1 Physikalische Grundlagen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1 Physikalische Grundlagen"

Transkript

1 Qaniaive Messng der spezifischen Wärmekapaziä nd der Schmelzwärme einer eekischen Legierng (SWE) Sichwore: Innere Energie, Schmelzenergie, hasenmwandlng hysikalische Grndlagen. Wärmekapaziä nd Schmelzkrve Die Wärmekapaziä beschreib die Fähigkei eines Soffes, Wärme z speichern, man bezeichne sie mi dq () Je größer das Wärmespeichervermögen is, mso kleiner wird daher der Temperaransieg beim Zführen der Wärme. Bezieh man die Wärmekapaziä af die Masse m des Soffes, so erhäl man die spezifische Wärmekapaziä dq c () m m Beim hasenübergang fes flüssig änder sich die Temperar bei Wärmezfhr nich. Daher dien die zgeführe Energie dem Afbrechen der Bindngen des Feskörpers. Die bei konsanem Drck nd konsaner Temperar zgeführe Wärme erhöh die Enalpie H des Soffes. H H H (3) flüssig fes schmelz H schmelz wird als spezifische Schmelzenalpie bezeichne; sie is af die Masse des schmelzenden Soffes bezogen. Beim Ersarren der Flüssigkei wird diese Wärme wieder frei. In einem Temperar-Zei-Diagramm (Abb.) läss sich das Schmelzen delich zeigen. Daz wird der robe eine konsane leisng zgeführ, so dass die Temperar znächs mi der Energiezfhr seig. Die Seigng der Temperar-Zeikrve is ein Maß für die spezifische Wärmekapaziä des Feskörpers bzw. der Flüssigkei, das horizonale Inervall is ein Maß für die Schmelzenalpie. Das Inegral über der Zei sell die eingebrache Wärmemenge dar. Drei Bereiche sind erkennbar: ) Erwärmen fese hase ) Schmelzphase 3) Erwärmen flüssige hase.

2 . Temperarmessng mi dem Thermoelemen nd Eichng Thermoelemene besehen as Drähen verschiedenen Mealls (Me, Me ), deren Enden verbnden sind. Trenn man einen Drah af nd schale ein Volmeer dazwischen, so miss man eine Thermospannng, falls zwischen beiden Verbindngssellen eine Temperardifferenz beseh (Seebeck-Effek). Häl man eine Löselle des Thermoelemenes af konsaner Temperar T ef, indem man sie beispielsweise in Eiswasser ach, so is die Thermospannng ein Maß für die Temperar T der anderen Konakselle. Thermospannngen miss man ner Leerlafbedingngen, d. h. der Widersand des Volmeers is wesenlich größer als der Innenwidersand des Thermoelemenes. Thermoelemene besizen eine sehr kleine Wärmekapaziä, ennehmen dem Messobjek kam Wärme nd sprechen schnell an. Allerdings is die Thermokraf sehr klein, einige 0μV/K, was sehr sabile Versärker erforder. Konakspannngen ähnlicher Größe können drch nkonrolliere Temperarsprünge im Messafba sehr leich eingeschlepp werden. Die Temperarabhängigkei der Thermospannng U wird für ein Inervall von ca. 00 K drch ein olynom. Ordnng angenäher: U a T T b T T c ref ref (4) Die Konsane c solle eigenlich nll sein, aber die Thermospannngen mss ner Zhilfenahme eines elekrischen Versärkers gemessen werden, da sie sehr klein is. Daher kann ein Wer von c ngleich nll reslieren, wenn der Versärker einen Nllpnkfehler ha. Die beiden anderen Temperaren können Sie an einem Meallblock abgreifen, der drch einen Thermosa af gena definierer Temperar gehalen wird. Wenn Sie Temperardifferenzen nd Spannngen in obige Gleichng einsezen, enseh ein lineares Gleichngssysem für die beiden Unbekannen a nd b. Das können Sie enweder per Hand lösen oder mi einem Maemaikprogramm. Sie können ach ein Daenanalyseprogramm benzen. Daenanalyseprogramme sind normalerweise in der Lage, ein beliebiges olynom drch Messpnke z legen nd die olynomkoeffizienen direk anzzeigen..3 Theoreischer Hinergrnd Drch Anliegen einer am widersand anliegenden Spannng nd eines drchfließenden sroms I wird der robe eine leisng zgeführ U I. (5) Diese bewirk eine koninierliche Erwärmng der robe. Wenn keine Wärmeverlse vorliegen, so wird die gesame elekrische Energie in Form von Wärme nserer robe zgeführ. Dies is allerdings nr der Idealfall. Normalerweise wird nich nr die robe, sondern ach der, in dem sich nsere robe befinde, erwärm. Die Wärmekapaziä des s läss sich as der Masse nd der spezifischen Wärmekapaziä des maerials berechnen. Zdem isolier die Isolierkappe nich vollsändig, d.h. Wärme wird an die Umgebngslf abgegeben. Der Wärmeranspor drch die Isolierkappe wird drch Isolaion T Tp T k A T p T (6) beschrieben. k is der Wärmedrchgangskoeffizien oder der "k-wer" nd A die Aßenfläche der Kappe. T is die Umgebngsemperar. Dieser Ansaz is analog z den Gleichngen beim elekrischen Srom. Bei Wärmesrömen is eine Temperardifferenz ΔT die reibende Kraf; dies is analog z elekrischen Srömen, bei denen eine oenialdifferenz die reibende Kraf is.

3 Somi folg ner Berücksichigng der Wärmeverlse: r obe U I r obe r obe Isolaion T T dq o r obe dq T T Isolaion (7) Hierbei wrde angenommen, dass robe nd af die gleiche Temperar erwärm werden. Aßerdem wrde definier: o r. (8) obe Afgelös nach T ergib sich: T T o T T o T T o (9) Inegraion liefer: T T ln (0) o Dabei wrde die charakerisische Zeikonsane T o verwende. Afgelös nach T ergib sich: / T e. () As der genaen Form der Krve kann man af die Größe der Wärmeverlse schließen. Somi folg: / / e e. () o.4 Schmelzwärme Während der Schmelzphase bleib die Temperar konsan, d.h. alle zgeführe Energie wird für den hasenübergang fes flüssig verwende. Diese konsane Temperar is die Schmelzemperar T schmelz. Die während der Schmelzphase zgeführe Wärmemenge Q schmelz ergib sich z: Q (3) schmelz heiz Während der Schmelzphase geh ein Aneil der zgeführen leisng drch die Isolaion ( Isolaion ) verloren, d.h. die während der Schmelzphase zgeführe Wärmemenge Q schmelz läss sich beschreiben drch: 3

4 Q. (4) schmelz heiz iso Da die leisng während des Verschs nich geänder wird, gil = cons. Nach Gl. 6 lassen sich die Wärmeverlse drch die Isolierkappe beschreiben drch: Isolaion T Tp T k A T p T. (5) Während des Schmelzvorgangs änder sich die robenemperar nich, d.h. Isolaion cons. Eingesez ergib sich: Q schmelz Isolaion Isolaion Isolaion. (6) Wenn das Experimen ner Amosphärendrck Schmelzenalpie. drchgeführ wird, dann is die Schmelzwärme gleich der Afgabensellng nd Aswerng. Kalibrieren nd Eichen Thermoelemen a. Nehmen Sie drei Messpnke zr Ersellng einer Thermoelemen-Eichkrve af. Verwenden Sie als Temperaren die eferenzemperar (Eiswasser) nd die beiden, die sie an der emperarsabilisieren Bohrng des Verschsafbas einsellen können. b. Berechnen Sie daras mi Hilfe von Gl. 4 die Koeffizienen für die Thermoelemen-Eichkrve. Diese Koeffizienen benöigen Sie, m die späer im Versch gemessenen Thermospannngen in Temperaren mzrechnen. c. Hinweis: Drch die drei Eichpnke soll la Gl. 4 ein olynom.ordnng gefie werden. Wenn der Fi für den Koeffizienen a < 0-5 ergib, dann wählen Sie kein olynom.ordnng, sondern eines.ordnng, also ein Gerade. Der qadraische Aneil is vernachlässigbar. d. Messen Sie ach die Umgebngsemperar, indem Sie eines der beiden Enden des Thermoelemenes in die Lf halen. echnen Sie diese gemessene Thermospannng in eine Temperar m nd vergleichen Sie diese späer mi Ihren Messweren. 4

5 . Besimmng der Schmelzkrve a. Messen Sie bei konsaner leisng die Thermospannng als Fnkion der Zei! b. echnen Sie mi Hilfe der Koeffizienen für die Thermoelemen-Eichkrve die Thermospannngen in Temperaren m! c. Zeichnen Sie die Temperar-Zei-Krve T()!.3 Ermilng der Wärmekapaziä der robe nd des Wärmewidersands a. Berachen Sie das Erwärmen der fesen hase bei Ihrer krve T(). Ermieln Sie hierfür znächs die Zeipnke nd. Da die krve keine Knicke wie in Abb. afweis, erschwer dies die Ermilng der Zeipnke. Die Unsicherheien Δ nd Δ lassen sich as den Krümmngsradien dieser ndngen abschäzen. Wenn die Krümmngsradien nerschiedlich sind, so können ach Δ nd Δ verschieden sein. b. Ermieln Sie die Wärmekapaziä der robe im fesen Zsand nd den für die Verlse veranworlichen Wärmewidersand, indem Sie per omper die eoreische Fnkion an den Beginn der Temperar-Zei-Krve anfien (Gl. ). Fiparameer sind bei Ihnen o, der Wärmewidersand sowie die Umgebngsemperar. c. Die Umgebngsemperar wrde bereis bei der Eichng des Thermoelemens besimm. Überprüfen Sie, ob beide Were zsammenpassen (sam Angabe von Unsicherheien). d. Berechnen Sie dann as der Wärmekapaziä die spezifische Wärmekapaziä des Eekikms (sam Unsicherhei) ner Berücksichigng der Wärmekapaziä des s. Verwenden Sie daz: probe = o gefäß. gefäß läss sich as den Sysemdaen (s. S. 8) berechnen..4 Ermilng der spezifischen Schmelzwärme a. Ermieln Sie as der krve Zeipnke nd der Schmelzphase. b. Hinweis: Wenn Ihre krve während der Schmelzphase nich perfek konsan is, so mieln Sie in diesem Abschni ner Verwendng von beispielsweise SciDavis. Somi erhalen Sie ach die Schmelzemperar. c. Berechnen Sie nn as der dem Diagramm ennommenen Schmelzdaer die spezifische Schmelzwärme des Maerials (sam Unsicherhei). Verwenden Sie daz Gl Zsammenfassng Schreiben Sie in einer Zsammenfassng von wenigen Säzen, was wie gemessen nd asgewere wrde nd welche Were dabei heraskamen (d.h. spezifische Wärmekapaziä nd spezifische Schmelzwärme sam Unsicherheien). 5

6 3 Verschsdrchführng 3. Verschsafba Abb. : Messafba Volmeer für spirale Amperemeer für ng (empfohlener Wer: ca..8a) 3 Zeimessgerä 4 Volmeer für Thermospannng 5 Thermoelemen-Anschlssbchsen 6 Kalibrierheizng mi Bohrng für das Thermoelemen 7 Aswahlschaler für Kalibrieremperar 8 Temperaranzeige der Kalibriereinhei 9 öhrchen zm Einführen des Thermoelemenes in die Meallschmelze 0 Schaler in Sellng ""für Kalibrierng Schaler in Sellng ""für Messng an der Schmelze LED-Anzeige für Überemperar ese für Uhr 3 egler für Spannng bzw. Srom 3. Verschsvorbereingen Zers müssen Sie überprüfen, ob Ihre robe fes is. Beachen Sie dabei folgende Sicherheishinweise: Hinweise zm Experimen!! Gefahr!! Woodsches Meall enäl das gifige admim. Lassen Sie deshalb das Maerial im. Verschüen Sie niemals das flüssige Meall. Berühren Sie es nich mi den Fingern! Führen Sie nn folgenden Vorversch as: Bringen Sie den roen Kippschaler in Sellng 0. Schalen Sie den Nezschaler des Geräes an der ückwand ein. Messen Sie znächs die robenemperar mi dem Thermoelemen gegen Lf. Zeig die Thermospannng < mv an, dann können Sie mi dem Experimen beginnen. Wenn nich, dann müssen Sie die robe drch eine kale ersezen. Nehmen Sie daz die Wärmeschzhabe ab nd heben die robe sehr v o r s i c h i g s e n kr e c h n a c h o b e n heras. Vorsich: Bei Thermospannngen >.0 mv is die robe noch flüssig! 6

7 3.3 Kalibrieren Thermoelemen Verwenden Sie als Temperaren die eferenzemperar (Eiswasser) nd die beiden, die Sie an der emperarsabilisieren Bohrng des Verschsafbas einsellen können. Messen Sie die Thermospannng U beim Temperarfixpnk Eiswasser nd den beiden fesen Temperaren des Kalibriergeräes. Füllen sie den Becher mi Eiswasser nd waren Sie, bis sich ner gelegenlichem Umrühren ein ermisches Gleichgewich eingesell ha. Sellen Sie den roen Kippschaler in osiion "" nd den schwarzen Kippschaler am Kalibriergerä in Sellng ϑ (Abb. 4). Bis zm Erreichen der Temperar ϑ vergehen ca. 4 Minen. In der Zwischenzei prüfen Sie die Offsespannng des Thermospannngsversärkers (Abb. 3). Daz müssen die eferenz- nd Messselle des Thermoelemenes gleiche Temperar haben. (Ach die Z- nd Ableingen, sowie die Klemmsellen müssen gleiche Temperar haben). Die Thermospannngsanzeige soll 0 mv beragen. Es gib keine elekronische Abgleichmöglichkei. Messen Sie 3 Minen lang die Thermospannng nd noieren Sie alle 50 s den Wer. Eine ewa vorhandene Offsespannng wird der Konsanen c im olynom zgeordne, sie ensprich dem Nllpnk im Spannngs-Temperar-Diagramm. Wenn die Temperar ϑ konsan bleib, schieben Sie ein Konakpaar des Thermoelemenes drch die Bohrng in den Messingblock des Thermosaen nd messen die Thermospannng. Wiederholen Sie diese Messng für die Temperar ϑ. Messdaer ca. 3 min. Abb. 3: Nllabgleich Messdaer ca. 5 min. Abb. 4: Kalibrierschalng Messdaer ca. 0 min Abb. 5: Messschalng 3.4 Messng Umgebngsemperar Messen Sie ach die Umgebngsemperar, indem eines der beiden Enden des Thermoelemenes in die Lf halen. 7

8 3.5 Messng Schmelzdiagramm Die robe erhäl einen konsanen Wärmesrom drch eine Gleichsromheizng. Spannng nd Srom sind an den Digialanzeigen ablesbar. Die wendel lieg direk im robenbehäler, somi wird die gesame Leisng in den robenbehäler eingeragen. Mi dem Einschalen des Sromes (Kippschaler in Sellng ) miss eine Uhr die Zei, während die robe geheiz wird. Der Kippschaler in Sellng 0 nerbrich den Srom nd die Zeimessng (Zei- ese mi roem Taser neben dem Zeizähler). Wählen Sie die Messschalng nach Abb. 5. Schalen Sie die ng ein nd sellen den Srom af.8 A ein! en Sie nich höher als ewa 0. Dann is die Thermospannng U ewa 4.0mV. Lesen Sie die Temperar in regelmäßigen Absänden (30 s) ab. Eine Uhr is am Verschsafba vorhanden. Sie läss sich mi dem roen Taser af nll sellen nd läf nr dann, wenn ach die ng eingeschale is. Der Schmelzvorgang kann 0 Minen daern! Wenn die Sicherng der elekronik den srom früher asschale, is das Experimen beende. 6 Sysemdaen robe: Woodsches Meall (50% Bi, 5% b,,5% Sn,,5% d) Masse der robe: abwiegen Masse des robeniegels: g spez. Wärmekapaziä des J maerials: 0.48 gk Thermoelemen: Nickelchrom-Konsanan Eingangswidersand des Thermospannngsmessversärkers: 0 kohm Lineariä der Messgeräe: % ± Digi Uhrzei: 0,0 % ± Digi Abb. 6: Gesamschalbild nd rinzipschalng des Thermoelemenes 8

GRUNDLAGENLABOR CLASSIC RC-GLIED

GRUNDLAGENLABOR CLASSIC RC-GLIED GUNDLAGNLABO LASSI -GLID Inhal: 1. inleing nd Zielsezng...2 2. Theoreische Afgaben - Vorbereing...2 3. Prakische Messafgaben...4 Anhang: in- nd Asschalvorgänge...5 Filename: Version: Ahor: _Glied_2_.doc

Mehr

Latente Wärme und Wärmeleitfähigkeit

Latente Wärme und Wärmeleitfähigkeit Versuch 5 Laene Wärme und Wärmeleifähigkei Aufgabe: Nehmen Sie für die Subsanz,6-Hexandiol Ersarrungskurven auf und ermieln Sie daraus die laene Wärme beim Phasenübergang flüssig-fes sowie den Wärmedurchgangskoeffizienen

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 001 - hp://www.emah.de 1 Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR Ihr Schabild sei K. a Unersche K af Asympoen, Schnipnke

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002 Analog-Elekronik Prookoll - Transiorgrundschalungen André Grüneberg Janko Lözsch Versuch: 07. Januar 2002 Prookoll: 25. Januar 2002 1 Vorberachungen Bei Verwendung verschiedene Transisor-Grundschalungen

Mehr

Herleitung: Effektivwerte

Herleitung: Effektivwerte Herleing: Effekivwere elekre.gihb.io December 16, 1 1 Definiion Der Effekivwer is die Spannng einer Wechselgröße im zeilichen Miel, drch die mi einer Gleichqelle die selbe Leisng an einem Verbracher abfallen

Mehr

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 INSIU FÜR NGENDE HYSI hysikalisches rakikum für Suierene er Ingenieurswissenschafen Universiä Hamburg, Jungiussraße 11 elier-ärmepumpe 1 Ziel äleleisung, ärmeleisung un ie Leisungsziffer einer elier-ärmepumpe

Mehr

7 Drehstromgleichrichter

7 Drehstromgleichrichter Drehsromgleichricher 7 Drehsromgleichricher 7.1 Mielpnk-Schalng (Halbbrücke) (3-plsiger Gleichricher) In bbildng 7-1 sind die drei Sekndärwicklngen eines Drehsrom-Transformaors in Sernschalng dargesell.

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 c 001 by Rainer Müller - www.emah.de 1 Lösng Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR a Asympoen Senkreche Asympoen Es

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1

INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1 INPUT-EVALUATIN DER ZHW: PHYSIK SEITE 1 Serie 1 1. Zwei Personen ziehen mi je 500 N an den Enden eines Seils. Das Seil ha eine Reissfesigkei von 600 N. Welche der vier folgenden Aussagen is physikalisch

Mehr

Aufbau von faserbasierten Interferometern für die Quantenkryptografie

Aufbau von faserbasierten Interferometern für die Quantenkryptografie Aufbau von faserbasieren nerferomeern für die uanenkrypografie - Gehäuse, Phasensabilisierung, Fasereinbau - Maserarbei im Sudiengang Elekroechnik und nformaionsechnik Veriefungsrichung Phoonik an der

Mehr

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu Fragen / Themen zur Vorbereiung auf die mündliche Prüfung in dem Fach Berücksichigung naurwissenschaflicher und echnischer Gesezmäßigkeien Indusriemeiser Meall / Neu Die hier zusammengesellen Fragen sollen

Mehr

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion:

Mehr

Regelungs- und Systemtechnik 3

Regelungs- und Systemtechnik 3 Regelng Mecharonischer yseme, Regelngs- nd ysemechnik 3 Kaiel 5: Riccai-Oimal-Regler ro. Dr.-Ing. Li Fachgebie imlaion nd Oimale rozesse O Herleing nd nwendng des Riccai-Oimal-Reglers R l Vorkennnisse:

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

1. Theoretische Grundlagen

1. Theoretische Grundlagen Fachbereich Elektrotechnik / Informationstechnik Elektrische Mess- nd Prüftechnik Laborpraktikm Abgabe der Aswertng dieses Verschs ist Vorassetzng für die Zlassng zm folgenden ermin Grndlagen der Leistngsmessng

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum HAW Hamburg Fakulä Life Sciences - Physiklabor Physikalisches Prakikum Auf- und Enladungen von Kondensaoren in -Gliedern Messung von Kapaziäen Elekrische Schalungen mi -Gliedern finde man z. B. in Funkionsgeneraoren

Mehr

4.7. Prüfungsaufgaben zum beschränkten Wachstum

4.7. Prüfungsaufgaben zum beschränkten Wachstum .7. Prüfungsaufgaben zum beschränken Wachsum Aufgabe : Exponenielle Abnahme und beschränkes Wachsum In einem Raum befinden sich eine Million Radonaome. Duch radioakiven Zerfall verminder sich die Zahl

Mehr

3.2 Festlegung der relevanten Brandszenarien

3.2 Festlegung der relevanten Brandszenarien B Anwendungsbeispiel Berechnungen Seie 70.2 Feslegung der relevanen Brandszenarien Eine der wichigsen Aufgaben beim Nachweis miels der Ingenieurmehoden im Brandschuz is die Auswahl und Definiion der relevanen

Mehr

Labor Messtechnik Versuch 4 Dehnungsmesstechnik

Labor Messtechnik Versuch 4 Dehnungsmesstechnik F Ingenierwesen FR Maschinenba Versch 4 Dehnngsmesstechnik Seite 1 von 8 Versch 4: Dehnngsmesstechnik 1. Verschsafba 1.1. Umfang des Versches Im Versch werden folgende Themenkreise behandelt: - Verschsstand

Mehr

Einführung in FEM Motivationsbeispiel. Berechnungsbeispiel COMSOL Multiphysics: Elastizitätsberechnung eines F1 Frontflügels. www.comsol.

Einführung in FEM Motivationsbeispiel. Berechnungsbeispiel COMSOL Multiphysics: Elastizitätsberechnung eines F1 Frontflügels. www.comsol. Einführng in FEM Motivationsbeispiel Berechnngsbeispiel COMSO Mltiphysics: Elastizitätsberechnng eines F Frontflügels. www.comsol.de Originalgeometrie CAD-Modell mit Berechnngsgitter FEM Ergebnis der Aslenkng

Mehr

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Projek 2H 25/6 Formelzeel lekroechnik Teilübng: Kondensaor Lade-nladevorgänge Grppeneilnehmer: ajinovic, Pacar bgabedam: 23.2.26 ajinovic, Pacar Inhalsverzeichnis 2H INHLTSVZIHNIS 1. fgabensellng... 2

Mehr

Versuch 1 Schaltungen der Messtechnik

Versuch 1 Schaltungen der Messtechnik Fachhochschule Merseburg FB Informaik und Angewande Naurwissenschafen Prakikum Messechnik Versuch 1 Schalungen der Messechnik Analog-Digial-Umsezer 1. Aufgaben 1. Sägezahn-Umsezer 1.1. Bauen Sie einen

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

Die Sensitivität ist eine spezielle Form der Zinselastizität: Aufgabe 1

Die Sensitivität ist eine spezielle Form der Zinselastizität: Aufgabe 1 Neben anderen Risiken unerlieg die Invesiion in ein fesverzinsliches Werpapier dem Zinsänderungsrisiko. Dieses Risiko läss sich am einfachsen verdeulichen, indem man die Veränderung des Markweres der Anleihe

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

4. Kippschaltungen mit Komparatoren

4. Kippschaltungen mit Komparatoren 4. Kippschalungen mi Komparaoren 4. Komparaoren Wird der Operaionsversärker ohne Gegenkopplung berieben, so erhäl man einen Komparaor ohne Hserese. Seine Ausgangsspannung beräg: a max für > = a min für

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

T6 THERMOELEMENT UND ABKÜHLUNGSGESETZ

T6 THERMOELEMENT UND ABKÜHLUNGSGESETZ PHYSIKALISCHE GRUNDLAGEN Wichtige Grndbegriffe: ermspannng, ermelement, ermkraft, Astrittsarbeit, Newtnsches Abkühlngsgesetz Beschreibng eines ermelementes: Ein ermelement besteht as zwei Drähten verschiedenen

Mehr

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge heinisch-wesfälische Technische Hochschule Aachen Insiu für Sromricherechni und Elerische Anriebe Universiäsprofessor Dr. ir. i W. De Doncer Grundgebiee der Eleroechni II Feedbacaufgabe: Transiene Vorgänge

Mehr

Probeklausur 1. Thema Nr. 1 (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Probeklausur 1. Thema Nr. 1 (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten! Universiä Regensburg, Winersemeser 3/4 Examenskurs Analysis (LGy) Dr. Farid Madani Probeklausur Thema Nr. (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeien! Aufgabe (5 Punke). Man

Mehr

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung Elekrische Schwingungen und Wellen. Wechselsröme i. Wechselsromgrößen ii.wechselsromwidersand iii.verhalen von LC Kombinaionen. Elekrischer Schwingkreis 3. Elekromagneische Wellen Wechselspannung Zeilich

Mehr

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R.

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R. Abiuraufgaben Grundkurs 9 Bayern Analysis I I.). Die Abbildung zeig den Graphen G f einer ganzraionalen Funkion f drien Grades mi dem Definiionsbereich D f R. Die in der Abbildung angegebenen Punke P(

Mehr

Übungsserie: Single-Supply, Gleichrichter Dioden Anwendungen

Übungsserie: Single-Supply, Gleichrichter Dioden Anwendungen 1. Mai 216 Elekronik 1 Marin Weisenhorn Übungsserie: Single-Supply, Gleichricher Dioden Anwendungen Aufgabe 1. Gleichricher In dieser Gleichricherschalung für die USA sei f = 6 Hz. Der Effekivwer der Ausgangspannung

Mehr

Optimale Steuerung partieller Differentialgleichungen Optimal Control of Partial Differential Equations

Optimale Steuerung partieller Differentialgleichungen Optimal Control of Partial Differential Equations Prof. Dr. H. J. Pesch Lehrshl für Ingeniermahemaik Universiä Bareh Opimale Seerng parieller Differenialgleichngen Opimal Conrol of Parial Differenial Eqaions (Teil 1: WS 2011/12) 12. Übng ( Opimale Seerng

Mehr

FLAT-FACE SCHRAUBKUPPLUNG VP-Serie unter Druck kuppelbar bis PN 600

FLAT-FACE SCHRAUBKUPPLUNG VP-Serie unter Druck kuppelbar bis PN 600 VP-Serie ner Drck kppelbar bis PN 600 Die VP-Serie is nsere exklsive Fla-Face-Lösng für ansprchsvolle Anwendngen. Sie is asgeleg für hohe Arbeisdrücke nd inensive Drckimplse. Darüber hinas is das Kppeln

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sysemheorie eil A - Zeikoninuierliche Signale und Syseme - Muserlösungen Manfred Srohrmann Urban Brunner Inhal 3 Muserlösungen - Zeikoninuierliche Syseme im Zeibereich 3 3. Nachweis der ineariä... 3 3.

Mehr

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen?

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen? 1) Boschafen von Kapiel 7 Welche Eigenschafen ha ein Finanzierungs-Leasing-Verrag? Warum is die Frage, wem ein Leasingobjek zugerechne wird, wichig? FLV, vollkommener Kapialmark und Gewinnseuer Welche

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

b) Man erwärmt auf einer Herdplatte mit einer Leistung von 2,0 kw zehn Minuten lang zwei Liter Wasser von 20 C.

b) Man erwärmt auf einer Herdplatte mit einer Leistung von 2,0 kw zehn Minuten lang zwei Liter Wasser von 20 C. Wärmelehre. a) Berechne, wie viel Energie man benöig, um 250 ml Wasser von 20 C auf 95 C zu erwärmen? b) Man erwärm auf einer Herdplae mi einer Leisung von 2,0 kw zehn Minuen lang zwei Lier Wasser von

Mehr

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2)

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2) Einührung in ie Mechanik Teil : Kinemaik Ausgabe: 9 / 4 In iesem Teil er Reihe wollen wir anhan eines Zahlenbeispiels en Deomaionsgraienen als zenrale Größe zur Beschreibung er Deormaion in er Kinemaik

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten V 32 Kondensaor, Spule und Widersand Zei- u. Frequenzverhalen.Aufgaben:. Besimmen Sie das Zei- und Frequenzverhalen der Kombinaionen von Kondensaor und Widersand bzw. Spule und Widersand..2 Ermieln Sie

Mehr

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,

Mehr

8. Betriebsbedingungen elektrischer Maschinen

8. Betriebsbedingungen elektrischer Maschinen 8. Beriebsbedingungen elekrischer Maschinen Neben den Forderungen, die die Wirkungsweise an den Aufbau der elekrischen Maschinen sell, müssen bei der Konsrukion noch die Bedingungen des Aufsellungsores

Mehr

IV Kalibrierung an einem Multimeter (z.b. HP 3458A, Fluke 8508A, Keithley 617 etc.)

IV Kalibrierung an einem Multimeter (z.b. HP 3458A, Fluke 8508A, Keithley 617 etc.) H EW LET T PC K RD On Off 3458 MULTIMETER DCV CV OHM DCI CI FREQ Men croll CDCV OHMF CDCI PER Hold Tes Rese ddress Display/Window Local C o Cal L R T o Zero Trig Recall ae E NPLC N? Offse Comp N Rdgs/

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008 Phillips Kurve (Blanchard Ch.8) 151 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur:

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur: Thema 6: Kapialwer bei nich-flacher Zinssrukur: Markzinsmehode Bislang unersell: i i kons. (, K, T) (flache Zinskurve) Verallgemeinerung der KW-Formel auf den Fall beliebiger Zinskurven jedoch ohne weieres

Mehr

Zeit (in h) Ausflussrate (in l/h)

Zeit (in h) Ausflussrate (in l/h) Aufgabe 6 (Enwicklung einer Populaion): (Anforderungen: Inerpreaion von Schaubildern; Inegralfunkion in der Praxis) Von einer Populaion wird - jeweils in Abhängigkei von der Zei - die Geburenrae (in Individuen

Mehr

GETE ELEKTRISCHES FELD: DER KONDENSATOR: Elektrische Feldstärke: E r. Hr. Houska Testtermine: und

GETE ELEKTRISCHES FELD: DER KONDENSATOR: Elektrische Feldstärke: E r. Hr. Houska Testtermine: und Schuljahr 22/23 GETE 3. ABN / 4. ABN GETE Tesermine: 22.1.22 und 17.12.2 Hr. Houska houska@aon.a EEKTRISCHES FED: Elekrisch geladene Körper üben aufeinander Kräfe aus. Gleichnamige geladene Körper sießen

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Prookoll zu nfängerprakiku Besiung der FRDY Konsanen durch Elekrolyse Gruppe 2, Tea 5 Sebasian Korff 3.7.6 nhalsverzeichnis 1. Einleiung -3-1.1 Die Faraday Konsane -3-1.2 Grundlagen der Elekrolyse -4-2.

Mehr

Motivation. Finanzmathematik in diskreter Zeit

Motivation. Finanzmathematik in diskreter Zeit Moivaion Finanzmahemaik in diskreer Zei Eine Hinführung zu akuellen Forschungsergebnissen Alber-Ludwigs-Universiä Freiburg Prof. Dr. Thorsen Schmid Abeilung für Mahemaische Sochasik Freiburg, 22. April

Mehr

Labor Übertragungstechnik

Labor Übertragungstechnik Labor Überragngsechnik Pro. Dr. Ing. Lilia Laji Dipl. Ing. Irina Ikker Qadrar Aplidenodlaion Grppenner: eilneher: Nae Vornae Marikelner 3 Osalia Hochschle ür angewande Wissenschaen Hochschle Branschweig/Wolenbüel

Mehr

Aufgaben Arbeit und Energie

Aufgaben Arbeit und Energie Aufgaben Arbei und Energie 547. Ein Tank oll i Hilfe einer Pupe i aer gefüll werden. Der Tank ha für den Schlauch zwei Anchlüe, oben und unen. ie verhäl e ich i der durch die Pupe zu verricheen Arbei,

Mehr

Signal- und Systemtheorie for Dummies

Signal- und Systemtheorie for Dummies FB Eleroechni Ewas Signal- und Sysemheorie or Dummies Version - Juli Oh No!!!! Pro. Dr.-Ing. ajana Lange Fachhochschule Merseburg FB Eleroechni Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

Mehr

Physik Übung * Jahrgangsstufe 9 * Versuche mit Dioden

Physik Übung * Jahrgangsstufe 9 * Versuche mit Dioden Physik Übung * Jahrgangssufe 9 * Versuche mi Dioden Geräe: Nezgerä mi Spannungs- und Sromanzeige, 2 Vielfachmessgeräe, 8 Kabel, ohmsche Widersände 100 Ω und 200 Ω, Diode 1N4007, Leuchdiode, 2 Krokodilklemmen

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2 Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis

Mehr

1 Experimentelle Entwurfsverfahren für Strecken mit Ausgleich Summenzeitverfahren nach Kuhn... 2

1 Experimentelle Entwurfsverfahren für Strecken mit Ausgleich Summenzeitverfahren nach Kuhn... 2 Inhalsverzeichnis Eperimenelle Enwrfsverfahren für recken mi Asleich.... mmenzeiverfahren nach hn.... erfahren nach Chien, Hrones nd eswick... 4.3 erfahren nach Zieler nd ichols... 6.4 Eperimenelles Einsellverfahren

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr

Wiederholung: Radioaktiver Zerfall. Radioaktive Zerfallsprozesse können durch die Funktion

Wiederholung: Radioaktiver Zerfall. Radioaktive Zerfallsprozesse können durch die Funktion Wiederholung: Radioakiver Zerfall Radioakive Zerfallsprozesse können durch die Funkion f ( ) c a beschrieben werden. Eine charakerisische Größe hierbei is die Halbwerszei der radioakiven Elemene. Diese

Mehr

Schaltungen mit nichtlinearen Widerständen

Schaltungen mit nichtlinearen Widerständen HOCHSCHLE FÜ TECHNIK ND WITSCHAFT DESDEN (FH) niversity of Applied Sciences Fachbereich Elektrotechnik Praktikm Grndlagen der Elektrotechnik Versch: Schaltngen mit nichtlinearen Widerständen Verschsanleitng

Mehr

So prüfen Sie die Verjährung von Ansprüchen nach altem Recht

So prüfen Sie die Verjährung von Ansprüchen nach altem Recht Akademische Arbeisgemeinschaf Verlag So prüfen Sie die von Ansprüchen nach alem Rech Was passier mi Ansprüchen, deren vor dem bzw. 15. 12. 2004 begonnen ha? Zum (Sichag) wurde das srech grundlegend reformier.

