1. Mathematik-Schularbeit 6. Klasse AHS

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1. Mathematik-Schularbeit 6. Klasse AHS"

Transkript

1 . Mathematik-Schularbeit 6. Klasse AHS Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: (Un-)Gleichungen und Gleichungssysteme: AG. Einfache Terme und Formeln aufstellen, umformen und im Kontet deuten können AG. Quadratische Gleichungen in einer Variablen umformen/lösen, über Lösungsfälle Bescheid wissen, Lösungen und Lösungsfälle (auch geometrisch) deuten können Funktionsbegriff, reelle Funktionen, Darstellungsformen und Eigenschaften: FA. Für gegebene Zusammenhänge entscheiden können, ob man sie als Funktionen betrachten kann FA.4 Aus Tabellen, Graphen und Gleichungen von Funktionen Werte(paare) ermitteln und im Kontet deuten können FA.5 Eigenschaften von Funktionen erkennen, benennen, im Kontet deuten und zum Erstellen von Funktionsgraphen einsetzen können: Monotonie, Monotoniewechsel (lokale Etrema), Wendepunkte, Periodizität, Achsensymmetrie, asymptotisches Verhalten, Schnittpunkte mit den Achsen FA.6 Schnittpunkte zweier Funktionsgraphen grafisch und rechnerisch ermitteln und im Kontet interpretieren können Lineare Funktion [ f() = k + d ] : FA. Verbal, tabellarisch, grafisch oder durch eine Gleichung (Formel) gegebene lineare Zusammenhänge als lineare Funktionen erkennen bzw. betrachten können; zwischen diesen Darstellungsformen wechseln können FA. Aus Tabellen, Graphen und Gleichungen linearer Funktionen Werte(paare) sowie die Parameter k und d ermitteln und im Kontet deuten können FA. Die Wirkung der Parameter k und d kennen und die Parameter in unterschiedlichen Konteten deuten können FA.4 Charakteristische Eigenschaften kennen und im Kontet deuten können: f(+) = f() + k ; f ( ) f ( ) FA.5 Die Angemessenheit einer Beschreibung mittels linearer Funktion bewerten können FA.6 Direkte Proportionalität als lineare Funktion vom Typ f() = k beschreiben können z Potenzfunktion mit f () a b, z Z oder mit k f ( ) a b : FA. Verbal, tabellarisch, grafisch oder durch eine Gleichung (Formel) gegebene Zusammenhänge dieser Art als entsprechende Potenzfunktionen erkennen bzw. betrachten können; zwischen diesen Darstellungsformen wechseln können FA. Aus Tabellen, Graphen und Gleichungen von Potenzfunktionen Werte(paare) sowie die Parameter a und b ermitteln und im Kontet deuten können FA. Die Wirkung der Parameter a und b kennen und die Parameter im Kontet deuten können a FA.4 Indirekte Proportionalität als Potenzfunktion vom Typ f( ) (bzw. beschreiben können f () a )

2 Weitere Kompetenzen laut Lehrplan: Die Definition des Logarithmus kennen und anwenden können. Die Rechenregeln für Logarithmen kennen und für einfache Terme anwenden können. Punktsymmetrie von Funktionsgraphen anhand von Funktionsgleichungen erkennen. Den Begriff der Umkehrfunktion kennen und anwenden können. Bildungsgesetze für Folgen ermitteln und damit arbeiten können. Die Begriffe arithmetische und geometrische Folge erklären und mit diesen Folgen arbeiten können. Die Begriffe arithmetische und geometrische Reihe kennen und einsetzen können. Zinseszinsrechnung in Anwendungssituationen einsetzen können. Aufzinsen und Abzinsen von Geldbeträgen zum Vergleich von Zahlungsangeboten einsetzen können. Rentenrechnung in Anwendungssituationen einsetzen können.

3 I) Mathematische Grundkompetenzen ) Welche der angeführten Terme sind äquivalent zum Term Kreuze die beiden zutreffenden Terme an! 5 (mit 0)? / P a b c ) Gegeben ist der Term. Welche(r) der folgenden Terme ist/sind zum gegebenen Term äquivalent? Kreuze den (die) zutreffenden Term(e) an! / P a b c 8 5 b a c a c 5 b 4 a c 5 b a b c 5 ) Vereinfache und schreibe das Ergebnis als Term mit einem Wurzelausdruck an! / P 4 a : a 4) Berechne und begründe das Ergebnis! / P 00log 0000 =, da =. log 6 =, da =. 5) Gegeben sind fünf Funktionsgleichungen. i) Welche dieser Funktionen besitzen Graphen, die symmetrisch zum Koordinatenursprung sind? Kreuze die beiden zutreffenden Funktionsgleichungen an! / P f ( ) f ( ) f ( ) 0 f ( ) 4 f ( ) 5 ii) Gib jene dieser fünf Funktionen an, deren Funktionsgraphen zwei Asymptoten besitzen! / P n 6) Gegeben ist eine Potenzfunktion der Form f () a b mit a 0, b, n. Vervollständige den Satz durch Ankreuzen der richtigen Tetbausteine so, dass er mathematisch korrekt ist! Falls n eine ist, ist der Graph von f sicher symmetrisch. / P gerade Zahl zur -Achse ungerade Zahl zur y-achse negative Zahl zur. Mediane

4 7) Gegeben ist eine Potenzfunktion der Form Kreuze die zutreffende(n) Aussage(n) an! Der Graph von p ist eine Parabel. Der Graph von p besitzt Asymptoten. Die Definitionsmenge von p ist \ 0. p() Der Graph von p verläuft durch den Punkt P = ( ). z mit z Der Graph von p ist im gesamten Definitionsbereich monoton fallend., z < 0. / P 8) Zeichne den Graphen einer linearen Funktion / P mit der Gleichung, für deren Parameter k und d die nachfolgenden Bedingungen gelten, in das Koordinatensystem ein! k und d > 0 f () k d 9) Der monatliche Tarif für ein Handy wurde als / P lineare Funktion der Form modelliert (siehe Grafik), wobei die Anzahl der Gesprächsminuten pro Monat ist. Trage in der folgenden Tabelle ein, welche Bedeutung f(), k und d in diesem Zusammenhang besitzen! f () k d Bedeutung von f(): Bedeutung von k: Bedeutung von d: 0) Eine Aufgabenstellung lautet: Ermittle die Gleichung einer linearen Funktion h, deren Graph durch die Punkte A = (0 ) und B = (4 ) verläuft. Paul(ine) hat die Aufgabe fehlerhaft gelöst. Korrigiere den (die) Fehler! / P A(0 / ) d 40 k 4 h 4

5 ) Gegeben ist der Graph einer Funktion g. / P Kreuze die richtige(n) Aussage(n) an! g ist im Intervall [-; 4] monoton fallend. g(-) = g(9) g(-) > g() Zu jedem [-; 9] gibt es genau ein g(). Zu jedem g()[-; 0] gibt es genau ein. z f () a b ab, ) Gegeben ist eine Funktion mit der Gleichung, wobei z und. Welche Werte müssen die Parameter b und z annehmen, damit f eine indirekte Proportionalität beschreibt? Trage die entsprechenden Werte ein! b = z = / P ) Gegeben ist die Funktion g mit der Gleichung g ( ) 8 i) Berechne die Nullstellen von g! / P. ii) Skizziere den Graphen von g! / P Zwischensumme: / 6 P

6 II) Vernetzung von Grundkompetenzen und weitere Kompetenzen laut Lehrplan ) Gegeben ist die lineare Funktion f mit der Gleichung Kreuze die zutreffende(n) Aussage(n) an! f () k d, wobei k, d gilt. / P Jede lineare Funktion beschreibt einen direkt proportionalen Zusammenhang. f f k Der Graph von f verläuft durch die Punkte A = (0 d) und B = ( k). f f k Die nebenstehende Abbildung zeigt ein Steigungsdreieck von f. g() c d cd, ) Gegeben ist eine quadratische Funktion mit der Gleichung, wobei sind. Welche Bedingungen müssen für die Parameter c und d gelten, damit die Gleichung g() = 0 keine reelle Lösung besitzt? / P Führe alle möglichen Fälle an und skizziere den Verlauf der entsprechenden Funktionsgraphen von g! ) a n ist eine arithmetische Folge und b n ist eine geometrische Folge. Vervollständige die Tabelle! n 4 6 / P a n 0,5 b n 0,5 4) i) Die Fibonacci-Folge ist folgendermaßen definiert: b =, b =, b n = b n + b n (für n ) Berechne das 7. Folgenglied der Fibonacci-Folge! b 7 = ii) Berechne die Summe = / P / P 5) Ein Sparguthaben ist im Laufe von 8 Jahren von 500,- auf 90,- angewachsen. Berechne den effektiven Zinssatz! / P

7 6) Der Verkäufer eines Grundstücks bietet folgende Zahlungsmöglichkeiten an: A: ,- in bar B: 0 000,- in bar, 0 000,- in 5 Jahren und 5 000,- in 8 Jahren. Welches Angebot sollte der Käufer bei einem gleichbleibenden Zinsniveau von % p.a. annehmen? Begründe deine Antwort anhand von Berechnungen! / P 7) Gegeben sind 5 Termumformungen. Kreuze die richtige(n) Umformung(en) an! log( y) log( ) log( y) / P log( y) log( ) log( y) log( y) log( ) log( ) log( y) log log y y log log( ) log( y) y Erreichte Punkte: / 40 P Note:

8 40-6 P: Sehr gut; 5- P: Gut; 0-5 P: Befriedigend; 4-0 P: Genügend; 9-0 P: Nicht genügend

2. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner

2. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner . Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: AG1.1 Wissen über die Zahlenmengen,,, verständig einsetzen können

Mehr

2. Mathematik-Schularbeit für die 6. Klasse Autor: Gottfried Gurtner

2. Mathematik-Schularbeit für die 6. Klasse Autor: Gottfried Gurtner 2. Mathematik-Schularbeit für die 6. Klasse Autor: Gottfried Gurtner Arbeitszeit: 100 Minuten Lernstoff: Mathematische Grundkompetenzen: AG2.1, AG2.2, AG2.3 FA1.1, FA1.5, FA1.6, FA1.7, FA1.9 FA2.1, FA2.2,

Mehr

1. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner

1. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner 1. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: AG1.1 Wissen über die Zahlenmengen,,, verständig einsetzen können

Mehr

Lösungserwartungen und Lösungsschlüssel zur 1. M-Schularbeit

Lösungserwartungen und Lösungsschlüssel zur 1. M-Schularbeit Lösungserwartungen und Lösungsschlüssel zur. M-Schularbeit 6. Klasse I) Mathematische Grundkompetenzen ) Punkte für das alleinige Ankreuzen der beiden korrekten Terme. Punkt für das alleinige Ankreuzen

Mehr

Grundkompetenzkatalog. Mathematik

Grundkompetenzkatalog. Mathematik Grundkompetenzkatalog Mathematik AG - Algebra und Geometrie AG 1.1 AG 1.2 AG 2.1 AG 2.2 AG 2.3 AG 2.4 AG 2.5 AG 3.1 AG 3.2 AG 3.3 Wissen über Zahlenmengen N, Z, Q, R, C verständig einsetzen Wissen über

Mehr

Grundkompetenzen (Mathematik Oberstufe)

Grundkompetenzen (Mathematik Oberstufe) Grundkompetenzen (Mathematik Oberstufe) AG: Algebra und Geometrie (14 Deskriptoren) FA: Funktionale Abhängigkeiten (35 Deskriptoren) AN: Analysis (11 Deskriptoren) WS: Wahrscheinlichkeit und Statistik

Mehr

Polynomfunktion Typische Verläufe von Graphen in Abhängigkeit vom Grad der Polynomfunktion (er)kennen Zwischen tabellarischen und grafischen

Polynomfunktion Typische Verläufe von Graphen in Abhängigkeit vom Grad der Polynomfunktion (er)kennen Zwischen tabellarischen und grafischen AG AG 1 AG 1.1 AG 1.2 AG 2 AG 2.1 AG 2.2 AG 2.3 AG 2.4 AG 2.5 AG 3 AG 3.1 AG 3.2 AG 3.3 AG 3.4 AG 3.5 AG 4 AG 4.1 AG 4.2 Inhaltsbereich Algebra und Geometrie Grundbegriffe der Algebra Wissen über die Zahlenmengen

Mehr

Aktualisierte Grundkompetenzen zu den Inhaltsbereichen Algebra und Geometrie und Funktionale Abhängigkeiten sowie zur Beschreibenden Statistik

Aktualisierte Grundkompetenzen zu den Inhaltsbereichen Algebra und Geometrie und Funktionale Abhängigkeiten sowie zur Beschreibenden Statistik Aktualisierte Grundkompetenzen zu den Inhaltsbereichen Algebra und Geometrie und Funktionale Abhängigkeiten sowie zur Beschreibenden Statistik Aufgrund der Erfahrungen bei der Aufgabenentwicklung, beim

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag, Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.

Mehr

3. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner

3. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner 3. Mthemtik-Schulrbeit für die 5. Klsse Autor: Gottfried Gurtner Arbeitszeit: 75 Minuten Lernstoff: Mthemtische Grundkompetenzen: AG.1 Einfche Terme und Formeln ufstellen, umformen und im Kontext deuten

Mehr

Übungsaufgaben zur Vorbereitung auf die standardisierte kompetenzorientierte schriftliche Reifeprüfung in Mathematik (AHS)

Übungsaufgaben zur Vorbereitung auf die standardisierte kompetenzorientierte schriftliche Reifeprüfung in Mathematik (AHS) Übungsaufgaben zur Vorbereitung auf die standardisierte kompetenzorientierte schriftliche Reifeprüfung in Mathematik (AHS) Inhalt Teil-1-Übungsaufgaben Inhaltsbereich Algebra und Geometrie (AG) 8 (1) Ganze

Mehr

Funktionale Abhängigkeiten

Funktionale Abhängigkeiten Funktionale Abhängigkeiten Lehrplan Die Lehrpläne für die allgemein bildenden Schulen finden Sie online unter: http://www.bmukk.gv.at/schulen/unterricht/lp/lp_abs.xml 5. Klasse (Funktionen) Beschreiben

Mehr

Wahlfach Mathematik: Funktionen

Wahlfach Mathematik: Funktionen Wahlfach Mathematik: Funktionen In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Funktionsargument, unabhängige Variable, x-wert)

Mehr

Leistungsbeurteilung aus Mathematik 7. Klasse

Leistungsbeurteilung aus Mathematik 7. Klasse Leistungsbeurteilung aus Mathematik 7. Klasse Für die Leistungsbeurteilung wird ein Punktesystem herangezogen. Die Semesterpunktezahl setzt sich wie folgt zusammen: a) ca. 65% der erreichten Punkte bei

Mehr

Dimensionen. Mathematik. Grundkompetenzen. für die neue Reifeprüfung. Stand April 2012

Dimensionen. Mathematik. Grundkompetenzen. für die neue Reifeprüfung. Stand April 2012 Dimensionen Mathematik 5 GK Grundkompetenzen für die neue Reifeprüfung Stand April 2012 Inhaltsverzeichnis Buchkapitel Inhaltsbereiche Seite Zahlen und Rechengesetze Funktionen Gleichungen Lineare Gleichungssysteme

Mehr

Der monatliche Tarif für ein Handy wurde als lineare Funktion der Form f(x) = k x + d modelliert (siehe Grafik).

Der monatliche Tarif für ein Handy wurde als lineare Funktion der Form f(x) = k x + d modelliert (siehe Grafik). 1) Handytarif Der monatliche Tarif für ein Handy wurde als lineare Funktion der Form f(x) = k x + d modelliert (siehe Grafik). Euro Gesprächsminuten Tragen Sie in der folgenden Tabelle ein, welche Bedeutung

Mehr

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik e Exponentialfunktionen Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik Exponentialfunktionen Potenzfunktion: y = x 9 Exponentialfunktion: y = 9 x Die Potenz- und die Exponentialfunktionen

Mehr

Schulcurriculum DSW Mathematik Klasse 9

Schulcurriculum DSW Mathematik Klasse 9 Schulcurriculum DSW Mathematik Klasse 9 Das Schulcurriculum orientiert sich an den Lehrplänen für Mathematik des Landes Thüringen. Hierbei sind die Anforderungen, die für den Realschulabschluss relevant

Mehr

Technische Mathematik

Technische Mathematik Lehrplan Technische Mathematik Fachschule für Technik Fachrichtungsbezogener Lernbereich Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024

Mehr

Edgar Neuherz Michael Wanz MATHEMATIK. Aufgabensammlung mit vollständigen Lösungen INFORMATIONEN. Reifeprüfungstermine, Kompetenzkatalog

Edgar Neuherz Michael Wanz MATHEMATIK. Aufgabensammlung mit vollständigen Lösungen INFORMATIONEN. Reifeprüfungstermine, Kompetenzkatalog Edgar Neuherz Michael Wanz MATHEMATIK Aufgabensammlung mit vollständigen Lösungen INFORMATIONEN Reifeprüfungstermine, Kompetenzkatalog INFORMATIONEN Reifeprüfungstermine, Kompetenzkatalog Schuljahr 2017/18

Mehr

Mathematik, G und RG - Themenbereiche für die mündliche Reifeprüfung

Mathematik, G und RG - Themenbereiche für die mündliche Reifeprüfung Mathematik, G und RG, Themenbereiche RP, Seite 1 von 6 Mathematik, G und RG - Themenbereiche für die mündliche Reifeprüfung 1. Grundbegriffe der Algebra Wissen über die Zahlenmengen N, Z, Q, R, C verständig

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Dieses Übungsbuch ist auf die

Mehr

Diese Gleichung hat für einige a nur Lösungen aus C und nicht aus R.

Diese Gleichung hat für einige a nur Lösungen aus C und nicht aus R. Aufgabe 1 Zahlenmengen, quadratische Gleichungen Gegeben ist eine quadratische Gleichung a 0 mit a R. Kreuzen Sie die beiden zutreffenden Aussagen an! Diese Gleichung hat für einige a nur Lösungen aus

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Aufgabe C Gegeben ist eine Funktion f durch f ( ) = + 3. Gesucht sind lineare Funktionen, deren Graphen zum

Mehr

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775, Aufgabenpool für angewandte Mathematik / 1. Jahrgang V B, C, D Drinks Ein gastronomischer Betrieb kauft 300 Dosen Energydrinks (0,3 l) und 400 Liter Flaschen Mineralwasser und zahlt dafür 50, Euro. Einen

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

Projekt Standardisierte schriftliche Reifeprüfung in Mathematik. T e s t h e f t B 1. Schulbezeichnung:.. Klasse: Vorname: Datum:.

Projekt Standardisierte schriftliche Reifeprüfung in Mathematik. T e s t h e f t B 1. Schulbezeichnung:.. Klasse: Vorname: Datum:. Projekt Standardisierte schriftliche Reifeprüfung in Mathematik T e s t h e f t B Schulbezeichnung:.. Klasse: Schüler(in) Nachname:. Vorname: Datum:. B Große und kleine Zahlen In Wikipedia findet man die

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 01/01 Mathematik. Juni 01 09:00 Uhr Unterlagen für die Lehrkraft 1. Aufgabe: Differentialrechnung

Mehr

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik Probeklausur März 2014 Teil-1-Aufgaben Beurteilung Jede Aufgabe in Teil 1 wird mit 0 oder 1 Punkt bewertet, jede Teilaufgabe in

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hard Seifert Mathematik üben Klasse 8 Funktionen Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Funktionen Differenzierte

Mehr

TEST Basiswissen Mathematik für Ingenieurstudiengänge

TEST Basiswissen Mathematik für Ingenieurstudiengänge TEST Basiswissen Mathematik für Ingenieurstudiengänge Erste Fassung März 2013 Dieser Test beinhaltet Aufgaben zu den wesentlichen Themen im Bereich Mathematik, die Basiswissen für ein Ingenieurstudium

Mehr

Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4

Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4 Mag. Mone Denninger 10. Oktober 2004 Inhaltsverzeichnis 1 Definitionsmenge 2 1.1 Verhalten am Rand und an den Lücken des Definitionsbereichs............................ 2 2 Nullstellen 2 3 Extremwerte

Mehr

Nullstellen einer Polynomfunktion

Nullstellen einer Polynomfunktion Nullstellen einer Polynomfunktion Typ 1 S Aufgabennummer: 1_39 Prüfungsteil: Aufgabenformat: offenes Format Grundkompetenz: FA 4.4 keine Hilfsmittel S erforderlich gewohnte Hilfsmittel S möglich Typ besondere

Mehr

MatheBasics Teil 4 Grundlagen der Mathematik

MatheBasics Teil 4 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 4 Grundlagen der Mathematik Version vom 02.11.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A 1. Gegeben ist die Exponentialfunktion y=f x = 0,5 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik /10 Stand Schuljahr 2009/10 Fett und kursiv dargestellte Einheiten gehören zum Schulcurriculum In allen Übungseinheiten kommt die Leitidee Vernetzung zum Tragen - Hilfsmittel

Mehr

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11. ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

1 Lineare Funktionen. 1 Antiproportionale Funktionen

1 Lineare Funktionen. 1 Antiproportionale Funktionen Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift

Mehr

Diese Funktion ist mein Typ!

Diese Funktion ist mein Typ! Diese Funktion ist mein Typ! Überblick über die wichtigsten Funktionstypen der 10.Jgst.: Lineare Funktionen Quadratische Funktionen Ganzrationale Funktionen Gebrochen-rationale Funktionen Trigonometrische

Mehr

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt.

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt. LÖSUNGEN TEIL 1 Arbeitszeit: 50 min Gegeben ist die Funktion f mit der Gleichung. Begründen Sie, warum die Steigung der Sekante durch die Punkte A(0 2) und C(3 11) eine weniger gute Näherung für die Tangentensteigung

Mehr

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x =

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x = WERRATALSCHULE HERINGEN KOMPENSATION MATHEMATIK JG. 11 1 Lineare Gleichungen Das Lösen linearer Gleichungen ist eine wichtige Rechenfertigkeit, die immer wieder gefordert wird und für den Mathematikunterricht

Mehr

Lernkontrolle Relationen, Funktionen, lineare Funktionen

Lernkontrolle Relationen, Funktionen, lineare Funktionen Lernkontrolle Relationen, Funktionen, lineare Funktionen A 1) Im folgenden Diagramm bedeuten A, B, C, D jeweils die Kinder einer Familie; die Pfeile drücken die Relation "hat als Schwester" aus. a) Wie

Mehr

AUFFRISCHERKURS 2. Kreuze für jede der Zahlen bzw. Rechenausdrücke an, zu welchen der angegebenen Zahlenmengen sie gehören!

AUFFRISCHERKURS 2. Kreuze für jede der Zahlen bzw. Rechenausdrücke an, zu welchen der angegebenen Zahlenmengen sie gehören! AUFFRISCHERKURS 2 AUFGABE 1 Kreuze für jede der Zahlen bzw. Rechenausdrücke an, zu welchen der angegebenen Zahlenmengen sie gehören! Zahl keine davon ( ) AUFGABE 2 Löse alle vorhandenen Klammern auf und

Mehr

Leistungsbeurteilung aus Mathematik 6. Klasse

Leistungsbeurteilung aus Mathematik 6. Klasse Leistungsbeurteilung aus Mathematik 6. Klasse Die Semesternote aus Mathematik setzt sich aus zwei großen Teilen zusammen: a) Leistungen bei den Schularbeiten b) Erbrachte Leistungen in der Mitarbeit In

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl0-Gruppe B. Gegeben ist die Exponentialfunktion y=f x =0.8 2 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( )

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( ) 1.1 Der Kreis Der Kreis Umfang Flächeninhalt Der Kreissektor (Kreisausschnitt) mit Mittelpunktswinkel Bogenlänge Flächeninhalt Grundwissen 10. Klasse Mathematik Wie ändert sich der Flächeninhalt eines

Mehr

Ableitungsfunktion einer linearen Funktion

Ableitungsfunktion einer linearen Funktion Ableitungsfunktion einer linearen Funktion Aufgabennummer: 1_009 Prüfungsteil: Typ 1! Typ 2 " Aufgabenformat: Konstruktionsformat Grundkompetenz: AN 3.1! keine Hilfsmittel! gewohnte Hilfsmittel möglich

Mehr

FOLGEN, REIHEN, GRENZWERTE, FUNKTIONEN. Dr. Kinga Szűcs FSU Jena Fakultät für Mathematik und Informatik Abteilung Didaktik

FOLGEN, REIHEN, GRENZWERTE, FUNKTIONEN. Dr. Kinga Szűcs FSU Jena Fakultät für Mathematik und Informatik Abteilung Didaktik FOLGEN, REIHEN, GRENZWERTE, FUNKTIONEN Dr. Kinga Szűcs FSU Jena Fakultät für Mathematik und Informatik Abteilung Didaktik 01.12.2011 INHALT Bezüge zu den Bildungsstandards Bezüge zum Thüringer Lehrplan

Mehr

IGS Robert-Schuman-Schule Frankenthal

IGS Robert-Schuman-Schule Frankenthal Thema: Gleichungen und Ungleichungen Zeitraum: September - November Terme Rechengesetze Umkehren von Rechenoperationen Systematisches Probieren Terme auswerten und interpretieren Terme aufstellen und für

Mehr

Illustrierende Aufgaben zum LehrplanPLUS. Ganzrationale Funktionen

Illustrierende Aufgaben zum LehrplanPLUS. Ganzrationale Funktionen Fach- und Berufsoberschule, Mathematik, Jahrgangsstufen und Ganzrationale Funktionen Stand: 8.0.08 Jahrgangsstufen FOS, BOS Fach/Fächer Mathematik Übergreifende Bildungs- und Erziehungsziele Zeitrahmen

Mehr

Problemlösen. Zahl Ebene und Raum Größen Daten und Vorhersagen. Fachsprache, Symbole und Arbeitsmittel anwenden

Problemlösen. Zahl Ebene und Raum Größen Daten und Vorhersagen. Fachsprache, Symbole und Arbeitsmittel anwenden Curriculum Mathematik 3. Klasse Aus den Rahmenrichtlinien Die Schülerin, der Schüler kann Vorstellungen von natürlichen, ganzen rationalen Zahlen nutzen mit diesen schriftlich im Kopf rechnen geometrische

Mehr

Einstiegsvoraussetzungen 3. Semester

Einstiegsvoraussetzungen 3. Semester Einstiegsvoraussetzungen 3. Semester Wiederholung vom VL Bereich: Zahlen und Maße Fehlerrechnung kennen Fehler in der Darstellung von Zahlen und können Ergebnisse auf sinnvolle Art runden. verstehen die

Mehr

KGS Schneverdingen Gymnasialzweig Mathematik Klasse 10 Stoffverteilungsplan (Stand: Juli 2012)

KGS Schneverdingen Gymnasialzweig Mathematik Klasse 10 Stoffverteilungsplan (Stand: Juli 2012) Lehrbuch: Elemente der Mathematik 10 KGS Schneverdingen Gymnasialzweig Mathematik Klasse 10 Stoffverteilungsplan (Stand: Juli 2012) Thema Inhalte Kompetenzen Zeit in Stunden Buchseiten Bemerkungen Modellieren

Mehr

Themenpool teilzentrale Reifeprüfung Mathematik Europagymnasium Auhof, Aubrunnerweg 4, 4040 Linz; Schulkennzahl:

Themenpool teilzentrale Reifeprüfung Mathematik Europagymnasium Auhof, Aubrunnerweg 4, 4040 Linz; Schulkennzahl: Themenpool teilzentrale Reifeprüfung Mathematik Europagymnasium Auhof, Aubrunnerweg 4, 4040 Linz; Schulkennzahl: 401546 Thema 1: Zahlenbereiche und Rechengesetze Reflektieren über das Erweitern von Zahlenbereichen

Mehr

Abitur 2017 Mathematik Infinitesimalrechnung I

Abitur 2017 Mathematik Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion g : x 2 4 + x 1 mit maximaler Definitionsmenge D g. Der Graph von g wird mit G g bezeichnet.

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

5-EURO GEDENKMÜNZE. ab Ende der 9. Schulstufe

5-EURO GEDENKMÜNZE. ab Ende der 9. Schulstufe ab Ende der 9. Schulstufe 5-EURO GEDENKMÜNZE 5-Euro Gedenkmünzen in Silber werden in Österreich auf Basis eines regelmäßigen Neunecks ausgegeben. Beispiel aus dem Jahre 2009 (Quelle: Österreichische Nationalbank

Mehr

Wiederholung der dritten Schularbeit Mathematik Klasse 7D WIKU am

Wiederholung der dritten Schularbeit Mathematik Klasse 7D WIKU am Wiederholung der dritten Schularbeit Mathematik Klasse 7D WIKU am 04.03.2015 SCHÜLERNAME: Punkte im ersten Teil: Punkte im zweiten Teil: Davon Kompensationspunkte: Note: Notenschlüssel: Falls die Summe

Mehr

Dimensionen. Mathematik. Grundkompetenzen. für die neue Reifeprüfung

Dimensionen. Mathematik. Grundkompetenzen. für die neue Reifeprüfung Dimensionen Mathematik 7 GK Grundkompetenzen für die neue Reifeprüfung Inhaltsverzeichnis Buchkapitel Inhaltsbereiche Seite Komplexe Zahlen Algebra und Geometrie Grundbegriffe der Algebra (Un-)Gleichungen

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

MATHEMATIK NEUE WEGE BADEN-WÜRTTEMBERG

MATHEMATIK NEUE WEGE BADEN-WÜRTTEMBERG MATHEMATIK NEUE WEGE BADEN-WÜRTTEMBERG Gegenüberstellung der Bildungsstandards Klasse 8 und der in den Schülerbänden 3 und 4 1. Leitidee Zahl die Unvollständigkeit von Zahlbereichen verstehen und aufzeigen

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Abitur 2014 Mathematik Infinitesimalrechnung I

Abitur 2014 Mathematik Infinitesimalrechnung I Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln

Mehr

Exponentielles Wachstum und Logarithmus

Exponentielles Wachstum und Logarithmus Eigenschaften der Exponentialfunktionen Die Funktion nennt man Exponentialfunktion mit der Basis a. Ist neben der Potenz noch ein Faktor im Funktionsterm vorhanden, spricht man von einer allgemeinen Exponentialfunktion:

Mehr

Funktionenlehre. Grundwissenskatalog G8-Lehrplanstandard

Funktionenlehre. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK Funktionenlehre Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngmnasiums Bad Neustadt und des Kurt-Huber-Gmnasiums Gräfelfing J O H A N N

Mehr

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch Mathematikvorkurs Fachbereich I Sommersemester 2017 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Binomische Formeln Dienstag Potenzen, Wurzeln und Logarithmus Summen-

Mehr

Abitur 2015 Mathematik Infinitesimalrechnung II

Abitur 2015 Mathematik Infinitesimalrechnung II Seite 1 Abitur 2015 Mathematik Infinitesimalrechnung II Gegeben ist die Funktion g : x ln(2x + 3) mit maximaler Definitionsmenge D und Wertemenge W. Der Graph von g wird mit G g bezeichnet. Teilaufgabe

Mehr

Mathematik. Prüfung zum mittleren Bildungsabschluss 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse:

Mathematik. Prüfung zum mittleren Bildungsabschluss 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse: Prüfung zum mittleren Bildungsabschluss 2008 Schriftliche Prüfung Pflichtaufgaben Mathematik Saarland Ministerium für Bildung, Familie, Frauen und Kultur Name: Vorname: Klasse: Bearbeitungszeit: 120 Minuten

Mehr

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz. FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f

Mehr

M_0001 A 2 B 1 2 C 2. Ableitung einer Exponentialfunktion. Aufgabenstellung: 1 2 D

M_0001 A 2 B 1 2 C 2. Ableitung einer Exponentialfunktion. Aufgabenstellung: 1 2 D M_0001 Ableitung einer Exponentialfunktion Gegeben sind vier Exponentialfunktionen und sechs mögliche Ableitungsfunktionen. Ordne jeder Funktionsgleichung die richtige erste Ableitung zu! A 2 B 1 2 C 2

Mehr

Vergleichsklausur 12.1 Mathematik vom 20.12.2005

Vergleichsklausur 12.1 Mathematik vom 20.12.2005 Vergleichsklausur 12.1 Mathematik vom 20.12.2005 Mit CAS S./5 Aufgabe Alternative: Ganzrationale Funktionen Berliner Bogen Das Gebäude in den Abbildungen heißt Berliner Bogen und steht in Hamburg. Ein

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I Bayern FOS BOS Fachabiturprüfung 05 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I.0 Nebenstehende Abbildung zeigt den Graphen G f ' der ersten Ableitungsfunktion einer in ganz 0 definierten

Mehr

Übungsaufgaben zur Analysis

Übungsaufgaben zur Analysis Serie Übungsaufgaben zur Analysis. Multiplizieren Sie folgende Klammern aus: ( + 3y)( + 4a + 4b) (a b )( + 3y 4) (3 + )(7 + y) + (a + b)(3 + ). Multiplizieren Sie folgende Klammern aus: 6a( 3a + 5b c)

Mehr

Lineare Funktion Eigenschaften von linearen Funktionen Übungen Bearbeite zu jeder der gegebenen Funktionen die Fragen:

Lineare Funktion Eigenschaften von linearen Funktionen Übungen Bearbeite zu jeder der gegebenen Funktionen die Fragen: Lineare Funktion Eigenschaften von linearen Funktionen Übungen - 3 2.0 Bearbeite zu jeder der gegebenen Funktionen die Fragen: steigt oder fällt der Graph der Funktion? schneidet der Graph die y-achse

Mehr

Fit in Mathe. Januar Klassenstufe 11 Umkehrfunktion. f x ist 2,5 also Buchstabenpaar GA.

Fit in Mathe. Januar Klassenstufe 11 Umkehrfunktion. f x ist 2,5 also Buchstabenpaar GA. Thema Musterlösungen 1 Umkehrfunktion Bestimme zur Funktion f die Umkehrfunktion f, dargestellt als Tabelle. x 0 1 2 3 4 f x 1 3 5 7 9 x 0 1 2 3 4 f x -0,5 0 0,5 1 1,5 Die Summe der 5 Werte von f x ist

Mehr

Leistungsbeurteilung aus Mathematik 6. Klasse

Leistungsbeurteilung aus Mathematik 6. Klasse Leistungsbeurteilung aus Mathematik 6. Klasse Folgende Komponenten werden zur Leistungsfeststellung herangezogen: 1. Schularbeiten: Es werden zwei zweistündige Schularbeiten geschrieben. Die Beurteilung

Mehr

Mathematik Themenbereiche für die mündliche Reifeprüfung 2017/18

Mathematik Themenbereiche für die mündliche Reifeprüfung 2017/18 Mathematik, Themenbereiche RP 17/18, Seite 1 von 6 Mathematik Themenbereiche für die mündliche Reifeprüfung 2017/18 1. Zahlenbereiche und algebraische Gleichungen Wissen über die Zahlenmengen N, Z, Q,

Mehr

4. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner

4. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner 4. Mathemati-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner Arbeitszeit: 100 Minuten Lernstoff: Mathematische Grundompetenzen (Un-)Gleichungen und Gleichungsssteme: AG.3 Quadratische Gleichungen

Mehr

Kantonsschule Solothurn RYS SS11/ Nach welcher Vorschrift wird der Funktionswert y aus x berechnet? Welcher Definitionsbereich ID ist sinnvoll?

