströmung von nanoskaligen Haufwerken

Unterscheidung zwischen elektrostatischen und elektroviskosen Effekten bei der Durchströmung von nanoskaligen Haufwerken Unterscheidung zwischen elektrostatischen und elektroviskosen Effekten bei der Durchströmung von nanoskaligen Haufwerken Prof. Dr.-Ing. Hermann Nirschl Dipl.-Ing. Bastian Schäfer Durchströmung eines Haufwerks

Mehr

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes X.3 Energie und Impuls des elektromagnetischen Feldes 169 X.3 Energie und Impuls des elektromagnetischen Feldes Genau wie mechanische Systeme trägt das elektromagnetische Feld Energie ( X.3.1 und Impuls

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B Sommersemester 6 Prof. Dr. Alexander Mirlin Musterlösung: Blatt. PD Dr. Igor

Mehr

Übung 1 - Musterlösung

Übung 1 - Musterlösung Experimentalphysik für Lehramtskandidaten und Meteorologen 8. April 00 Übungsgruppenleiter: Heiko Dumlich Übung - Musterlösung Aufgabe Wir beginnen die Aufgabe mit der Auflistung der benötigten Formeln

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 3 - Lösung Technische Universität München 1 Fakultät für Physik 1 Gleiten und Zwangsbedingungen Wir betrachten einen Block der Masse m 1 auf einem Keil der

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 1/2/14 Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr