Der kinetische Ansatz zur Beschreibung von Selbstorganisationsprozessen. mögliche Variationen und Erweiterungen: diskrete Gleichungen (endliches t):

Größe: px
Ab Seite anzeigen:

Download "Der kinetische Ansatz zur Beschreibung von Selbstorganisationsprozessen. mögliche Variationen und Erweiterungen: diskrete Gleichungen (endliches t):"

Transkript

1 Ludwig Pohlmann Thermodynamik offener Syseme und Selbsorganisaionsphänomene SS 007 Der kineische Ansaz zur Beschreibung von Selbsorganisaionsprozessen. Die Beschreibung von Prozessen Prozesse (Veränderungen, Bewegungen) werden am einfachsen durch Angabe der Änderungsgeschwindigkeien aller maßgeblichen Parameer A, A,... beschrieben: A (,,..., ) ( ) = f A A + F mögliche Variaionen und Erweierungen: diskree Gleichungen (endliches ): ( ) n A + n n = f A, A,... (DSKGL) (parielle) Differenialgleichungen ( 0): A A A = f A, A,...,,,..., ((P)DGL) z z Inegro-Differenialgleichungen: A ( ( ) ( ) ) = f A, A,..., d (IDGL) 0 5-

2 Ludwig Pohlmann Thermodynamik offener Syseme und Selbsorganisaionsphänomene SS 007. Beispiele für kineische Gleichungen ) chemische Kineik: z.b. Syn-/Disproporionierung: A + B == C [ ] d A [ ][ ] [ ] = k A B + k C ) Reakions-Diffusions-Syseme: [ A] [ A] (DGL) = k [ A][ B] + k [ C] + D (PDGL) z 3) elekrische Sromkreise (z.b. RC-Glied): UR = IR, I=C du C, U 0 =UR + U di + RC I = 0 I() ep - RC C (DGL) 4) Keimwachsumskineik: ds [ ] kn( ) r( ) d = 0 (IDGL) 5) Populaionsdynamik: N+ = N + an bn i i i i (DSKGL) (z.b. bei Feldmäusen: Gebursrae a = 4.5/Jahr) 5-

3 Ludwig Pohlmann Thermodynamik offener Syseme und Selbsorganisaionsphänomene SS Nichlineare Differenialgleichungen Differenialgleichungen beschreiben ein Richungsfeld: Anfangsbedingungen sind nöig, um eine eindeuige Lösung zu erhalen. Nichlineare DGL lassen sich, außer in Spezialfällen, nich analyisch lösen! Zwei Auswege: - numerische Lösungen: anschaulich, aber nich allgemein - qualiaive Analyse: allgemeinere Ergebnisse, aber nur ü- ber besimme Eigenschafen der Lösung 5-3

4 Ludwig Pohlmann Thermodynamik offener Syseme und Selbsorganisaionsphänomene SS 007 Qualiaive Analyse ) Suche nach den saionären Zusänden: Nullsezen der Zeiableiung und Lösung der verbleibenden algebraischen Gleichung (bzw. des Gleichungssysems): Beispiele aus der Reakionskineik: (A) Reakion erser Ordnung: A == B, A = cons. db ( ) = fab, = ka kb ka kb = 0 B s = k k A saionäre Konzenraion von B (B) Auokaalyse 3. Ordnung (Schlögl-Reakion): A + X == 3X, B + X == C, A, B, C - konsan dx I 3 I = kax kx kbx + kc =0! Gleichung 3. Grades in X ma. 3 reelle Lösungen bei einem gegebenen Parameersaz können bis zu drei saionäre Konzenraionen von X parallel eisieren! 5-4

5 Ludwig Pohlmann Thermodynamik offener Syseme und Selbsorganisaionsphänomene SS 007 ) Analyse der Sabiliä von saionären Zusänden Definiion der Sabiliä nach Lyapunov Eine saionäre Lösung s einer DGL is: (einfach) sabil: wenn eine kleine Abweichung von s klein bleib asympoisch sabil: wenn eine kleine Abweichung gegen Null geh insabil: wenn eine kleine Abweichung weier anwächs insabil s kleine Sörung sabil asymp. sabil 5-5

6 Ludwig Pohlmann Thermodynamik offener Syseme und Selbsorganisaionsphänomene SS 007 Sabiliä von linearen DGL am Beispiel eines Sysems von zwei DGL: d dy = a + by, = = c + dy, y = s s 0 0 Beispiel: harmonischer Oszillaor: a = 0, b =, c = -k/m, d = -y Lösungsansaz: ( ) = ep( ), y( ) = ep( ) k y k 0 0 führ zum Gleichungssysem: ( ) + ( ) a k + by = 0, 0 0 c d k y 0 0 =0, Lösbarkeisbedingung: a k b c d k = 0 charakerisische Gleichung des Sysems (bei zwei Gleichungen: quadraische Gl. in k): ( ) ( ) k a + d k + ad bc = 0 k, = a+ d a+ d ± ( ad bc) die k sind die "Eigenwere" des ensprechenden DGL- Sysems dann is die allgemeine Lösung: () = C ep(k ) + C ep(k ) 5-6

7 Ludwig Pohlmann Thermodynamik offener Syseme und Selbsorganisaionsphänomene SS 007 Darsellung der verschiedenen Lösungsypen im Phasenraum: Darsellung der Lösungen von DGL im Phasenraum Trajekorie: Bahnkurve (), y() im Phasenraum (,y): y = = 0 Aus der Eindeuigkei der Lösungen von DGL folg, daß sich die Trajekorien im Phasenraum nich schneiden dürfen. Scheinbare Ausnahmen: Singuläre Punke, die den saionären Zusänden ensprechen enaree Trajekorien, die in endlicher Zei nich erreich werden können. 5-7

8 Ludwig Pohlmann Thermodynamik offener Syseme und Selbsorganisaionsphänomene SS 007 Je nach dem Charaker der beiden Koeffizienen k und k sind verschiedene Aren des zeilichen Verhalens von () möglich:. 0 < 4(ad-bc) < (a+d) : k und k reell.. (a+d) < 0: sabiler Knoen k i < 0.. (a+d) > 0: insabiler Knoen k i > 0. 4(ad-bc) > (a+d) : k und k komple.. (a+d) < 0: sabiler Srudel Re(k i ) < 0.. (a+d) > 0: insabiler Srudel Re(k i ) > 0 5-8

9 Ludwig Pohlmann Thermodynamik offener Syseme und Selbsorganisaionsphänomene SS (ad-bc) < 0: k > 0 und k < 0 oder umgekehr Sael (immer insabil) 4. (a+d) = 0: Re(k i ) = 0 Wirbel (einfach sabil) Allgemeine Schlußfolgerungen: In linearen Sysemen gib es nur einen saionären Zusand, der sabil oder insabil sein kann. Oszillaionen sind nur als einfach sabile möglich: kleine Veränderungen der Parameer 5-9

10 Ludwig Pohlmann Thermodynamik offener Syseme und Selbsorganisaionsphänomene SS 007 zersören den Wirbel sabiler oder insabiler Srudelpunk! (keine Srukursabiliä!) Mehode der Linearisierung zur Besimmung der Sabiliä von nichlinearen DGL: Unersuchung der lokalen Sabiliä von saionären Zusänden nichlinearer DGL, indem das Verhalens der DGL um den jeweiligen Zusand herum (z.b. s ) analysier wird: () = + u (), u () s 0 Einsezen und Reihenenwicklung: d du df = f ( ) = f ( s + u ()) = f ( s) + u () +... d s bzw. du df = u ( ), da f ( s ) = d s 0 analog für den Fall von zwei Gleichungen mi zwei Variablen: d du dy = fy (, ), = gy (, ) ( (), ()) = f + u y + v = s s df df = f ( s) + u () + v () +... d dy, y, y s s s s 5-0

11 Ludwig Pohlmann Thermodynamik offener Syseme und Selbsorganisaionsphänomene SS 007 Die Koeffizienen des so erhalenen linearen Sysems sind nichs anderes die Jacobi-Mari des nichlinearen Sysems: d dy f = g f y g y r y d r, bzw. = J Daraus folg für die Analyse der Sabiliä des ausgewählen saionären Zusandes folgender Algorihmus: Bildung der charakerisischen Deerminanen aus der Jacobimari J k E = 0 Lösung der charakerisischen Gleichung Unersuchung der Vorzeichen der Realeile aller Eigenwere: wenn auch nur ein Re(k i ) > 0 Zusand is insabil! "REPELLOR" wenn alle Re(k i ) < 0 Zusand is asympoisch sabil! "ATTRAKTOR" 5-

12 Ludwig Pohlmann Thermodynamik offener Syseme und Selbsorganisaionsphänomene SS 007 Analyse von Ein-Variablen-Sysemen am Beispiel der Schlögl-Reakion Der Einfachhei halber sei k '= 0: ( ) Jacobi - "Mari": I 3 fx = kax kx kbx =0 k ( ) df X I = = kax 3kX kb dx 3 saionäre Zusände: X < X < X 3 X = 0 k = -k B < 0 : asympoisch sabil X : insabil X : asympoisch sabil graphischer Beweis: f (X) X Bisabiliä f ' (X) X 5-

Differentialgleichungen

Differentialgleichungen Ein einfaches Modell (Domar) Im Domar Wachsumsmodell reffen wir die folgenden Annahmen: Kapiel Differenialgleichungen () Erhöhung der Invesiionsrae I() erhöh das Einkommen Y(): dy d = s di (s = konsan)

Mehr

3.4 Systeme linearer Differentialgleichungen

3.4 Systeme linearer Differentialgleichungen 58 Kapiel 3 Invarianen linearer Transformaionen 34 Syseme linearer Differenialgleichungen Die Unersuchung der Normalformen von Marizen soll nun auf die Lösung von Differenialgleichungssysemen angewende

Mehr

Konjunkturtheorie (Stand: )

Konjunkturtheorie (Stand: ) Konjunkurheorie (Sand: 18.11.2009) Prof. Dr. Kai Carsensen, LMU und ifo Insiu Seffen Elsner, ifo Insiu Schwerpunk Dynamische Modelle in diskreer Zei mi konsanen Inpus Lösung linearer Differenzengleichungssyseme

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen Dr. G. Lechner Mahemaische Mehoden der klassischen Physik Zusammenfassung Differenialgleichungen In der Vorlesung wurden drei unerschiedliche Typen von Differenialgleichungen (DGL) besprochen, die jeweils

Mehr

Hörsaalübung 3 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 3 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mahemaik der Universiä Hamburg WiSe 26/27 Dr. Hanna Peywand Kiani Hörsaalübung 3 Differenialgleichungen I für Sudierende der Ingenieurwissenschafen Lineare Differenialgleichungssyseme Die ins

Mehr

Lösungen Test 2 Büro: Semester: 2

Lösungen Test 2 Büro: Semester: 2 Fachhochschule Nordwesschweiz (FHNW) Hochschule für Technik Insiu für Geises- und Naurwissenschaf Dozen: Roger Burkhard Klasse: Sudiengang ST Lösungen Tes Büro: 4.613 Semeser: Modul: MDS Daum: FS1 Bemerkungen:

Mehr

Probeklausur 1. Thema Nr. 1 (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Probeklausur 1. Thema Nr. 1 (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten! Universiä Regensburg, Winersemeser 3/4 Examenskurs Analysis (LGy) Dr. Farid Madani Probeklausur Thema Nr. (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeien! Aufgabe (5 Punke). Man

Mehr

Elementare Lösungsmethoden für gewöhnliche Differentialgleichungen

Elementare Lösungsmethoden für gewöhnliche Differentialgleichungen 454 Erforderliche Kennnisse: Höhere Analysis Elemenare Lösungsmehoden für gewöhnliche Differenialgleichungen Was is eigenlich eine Differenialgleichung? Eine Differenialgleichung is eine Gleichung, in

Mehr

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN Skrium zum Fach Mechanik 5Jahrgang HTL-Eisensad DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN DilIngDrGüner Hackmüller 5 DilIngDrGüner Hackmüller Alle Reche vorbehalen

Mehr

3.2 Autoregressive Prozesse (AR-Modelle) AR(p)-Prozesse

3.2 Autoregressive Prozesse (AR-Modelle) AR(p)-Prozesse 3. Auoregressive Prozesse (AR-Modelle 3.. AR(-Prozesse Definiion: Ein sochasischer Prozess ( heiß auoregressiver Prozess der Ordnung [AR(-Prozess], wenn er der Beziehung (3.. genüg. ( is darin ein reiner

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sysemheorie eil A - Zeikoninuierliche Signale und Syseme - Muserlösungen Manfred Srohrmann Urban Brunner Inhal 3 Muserlösungen - Zeikoninuierliche Syseme im Zeibereich 3 3. Nachweis der ineariä... 3 3.

Mehr

7. Gewöhnliche Differentialgleichungen

7. Gewöhnliche Differentialgleichungen 1 7. Gewöhnliche Differenialgleichungen DGL: Gewöhnliche DGL: Parielle DGL: Anfangs- oder Randbedingungen: Besimmungsgleichung für eine Funkion, in der die gesuchen Funkion und ihre Ableiungen vorkomm

Mehr

Einführung in gewöhnliche Differentialgleichungen

Einführung in gewöhnliche Differentialgleichungen Einführung in gewöhnliche Differenialgleichungen Jonahan Zinsl 25. Mai 202 Definiionen Definiion.(Gewöhnliche Differenialgleichung. Ordnung) Uner einer gewöhnlichen Differenialgleichung. Ordnung verseh

Mehr

11. Populationsdynamik/-kinetik

11. Populationsdynamik/-kinetik . Populaionsdynamik/-kineik Themen. Einzelpopulaionen (Reine Geburs- und Todesprozesse, Dicheabhängiges Wachsum). Wechselwirkung zweier Populaionen (Räuber-Beue, Konkurrenz und Koexisenz, Muualismus) Ziel:

Mehr

7. Vorlesung Wintersemester

7. Vorlesung Wintersemester 7. Vorlesung Winersemeser Der ungedämpfe Oszillaor mi komplexem Lösungsansaz Wie gezeig, wird die DGL des ungedämpfen Oszillaors mẍ() + kx() = 0 () im Komplexen von den Funkionen x () = e iω und x 2 ()

Mehr

Struktur und Verhalten I

Struktur und Verhalten I Kapiel 9 Srukur und Verhalen I Ganz allgemein gesag is das Thema dieses Kurses die Ersellung, Simulaion und Unersuchung von Modellen räumlich homogener dynamischer Syseme aus Naur und Technik. Wir haben

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Laplacetransformation in der Technik

Laplacetransformation in der Technik Verallgemeinere Funkionen Laplaceransformaion in der echnik Fakulä Grundlagen Februar 26 Fakulä Grundlagen Laplaceransformaion in der echnik Übersich Verallgemeinere Funkionen Verallgemeinere Funkionen

Mehr

Regelungstechnik. Steuerung. Regelung. Beim Steuern bewirkt eine Eingangsgröße eine gewünschte Ausgangsgröße (Die nicht auf den Eingang zurückwirkt.

Regelungstechnik. Steuerung. Regelung. Beim Steuern bewirkt eine Eingangsgröße eine gewünschte Ausgangsgröße (Die nicht auf den Eingang zurückwirkt. Regelungsechnik Seuerung Beim Seuern bewirk eine Eingangsgröße eine gewünsche Ausgangsgröße (Die nich auf den Eingang zurückwirk. Seuern is eine Wirkungskee Seuerkee (Eingahnsraße) Bsp. Boiler Regelung

Mehr

2.3 Theorie linearer Systeme

2.3 Theorie linearer Systeme 2.3 Theorie linearer Syseme 2.3.1 Grundsäzliche Mehode Mehode: Berechnung durch Zerlegen in einfach berechenbare Teile (Superposiion) x() = x 1 ()+x 2 ()+x 3 ()+.. y() = y 1 ()+y 2 ()+y 3 ()+.. zerlegen

Mehr

Schriftliche Prüfung aus Control Systems 1 (Information and Computer Engineering) am

Schriftliche Prüfung aus Control Systems 1 (Information and Computer Engineering) am TU Graz, Insiu für Regelungs- und Auomaisierungsechnik Schrifliche Prüfung aus Conrol Sysems (Informaion and Compuer Engineering) am 04.07.06 Name / Vorname(n): Marikel-Nummer: Aufgabe A A A3 A4 A5 A6

Mehr

3. Partielle Differentialgleichungen

3. Partielle Differentialgleichungen 3.. Grundlagen und Klassifikaion Welche Ordnung haben diese Gleichungen?? 3.4.1 Lineare parielle Differenialgleichungen. Ordnung Analogie: Klassifikaion Kegelschnie 1 3.4.3 Korrek geselle Probleme Anfangs-

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 5. Semester ARBEITSBLATT 6 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 5. Semester ARBEITSBLATT 6 PARAMETERDARSTELLUNG EINER GERADEN ARBEITSBLATT PARAMETERDARSTELLUNG EINER GERADEN Eine Gerade sell man im R ensprechend zum R auf, nur daß eine z-koordinae hinzukomm: Definiion: Parameerdarsellung einer Gerade durch die Punke A und B:

Mehr

MATLAB: Kapitel 4 Gewöhnliche Differentialgleichungen

MATLAB: Kapitel 4 Gewöhnliche Differentialgleichungen 4. Einleiung Eine der herausragenden Särken von MATLAB is das numerische (näherungsweise) Auflösen von Differenialgleichungen. In diesem kurzen Kapiel werden wir uns mi einigen Funkionen zum Lösen von

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

2 Zeitabhängige Prozesse mit Rückkopplung

2 Zeitabhängige Prozesse mit Rückkopplung Zeiabhängige Prozesse mi Rückkopplung Zeiabhängige Prozesse, die ein Gedächnis zeigen, können nich durch lokale Gleichungen, also Gleichungen, die nur den momenanen Zusand des Sysems enhalen, vollsändig

Mehr

Fokker-Planck-Gleichung

Fokker-Planck-Gleichung Fokker-Planck-Gleichung Beschreibung sochasischer Prozesse David Kleinhans kleinhan@uni-muenser.de WWU Münser David Kleinhans, WWU Münser Fokker-Planck-Gleichung Beschreibung elemenarer sochasischer Prozesse

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr

The Matlab ODE Suite. Simone Bast Martin Vogt

The Matlab ODE Suite. Simone Bast Martin Vogt The Malab ODE Suie Simone Bas Marin Vog Gliederung Wiederholung BDF-Verfahren Verbesserung: NDF-Verfahren ode5s und ode3s User Inerface Vergleich der Löser Zusammenfassung ) Implizie Formeln für seife

Mehr

Anfangswertprobleme gewöhnlicher Differentialgleichungen

Anfangswertprobleme gewöhnlicher Differentialgleichungen 13. Großübung Anfangswerprobleme gewöhnlicher Differenialgleichungen gesuch: mi T und y () = f(, ), y( ) = y (1) y( j+1 ) = y( j ) + j+1 j f(s, y(s)) ds () Idee: Erseze Inegral durch Quadraurformel Näherungen

Mehr

3.2.2 Stabilitätsgebiete von RK-Verfahren

3.2.2 Stabilitätsgebiete von RK-Verfahren Übung 3.3 zeig, daß man das Verhalen von RK-Verfahren für diagonalisierbare Syseme der Form (3.4) durch Analyse des RK-Verfahrens angewende auf die skalaren Probleme (3.5) versehen kann. Dies moivier,

Mehr

2. Grundlagen Schwingungslehre

2. Grundlagen Schwingungslehre Zusammenfassung Harmonische Anregung (5) Zusammenfassung Harmonische Anregung (6) .4 Akive Schwingungsisolaion (1) a) Schuz der Umgebung von Maschinen, die Schwingungen erzeugen (akiv) b) Schuz eines Geräes,

Mehr

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor)

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor) Technische Universiä München Lehrsuhl für Regelungsechnik Prof. Dr.-Ing. B. Lohmann Prüfung zum Fach Regelungsechnik 7.9. für Sudierende Lehram an beruflichen Schulen (Diplom/Bachelor) Name: Vorname: Mar.-Nr.

Mehr

Mathematische Modelle nichtlinearer Dosiswirkungsbeziehungen für die strahleninduzierte Karzinogenese

Mathematische Modelle nichtlinearer Dosiswirkungsbeziehungen für die strahleninduzierte Karzinogenese Mahemaische Modelle nichlinearer Dosiswirkungsbeziehungen für die srahleninduziere Karzinogenese PD Dr. Helmu Schöllnberger Abeilung für Physik and Biophysik 2 Inhal Überblick über die beiden bekannesen

Mehr

Übungen zur Klausur 11M1 21/05/2008 Seite 1 von 5

Übungen zur Klausur 11M1 21/05/2008 Seite 1 von 5 Seie von 5 Aufgabe : Eine ganzraionale Funkion. Grades habe die Nullsellen ; ;. Ihr Schaubild gehe durch P( 6). Besimme die Exremsellen. Skizziere den Graphen der Funkion. allgemeine Form einer Funkion.

Mehr

13.1 Charakterisierung von Schwingungen

13.1 Charakterisierung von Schwingungen 87 Schwingungen reen in allen Fachgebieen mi rückgekoppelen Prozessen auf. Im Maschinenbau ensehen Schwingungen durch elasische Radaufhängungen, Maschinenfundamene oder Maschineneile, in der Elekroechnik

Mehr

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor)

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor) Technische Universiä München Lehrsuhl für Regelungsechnik Prof. Dr.-Ing. B. Lohmann Prüfung zum Fach Regelungsechnik 14.04.2011 für Sudierende Lehram an beruflichen Schulen (Diplom/Bachelor) Name: Vorname:

Mehr

Durch Modellierung beschreibt man Vorgänge aus der Natur sowie industrielle Prozesse

Durch Modellierung beschreibt man Vorgänge aus der Natur sowie industrielle Prozesse Kapiel Modellierung Durch Modellierung beschreib man Vorgänge aus der Naur sowie indusrielle Prozesse mi mahemaischen Werkzeugen, zum Beispiel Gleichungen oder Ungleichungen. Modellierung geschieh durch

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

Explizites und implizites Euler-Verfahren

Explizites und implizites Euler-Verfahren Numerische Mehoden für Differenialgleichungen Winersemeser 215/16 Explizies und implizies Euler-Verfahren am Beispiel eines Räuber-Beue-Modells Vorlesung Numerische Mehoden für Differenialgleichungen Winersemeser

Mehr

Nichtlineare Prozesse in der Elektrochemie II

Nichtlineare Prozesse in der Elektrochemie II Nichtlineare Prozesse in der Elektrochemie II 5. Stabilität und Instabilität Neue (dissipative) Strukturen entstehen, wenn der bisherige stationäre Zustand, der den thermodynamischen Zweig repräsentiert,

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

existiert. In der Regel wird zusätzlich zum oben gegebenen System von Differentialgleichungen noch eine Anfangsbedingung

existiert. In der Regel wird zusätzlich zum oben gegebenen System von Differentialgleichungen noch eine Anfangsbedingung 0 Eine Anwendung der Jordan-Normalform in der Analysis In vielen physikalischen Anwendungen is es nowendig, Syseme von Differenialgleichungen der Form: y ( = b y ( + b 2 y 2 ( + + b n y n ( + f ( y 2(

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Prof. Dr. Guido Sweers WS 08/09 Jan Gerdung, M.Sc. Gewöhnliche Differenialgleichungen Übungsbla Die Lösungen müssen in den Übungsbriefkasen Gewöhnliche Differenialgleichungen (Raum 0 im MI) geworfen werden.

Mehr

Dynamische Systeme in Unterricht und Praxis

Dynamische Systeme in Unterricht und Praxis Dynamische Syseme in Unerrich und Praxis Günher Karigl und Gerhard Dorfer Im Rahmen der AG-Tagung AHS Mahemaik Bildungshaus S. Hippoly, S. Pölen, 5. November 00 Inhalsübersich. Differenialgleichungen.

Mehr

Freie Schwingung - Lösungsfälle

Freie Schwingung - Lösungsfälle Freie Schwingungen Seie von 6 Peer Schüller peer.schueller@bbw.gv.a Freie Schwingung - Lösungsfälle Maheaische / Fachliche Inhale in Sichworen: Differenialgleichung.Ornung i onsanen Koeffizienen, Schwingung

Mehr

Thema: Singuläres, skalares Problem 2. Ordnung - Lösbarkeit Seminararbeit aus Numerik von Differentialgleichungen

Thema: Singuläres, skalares Problem 2. Ordnung - Lösbarkeit Seminararbeit aus Numerik von Differentialgleichungen Thema: Singuläres, skalares Problem 2. Ordnung - Lösbarkei Seminararbei aus Numerik von Differenialgleichungen Michael Hubner, Sefan Wurm 8. Juli 22 Inhalsverzeichnis. Problemdefiniion 2 2. Einführende

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universiä München WS 11/1 Insiu für Informaik Prof. Dr. Hans-Joachim Bungarz Michael Lieb, M. Sc. Dipl.-Inf. Chrisoph Riesinger Dipl.-Inf. Marin Schreiber Numerisches Programmieren 4. Programmieraufgabe:

Mehr

PHYSIK III. Serie 12, Musterlösung

PHYSIK III. Serie 12, Musterlösung Prof Dr Danilo Pescia Tel 044 633 50 pescia@solidphysehzch Winersemeser 06/07 wwwmicrosrucureehzch Serie, Muserlösung Niculin Saraz Tel 044 633 3 8 saraz@physehzch Reflexion Die Fresnel schen Formeln lauen:

Mehr

Übungsblatt 8 Musterlösung

Übungsblatt 8 Musterlösung Numerik gewöhnlicher Differenialgleichungen MA - SS6 Übungsbla 8 Muserlösung Aufgabe 7 Schriweienseuerung) Im Folgenden soll die Differenzialgleichung y ) = f,y)) = sign)y, y ) = e, im Zeiinervall [, ]

Mehr

Fourier- und Laplace- Transformation

Fourier- und Laplace- Transformation Skrium zur Vorlesung Mahemaik für Ingenieure Fourier- und Lalace- Transformaion Teil 3: Lalace-Transformaion Prof. Dr.-Ing. Norber Höner (nach einer Vorlage von Prof. Dr.-Ing. Torsen Benkner) Fachhochschule

Mehr

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 13 Wintersemester 2011/2012

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 13 Wintersemester 2011/2012 Prof Dr O Junge, A Biracher Zenrum Mahemaik - M3 Technische Universiä München MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 3 Winersemeser 2/22 Tuorübungsaufgaben (3-3222) Aufgabe T Berachen Sie das Anfangswerproblem

Mehr

I-Strecken (Strecken ohne Ausgleich)

I-Strecken (Strecken ohne Ausgleich) FELJC 7_I-Srecken.o 1 I-Srecken (Srecken ohne Ausgleich) Woher der Name? Srecken ohne Ausgleich: Bei einem Sprung der Eingangsgrösse (Sellgrösse) nimm die Ausgangsgrösse seig zu, ohne einem fesen Endwer

Mehr

Lineare Algebra I - Lösungshinweise zur Klausur

Lineare Algebra I - Lösungshinweise zur Klausur Insiu für Mahemaik Winersemeser 0/3 Universiä Würzburg 0 Februar 03 Prof Dr Jörn Seuding Dr Anna von Heusinger Frederike Rüppel Lineare Algebra I - Lösungshinweise zur Klausur Aufgabe : (0 Punke) Zeigen

Mehr

Eine stochastische verzögerte Differentialgleichung und ihr Stabilitätsgebiet im Parameterraum. Theoretikum Christian Brettschneider

Eine stochastische verzögerte Differentialgleichung und ihr Stabilitätsgebiet im Parameterraum. Theoretikum Christian Brettschneider Eine sochasische verzögere Differenialgleichung und ihr Sabiliäsgebie im Parameerraum Theoreikum Chrisian Breschneider 16. März 26 Inhalsverzeichnis 1 Einleiung 3 2 Sabiliäsgebie des deerminisischen Sysems

Mehr

Stabile periodische Bewegungen (Grenzzyklen)

Stabile periodische Bewegungen (Grenzzyklen) Stabile periodische Bewegungen (Grenzzyklen) 1. Nichtlineare Systeme mit zwei Gleichungen Prinzipiell neu: Alle Systeme mit mindestens 2 unabhängigen DGL können als Lösungen geschlossene Kurven im Phasenraum

Mehr

8.2 Die Theorie stetiger Halbgruppen im Banachraum

8.2 Die Theorie stetiger Halbgruppen im Banachraum 8.2 Die Theorie seiger Halbgruppen im Banachraum 3 8.2 Die Theorie seiger Halbgruppen im Banachraum Im weieren sellen wir einige allgemeine Aussagen der Theorie seiger Halbgruppen in Banachräumen zusammen.

Mehr

P105. ü j (t) = c 2[ u j 1 (t) 2u j (t) + u j+1 (t) ] mit u 0 (t) = u n+1 (t) = 0.

P105. ü j (t) = c 2[ u j 1 (t) 2u j (t) + u j+1 (t) ] mit u 0 (t) = u n+1 (t) = 0. Prof Dr Michael Eisermann Höhere Mahemaik 3 (verief Kapiel P Auonome Sseme, Gleichgewich und Sabiliä Wie is es möglich, daß die Mahemaik, lezlich doch ein Produk menschlichen Denkens unabhängig von der

Mehr

Kapitel : Exponentiell-beschränktes Wachstum

Kapitel : Exponentiell-beschränktes Wachstum Wachsumsprozesse Kapiel : Exponeniell-beschränkes Wachsum Die Grundbegriffe aus wachsum.xmcd werden auch hier verwende! Wir verwenden nun eine Angabe aus der Biologie und in einem weieren Beispiel eines

Mehr

4.7. Exponential- und Logarithmusfunktionen

4.7. Exponential- und Logarithmusfunktionen ... Eonenialfunkionen Definiion:.. Eonenial- und Logarihmusfunkionen Die Funkion f() = c a mi D = R, c und a R + \{}heiß Eonenialfunkion zur Basis a. Die Eonenialfunkion zur Basis a = e mi der Eulerschen

Mehr

Physik der sozio-ökonomischen Systeme mit dem Computer. 4. Vorlesung

Physik der sozio-ökonomischen Systeme mit dem Computer. 4. Vorlesung Physik der sozio-ökonomischen Syseme mi dem Compuer PC-POOL RAUM 0.0 JOHANN WOLFGANG GOETHE UNIVERSITÄT 0..07 4. Vorlesung MATTHIAS HANAUSKE FRANKFURT INSTITUTE FOR ADVANCED STUDIES JOHANN WOLFGANG GOETHE

Mehr

Diskrete Integratoren und Ihre Eigenschaften

Diskrete Integratoren und Ihre Eigenschaften Diskree Inegraoren und Ihre Eigenschafen Whie Paper von Dipl.-Ing. Ingo Völlmecke Indusrielle eglersrukuren werden im Allgemeinen mi Hilfe von Inegraoren aufgebau. Aufgrund des analogen Schalungsaufbaus

Mehr

2. Dynamische Systeme und ihre Softwaremodelle

2. Dynamische Systeme und ihre Softwaremodelle 2. Dynamische Syseme und ihre Sofwaremodelle 2.2.1. Gewinnung von Modellen 2.2.1.1. Theoreische Analyse 2.2.1.2 Grundypen linearer Syseme Proporionalsysem (P) x y P Sprunganwor dy dx = K P Differenialgleichung

Mehr

mathphys-online Abiturprüfung Mathematik 13 Technik Differentialgleichungen in Anwendungen - Lösung Aufgabe 1: Abi 1999 / AI

mathphys-online Abiturprüfung Mathematik 13 Technik Differentialgleichungen in Anwendungen - Lösung Aufgabe 1: Abi 1999 / AI mahphys-online Abiurprüfung Mahemai 3 Techni Differenialgleichungen in Anwendungen - ösung Aufgabe : Abi 999 / AI Ein erhizer Körper ühl sich im aufe der Zei allmählich auf die onsane Temperaur a (in C)

Mehr

Flugzeugaerodynamik I Lösungsblatt 2

Flugzeugaerodynamik I Lösungsblatt 2 Flugzeugaerodynamik I Lösungsbla 2 Lösung Aufgabe Bei der vorliegenden Aufgabe handel es sich um die Nachrechenaufgabe der Skele Theorie. a) Der Koeffizien A 1 is durch die Wölbung des gegebenen Skeles

Mehr

Theoretische Physik I/II

Theoretische Physik I/II Theoreische Physik I/II Prof. Dr. M. Bleicher Insiu für Theoreische Physik J.. Goehe-Universiä Frankfur Aufgabenzeel IV 9. Mai hp://h.physik.uni-frankfur.de/ baeuchle/u Lösungen Die Vorlesung wird durch

Mehr

Bildmaterial zur Vorlesung Regelungstechnik Teil I Die Regelstrecke. Wintersemester 2014 Prof. Dr.-Ing. habil. Klaus-Peter Döge

Bildmaterial zur Vorlesung Regelungstechnik Teil I Die Regelstrecke. Wintersemester 2014 Prof. Dr.-Ing. habil. Klaus-Peter Döge Bildmaerial zur Vorlesung Regelungsechnik Teil I Die Regelsrecke Winersemeser 214 Prof. Dr.-Ing. habil. Klaus-Peer Döge 2 Regelung des Füllsandes eines Flüssigkeisbehälers mi Abfluss Sollwervorgabe Regler:

Mehr

Definition Ein Homomorphismus von Lie-Algebren. Für uns ist vor allem die im folgenden Satz eingeführte Darstellung von Bedeutung.