Mehr

Machen Sie Ihre Kanzlei fi für die Zukunf! Grundvoraussezung für erfolgreiches Markeing is die Formulierung einer Kanzleisraegie. Naürlich, was am meisen zähl is immer noch Ihre fachliche Kompeenz. Aber

Mehr

1 Abtastung, Quantisierung und Codierung analoger Signale

1 Abtastung, Quantisierung und Codierung analoger Signale Abasung, Quanisierung und Codierung analoger Signale Analoge Signale werden in den meisen nachrichenechnischen Geräen heuzuage digial verarbeie. Um diese digiale Verarbeiung zu ermöglichen, wird das analoge

Mehr

Oszilloskop - Messtechnik

Oszilloskop - Messtechnik Fachrichng Physik Physikalisches Grndprakikm Ersell: Bearbeie: Versch: OM P. Ecksein R. Schwierz J. Kelling J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akalisier: am 29. 03. 2010 Oszilloskop - Messechnik

Mehr

Einleitung. Modulationsverfahren

Einleitung. Modulationsverfahren Pro. Dr.-Ing. W.-P. Bchwald Modlaionsverahren Einleing U Signale über einen Kanal überragen z können, ss i allgeeinen eine Modlaion a eine geeignee rägerreqenz erolgen, deren Lage an die Kanaleigenschaen

Mehr

C. Abituraufgabe MV GK 2006 B1

C. Abituraufgabe MV GK 2006 B1 9.5.216 biuraufgabe MV GK 26 B1 Die bbildung zeig einen usschni einer Nuklidkare. Die Linie k wird im Bereich leicher Kerne als Sabiliäslinie bezeichne. omkerne auf oder dich neben dieser Linie sind sabil.

Mehr

4. Einstellungen in der EIB-Tool-Software (ETS) 5.1 Applikation Schalten Verknü.Treppe Nebenstelle 41A1/1 Version 1. 5.

4. Einstellungen in der EIB-Tool-Software (ETS) 5.1 Applikation Schalten Verknü.Treppe Nebenstelle 41A1/1 Version 1. 5. Kapiel 7: Schalakoren 7. Schalakoren fach Schalakor EB/23/ mi Nebenselleneingang Ar.- Nr. 657 9 4. Einsellungen in der Tool-Sofware (ETS) Auswahl in der Produkdaenbank Herseller: Meren Produkfamilie: 4.

Mehr

Aufgabenblatt 1. Lösungen. A1: Was sollte ein Arbitrageur tun?

Aufgabenblatt 1. Lösungen. A1: Was sollte ein Arbitrageur tun? Aufgabenbla 1 Lösungen 1 A1: Was solle ein Arbirageur un? Spo-Goldpreis: $ 5 / Unze Forward-Goldpreis (1 Jahr): $ 7 / Unze Risikoloser Zins: 1% p.a. Lagerkosen: Es gib zwei Handelssraegien, um in einem

Mehr

7 Erzwungene Schwingung bei Impulslasten

7 Erzwungene Schwingung bei Impulslasten Einmassenschwinger eil I.7 Impulslasen 53 7 Erzwungene Schwingung bei Impulslasen Impulslasen im echnischen Allag sind zum Beispiel Soß- oder Aufprallvorgänge oder Schläge. Die Las seig dabei in kurzer

Mehr

Oszilloskop - Messtechnik

Oszilloskop - Messtechnik Technische Universiä Dresden Fachrichng Physik P. Ecksein / R. Schwierz Okober 2007 Versch: Grndprakikm Physik OM 1. Ziel nd Afgabensellng Oszilloskop - Messechnik Das Oszilloskop is das niverselle Insrmen

Mehr

5.5 Transaktionsverwaltung/Fehlerbehandlung. Transaktionsbegriff - Was ist eine Transaktion - Wozu braucht man Transaktionen - ACID-Eigenschaften

5.5 Transaktionsverwaltung/Fehlerbehandlung. Transaktionsbegriff - Was ist eine Transaktion - Wozu braucht man Transaktionen - ACID-Eigenschaften 5.5 Transakionsverwalung/Fehlerbehandlung Transakionsbegriff - Was is eine Transakion - Wozu brauch man Transakionen - ACID-Eigenschafen Fehlerszenarien - Klassifikaion - Fehlerursachen Fehlerbehandlungsmaßnahmen

Mehr

oder Masse Zeit Zeit = n oder m t t

oder Masse Zeit Zeit = n oder m t t 1. WIEDERHOLUNG GRUNDLAGEN 1.1 DEFINITIONEN Ergänze bzw. füge die ensprechenden Symbole ein: Sromsärke allgemein = z.b. Menge oder Masse Zei Zei = n oder m Ladung(smenge) Elekrische Sromsärke I = = Q Zei

Mehr

Flugzeugaerodynamik I Lösungsblatt 2

Flugzeugaerodynamik I Lösungsblatt 2 Flugzeugaerodynamik I Lösungsbla 2 Lösung Aufgabe Bei der vorliegenden Aufgabe handel es sich um die Nachrechenaufgabe der Skele Theorie. a) Der Koeffizien A 1 is durch die Wölbung des gegebenen Skeles

Mehr

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Aufgabe. (8 Punke) Die Abbildung zeig das Schaubild einer Funkion h mi der Definiionsmenge [-7 ; 4]. Die Funkion H is eine Sammfunkion

Mehr

1. Oszilloskop. Das Oszilloskop besitzt zwei Betriebsarten: Schaltsymbol Oszilloskop

1. Oszilloskop. Das Oszilloskop besitzt zwei Betriebsarten: Schaltsymbol Oszilloskop . Oszilloskop Grndlagen Ein Oszilloskop ist ein elektronisches Messmittel zr grafischen Darstellng von schnell veränderlichen elektrischen Signalen in einem kartesischen Koordinaten-System (X- Y- Darstellng

Mehr

Thema : Rendite und Renditemessung

Thema : Rendite und Renditemessung Thema : Rendie und Rendiemessung Lernziele Es is wichig, die Zeigewichung der Rendie als ennzahl zu versehen, den Unerschied zwischen einer koninuierlichen und einer diskreen erzinsung zu begreifen und

Mehr

DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG)

DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG) 26. November 2007 DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG) Informion zur Anwendung der gesezlichen Regelungen zur Zueilung von Kohlendioxid-Emissionsberechigungen

Mehr

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals 1/8 Grundidee der Inegralrechnung Inegralrechnung Die Inegralrechnung is neben der Differenialrechnung der wichigse Zweig der Analysis. Sie is aus dem Problem der Flächen- und Volumenberechnung ensanden.