Kantonsschule Solothurn RYS SS11/ Nach welcher Vorschrift wird der Funktionswert y aus x berechnet? Welcher Definitionsbereich ID ist sinnvoll? RYS SS11/1 - Übungen 1. Nach welcher Vorschrift wird der Funktionswert y aus berechnet? Welcher Definitionsbereich ID ist sinnvoll? a) : Seitenlänge eines Quadrates (in cm) y: Flächeninhalt des Quadrates

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

F u n k t i o n e n Potenzfunktionen

F u n k t i o n e n Potenzfunktionen F u n k t i o n e n Potenzfunktionen Die Kathedrale von Brasilia steht in der brasilianischen Hauptstadt Brasilia wurde von Oscar Niemeyer (*907 in Rio de Janeiro). Die Kathedrale von Brasilia besteht

Mehr

Beispielklausur für zentrale Klausuren

Beispielklausur für zentrale Klausuren Seite von 5 Beispielklausur für zentrale Klausuren Mathematik Aufgabenstellung Gegeben ist die Funktion f mit f ( = 0,5 x 4,5 x + x 9. Die Abbildung zeigt den zu f gehörigen Graphen. Abbildung a) Ermitteln

Mehr

Logarithmusfunktion zur Basis 2, Aufgaben. 7-E Vorkurs, Mathematik

Logarithmusfunktion zur Basis 2, Aufgaben. 7-E Vorkurs, Mathematik Logarithmusfunktion zur Basis 2, Aufgaben 7-E Vorkurs, Mathematik Logarithmusfunktion zur Basis 2: Aufgaben 7-9 Aufgabe 7: Bestimmen Sie eine vertikale Asymptote für die folgenden Funktionen: f ( x) =

Mehr

Stoffverteilung Mathematik Klasse 8 auf Basis der Bildungsstandards 2004

Stoffverteilung Mathematik Klasse 8 auf Basis der Bildungsstandards 2004 Seiten und Winkel im Dreieck Abstände einfache Dreieckskonstruktionen, auch Bestimmung wahrer Größen bei Strecken und Flächen im Raum kongruente Figuren Kongruente Figuren 1. Kongruente Figuren 2. Kongruenzsätze

Mehr

Grundkompetenzen. für die standardisierte schriftliche Reifeprüfung in Mathematik. 2) Inhaltsbereich Funktionale Abhängigkeiten (FA)

Grundkompetenzen. für die standardisierte schriftliche Reifeprüfung in Mathematik. 2) Inhaltsbereich Funktionale Abhängigkeiten (FA) Grundkompetenzen für die standardisierte schriftliche Reifeprüfung in Mathematik 1) Inhaltsbereich Algebra und Geometrie (AG) Grundbegriffe der Algebra (Un-)Gleichungen und Gleichungssysteme Vektoren Trigonometrie

Mehr

M 8.1. Direkte Proportionalität. Wann heißen zwei Größen (direkt) proportional? Ananas kosten. Bestimme den Proportionalitätsfaktor.

M 8.1. Direkte Proportionalität. Wann heißen zwei Größen (direkt) proportional? Ananas kosten. Bestimme den Proportionalitätsfaktor. M 8.1 Direkte Proportionalität Wann heißen zwei Größen (direkt) proportional? Ananas kosten Wie viel kosten Ananas? Bestimme den Proportionalitätsfaktor. Zeichne den Graphen der Zuordnung. M 8.2 Indirekte

Mehr

Thüringer Kultusministerium

Thüringer Kultusministerium Prüfungstag: Mittwoch, den 07. Juni 2000 Prüfungsbeginn: 8.00 Uhr Thüringer Kultusministerium Realschulabschluss Schuljahr 1999/2000 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer

Mehr

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x. Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt Aufgaben für Analysis in der Oberstufe Robert Rothhardt 14. Juni 2011 2 Inhaltsverzeichnis 1 Modellierungsaufgaben 5 1.1 Musterabitur S60................................ 5 1.2 Musterabitur 3.1.4 B / S61..........................

Mehr

Stoffverteilung Mathematik Klasse 7 auf Basis der Bildungsstandards 2004

Stoffverteilung Mathematik Klasse 7 auf Basis der Bildungsstandards 2004 Prozentrechnung Prozente und Zinsen 1. Prozente Vergleiche werden einfacher 2. Prozentsatz Prozentwert Grundwert 3. Grundaufgaben der Prozentrechnung 4. Zinsen 5. Zinseszinsen 6. Überall Prozente Modellieren

Mehr

Einstiegsvoraussetzungen für das 3. Semester Angewandte Mathematik AM

Einstiegsvoraussetzungen für das 3. Semester Angewandte Mathematik AM Einstiegsvoraussetzungen für das 3. Semester Angewandte Mathematik AM 1. Siehe: Einstiegsvoraussetzungen für das 1. Semester 2. Bereich: Zahlen und Maße 2.1. Fehlerrechnung (Begriffe absoluter und relativer

Mehr