Definition Ein Homomorphismus von Lie-Algebren. Für uns ist vor allem die im folgenden Satz eingeführte Darstellung von Bedeutung. 1 Lie-Gruppen 1. Lie-Algebren Im lezen Vorrag haben wir bereis das Konzep der Lie-Algebren kennengelern. Zunächs werde ich noch einige weiere grundlegende Definiionen dazu angeben. In diesem Kapiel sei

Mehr

Differentialgleichungen: Einführung

Differentialgleichungen: Einführung Kapiel 12 Differenialgleichungen: Einführung In diesem Kapiel enwickeln wir keine größere Theorie, sondern geben nur einige Rezepe für die Lösung spezieller Differenialgleichungen an. Die Rezepe dienen

Mehr

Systemeigenschaften, Nomenklatur und Modellbildung

Systemeigenschaften, Nomenklatur und Modellbildung Fakulä Informaik Insiu für Angewande Informaik, Professur für Technische Informaionssyseme Sysemeigenschafen, Nomenklaur und Dresden, den 03.08.2011 Gliederung Vorbemerkungen Weiere Sysemeigenschafen Nomenklaur

Mehr

Motivation der Dierenzial- und Integralrechnung

Motivation der Dierenzial- und Integralrechnung Moivaion der Dierenzial- und Inegralrechnung Fakulä Grundlagen HS Esslingen SS 2016 Fakulä Grundlagen (HS Esslingen) SS 2016 1 / 12 Übersich 1 Vorberachungen zur Dierenzial- und Inegralrechnung Ableiungsbegri

Mehr

Schwingungen g und Wellen II Wellen, Gedämpfte Schwingungen

Schwingungen g und Wellen II Wellen, Gedämpfte Schwingungen Physik A VL1 (7.11.1) Schwingngen g nd Wellen II Wellen, Gedämpfe Schwingngen Wellen Gedämpfe Schwingngen schwache Dämpfng aperiodischer Grenzfall Kriechfall 1 Ei Erinnerng: Beschreibng von Schwingngen

Mehr

Erhaltungsgleichungen und Differentialgleichungen. Arezou Cholongar. Wintersemester 2010/11

Erhaltungsgleichungen und Differentialgleichungen. Arezou Cholongar. Wintersemester 2010/11 Erhalungsgleichungen und Differenialgleichungen Arezou Cholongar Winersemeser 00/ 04..00 Arezou Cholongar(Universiä Trier) Inhalsverzeichnis Einleiung Erhalungssaz. Die Advekionsgleichung.. Variablen Koeffizienen.

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

Zeitreihenökonometrie

Zeitreihenökonometrie ifo Insiu für Wirschafsforschung an der Universiä München Zeireihenökonomerie Kapiel 6 Nichsaionäre univariae Zeireihenmodelle ifo Insiu für Wirschafsforschung an der Universiä München Nichsaionäre Prozesse

Mehr

Gewöhnliche Differentialgleichungen - Abiturprüfungsaufgaben mit Anwendungen -

Gewöhnliche Differentialgleichungen - Abiturprüfungsaufgaben mit Anwendungen - Aufgabe : Abi 999 / AI Gewöhnliche Differenialgleichungen - Abiurprüfungsaufgaben mi Anwendungen - Ein erhizer Körper ühl sich im aufe der Zei allmählich auf die onsane Temperaur a (in C) seiner Umgebung

Mehr

Karlsruher Institut für Technologie (KIT) Institut für Analysis Dr. A. Müller-Rettkowski Dipl.-Math. M. Uhl. Sommersemester 2011

Karlsruher Institut für Technologie (KIT) Institut für Analysis Dr. A. Müller-Rettkowski Dipl.-Math. M. Uhl. Sommersemester 2011 Karlsruher Insiu für Technologie KIT) Insiu für Analysis Dr. A. Müller-Rekowski Dipl.-Mah. M. Uhl Sommersemeser Höhere Mahemaik II für die Fachrichungen Elekroingenieurwesen und Physik inklusive Komplee

Mehr

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals 1/8 Grundidee der Inegralrechnung Inegralrechnung Die Inegralrechnung is neben der Differenialrechnung der wichigse Zweig der Analysis. Sie is aus dem Problem der Flächen- und Volumenberechnung ensanden.