Mehr

Fachrichtung Mess- und Regelungstechniker

Fachrichtung Mess- und Regelungstechniker Fachrichung Mess- und egelungsechniker 4.3.2.7-2 chüler Daum:. Tiel der L.E. : Digiale euerungsechnik 3 2. Fach / Klasse : Arbeiskunde, 3. Ausbildungsjahr 3. Themen der Unerrichsabschnie :. -Kippglied

Mehr

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten.

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten. T1 I. Theorieeil a) Zur Zei wird ein Pake der Masse dm mi der Geschwindigkei aus der Rakee ausgesoÿen. Newon's zweies Gesez läss sich schreiben als dp d = F p( + ) p() = F d = Av2 d Der Impuls des Sysems

Mehr

sammeln speichern C [F = As/V] Proportionalitätskonstante Q = CU I = dq/dt sammeln i - speichern u i (t)dt d t u c = 1 C i(t) dt

sammeln speichern C [F = As/V] Proportionalitätskonstante Q = CU I = dq/dt sammeln i - speichern u i (t)dt d t u c = 1 C i(t) dt Elekronische Sseme - 3. Kapaziä und Indukiviä 1 -------------------------------------------------------------------------------------------------------------- G. Schaer 26. Mai 24 3. Kapaziä und Indukiviä

Mehr

Flip - Flops 7-1. 7 Multivibratoren

Flip - Flops 7-1. 7 Multivibratoren Flip - Flops 7-7 Mulivibraoren Mulivibraoren sind migekoppele Digialschalungen. Ihre Ausgangsspannung spring nur zwischen zwei fesen Weren hin und her. Mulivibraoren (Kippschalungen) werden in bisabile,

Mehr

Überblick. Beispielexperiment: Kugelfall Messwerte und Messfehler Auswertung physikalischer Größen Darstellung von Ergebnissen

Überblick. Beispielexperiment: Kugelfall Messwerte und Messfehler Auswertung physikalischer Größen Darstellung von Ergebnissen Überblick Beispielexperimen: Kugelfall Messwere und Messfehler Auswerung physikalischer Größen Darsellung von Ergebnissen Sicheres Arbeien im abor Beispielexperimen : Kugelfall Experimen: Aus der saionären

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppiz, Dr. I. Rbak 8. Gruppenübung zur Vorlesung Höhere Mahemaik Sommersemeser 9 Prof. Dr. M. Sroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H. Konvergenzverhalen

Mehr

FLAT-FACE STECKKUPPLUNG FIRG-Serie bis PN 300

FLAT-FACE STECKKUPPLUNG FIRG-Serie bis PN 300 kompaibel zr A-Serie nach ISO 16028 Die Fla-Face Kpplng der FIRG-Serie gil als das ORIGINAL. Sie is die Grndasführng aller flachdichenden Schnellverschlsskpplngen nd sei 1983 im Mark wei verbreie. Die

Mehr

5. Flipflops. 5.1 Nicht-taktgesteuerte Flipflops. 5.1.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2.

5. Flipflops. 5.1 Nicht-taktgesteuerte Flipflops. 5.1.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. AO TIF 5. Nich-akgeseuere Flipflops 5.. NO-Flipflop chalung: E A zur Erinnerung: A B A B 0 0 0 0 0 0 0 E 2 A 2 Funkionsabelle: Fall E E 2 A A 2 0 0 2 0 3 0 4 Erklärungen: Im peicherfall behalen die Ausgänge

Mehr

4. Erhaltungssätze für Masse und Impuls

4. Erhaltungssätze für Masse und Impuls 4. Erhalngssäze für Masse n Impls Wie ie klassische Mechanik basier ie Srömngsmechanik af er Erhalng von Masse Impls Energie Die Erhalngsgeseze gelen für as infiniesimal kleine Flielemen n für reiimensionale

Mehr

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat Fachag Mahemaik: Kurvenscharen Ablauf: 1. Sunde Gemeinsame Einsiegsaufgabe. Sunde Sammgruppenaufgaben Sammgruppen (a bis 6 Schüler) Jedes Gruppenmiglied erhäl eine unerschiedliche Aufgabe A, B, C, D in

Mehr

Kapitel 4. Versuch 415 T-Flipflop

Kapitel 4. Versuch 415 T-Flipflop Kapiel 4 Versuch 415 T-Flipflop Flipflops, die mi jeder seigenden oder mi jeder fallenden Takflanke in den engegengesezen Zusand kippen, heissen T Flipflops ( Toggle Flipflops ). T-Flipflops können aus

Mehr

Kapitel : Exponentielles Wachstum

Kapitel : Exponentielles Wachstum Wachsumsprozesse Kapiel : Exponenielles Wachsum Die Grundbegriffe aus wachsum 1.xmcd werden auch hier verwende! Wir verwenden im Beispiel 2 auch fas die gleiche Angabe wie in Beispiel 1 - lediglich eine

Mehr

Die Halbleiterdiode. Demonstration der Halbleiterdiode als Ventil.

Die Halbleiterdiode. Demonstration der Halbleiterdiode als Ventil. R. Brinkmann hp://brinkmanndu.de Seie 1 26.11.2013 Diffusion und Drif Die Halbleierdiode Versuch: Demonsraion der Halbleierdiode als Venil. Bewegliche Ladungsräger im Halbleier: im n Leier sind es Elekronen,

Mehr

Regelungstechnik. Steuerung. Regelung. Beim Steuern bewirkt eine Eingangsgröße eine gewünschte Ausgangsgröße (Die nicht auf den Eingang zurückwirkt.

Regelungstechnik. Steuerung. Regelung. Beim Steuern bewirkt eine Eingangsgröße eine gewünschte Ausgangsgröße (Die nicht auf den Eingang zurückwirkt. Regelungsechnik Seuerung Beim Seuern bewirk eine Eingangsgröße eine gewünsche Ausgangsgröße (Die nich auf den Eingang zurückwirk. Seuern is eine Wirkungskee Seuerkee (Eingahnsraße) Bsp. Boiler Regelung

Mehr