Mehr

Inhaltsverzeichnis. 4 Gleichgewichte Der Fluss einer Differentialgleichung... 97

Inhaltsverzeichnis. 4 Gleichgewichte Der Fluss einer Differentialgleichung... 97 Inhalsverzeichnis Differenialgleichungen erser Ordnung 5. Allgemeine Definiion und Beispiele... 5.2 Lineare Differenialgleichungen......3 Lösungsmehoden für spezielle Typen von Dgln..Ordnung... 3.3. Die

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwere un Eigenvekoren Vorbemerkung: Is ie n n Marix inverierbar, so ha as lineare Gleichungssysem A x b für jees b genau eine Lösung, nämlich x A b. Grun: i A x A A b b, ii Is y eine weiere Lösung,

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

Motivation: Sampling. (14) Sampling. Motivation: Sampling. Beispiele. Beispiel Kreisscheibe. Beispiel: Kreisscheibe

Motivation: Sampling. (14) Sampling. Motivation: Sampling. Beispiele. Beispiel Kreisscheibe. Beispiel: Kreisscheibe Moivaion: Sampling (4) Sampling Vorlesung Phoorealisische Compuergraphik S. Müller Ein naiver (und sehr eurer) Ansaz, die Rendering Equaion mi Hilfe eines Rayracing-Ansazes zu lösen, wäre wird eine diffuse

Mehr

Zeitreihenökonometrie

Zeitreihenökonometrie Zeireihenökonomerie Kapiel 4 Schäzung univariaer Zeireihenmodelle Y = c+ α Y + + α Y + ε + βε + + β ε p p q q Problem: Direke Schäzung der Parameer α,, αp und β,, βq über OLS nich möglich, da die Residuen

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr

Motivation der Dierenzial- und Integralrechnung

Motivation der Dierenzial- und Integralrechnung Moivaion der Dierenzial- und Inegralrechnung Fakulä Grundlagen Hochschule Esslingen SS 2010 4 3 2 1 0 5 10 15 20 25 30 Fakulä Grundlagen (Hochschule Esslingen) SS 2010 1 / 9 Übersich 1 Vorberachungen Ableiungsbegri

Mehr

Grundlagen der Elektrotechnik 3

Grundlagen der Elektrotechnik 3 Grundlagen der Elekroechnik 3 Kapiel 3. Schalvorgänge - Die aplace Transformaion Prof. Dr.-Ing. I. Willms Grundlagen der Elekroechnik 3 S. Fachgebie Nachrichenechnische Syseme 3.. Einführung Nuzung einer

Mehr

4.2.5 Energie und Energiedichte im Magnetfeld

4.2.5 Energie und Energiedichte im Magnetfeld 4..5 Energie und Energiediche im Magnefeld - die magneische Energie W ui dψ ( ) i i d m ψ ψ Ψ d dw mag V dφ V V Φ Wmag V ( Φ ) dφ Tuorium jeweils Miwoch 3: Uhr Hu - die Energiediche im magneischen Feld

Mehr

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge heinisch-wesfälische Technische Hochschule Aachen Insiu für Sromricherechni und Elerische Anriebe Universiäsprofessor Dr. ir. i W. De Doncer Grundgebiee der Eleroechni II Feedbacaufgabe: Transiene Vorgänge

Mehr

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat Fachag Mahemaik: Kurvenscharen Ablauf: 1. Sunde Gemeinsame Einsiegsaufgabe. Sunde Sammgruppenaufgaben Sammgruppen (a bis 6 Schüler) Jedes Gruppenmiglied erhäl eine unerschiedliche Aufgabe A, B, C, D in

Mehr

Technische Universität München. Lösung Montag SS 2012

Technische Universität München. Lösung Montag SS 2012 Technische Universiä München Andreas Wörfel Ferienkurs Analysis für Physiker Lösung Monag SS 0 Aufgabe Gradien und Tangene ( ) Besimmen Sie zur Funkion f(x, y) = x y + xy + y die pariellen Ableiungen,

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

Das Quadrupol-Massenfilter

Das Quadrupol-Massenfilter Das Quadrupol-assenfiler Idee: Ionen Ladung zu asse: Q/ werden durch zeiabhängige Elekrische Felder E so abgelenk, daß nur besimme Q/ auf der Sollbahn durch das assenspekromeer bleiben. Wolfgang Paul,

Mehr

3.3 Langevin Gleichung Bewegungsgleichung der Brown schen Bewegung Beobachtung: 1827 R. Brown, Erklärung: 1905 A. Einstein, M.

3.3 Langevin Gleichung Bewegungsgleichung der Brown schen Bewegung Beobachtung: 1827 R. Brown, Erklärung: 1905 A. Einstein, M. Langevin Gleichung 3.3 Langevin Gleichung Bewegungsgleichung der Brown schen Bewegung Beobachung: 187 R. Brown, Erklärung: 195. Einsein, M. Smoluchovski (c Encyclopedia Briannica 1911 (c Wikimedia Commons

Mehr

Die Exponentialfunktion

Die Exponentialfunktion Die Eponenilunkion Deiniion Es sei eine posiive reelle Zhl,,. Eine Funkion R + R R : heiß Eponenilunkion. Die posiive reelle Zhl heiß Bsis und die reele Zhl R Eponen der Funkion. Mnchml heiß uch Wchsumskor.

Mehr

Modellprädiktive Regelung nichtlinearer sampled-data Systeme

Modellprädiktive Regelung nichtlinearer sampled-data Systeme Modellprädikive Regelung nichlinearer sampled-daa Syseme Diplomarbei von Jürgen Pannek FAKULTÄT FÜR MATHEMATIK UND PHYSIK MATHEMATISCHES INSTITUT Daum: 17. Februar 2005 Aufgabensellung / Bereuung: Prof.

Mehr

3. Anlaufgesetze/Zeitgesetze

3. Anlaufgesetze/Zeitgesetze 3. Anlaufgeseze/Zeigeseze 24 3. Anlaufgeseze/Zeigeseze Die Anlaufgeseze (Zeigeseze) beschreiben den Verlauf der Schichdicenänderung bzw. der Gewichsänderung in Abhängigei von der Zei und gesaen in der

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Sequenzanalyse Überblick Sh Schrie der Daenanalyse: Daenvorverarbeiung Problemanalyse Problemlösung Anwendung der Lösung Aggregaion und Selekion von Daen. Inegraion

Mehr