Hadoop Eine Erweiterung für die Oracle DB?

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Hadoop Eine Erweiterung für die Oracle DB?"

Transkript

1 Hadoop Eine Erweiterung für die Oracle DB? Nürnberg, , Matthias Fuchs Sensitive

2 Über mich 10+ Jahre Erfahrung mit Oracle Oracle Certified Professional Exadata Certified Oracle Engineered Systems Exadata Exalytics Big Data Exalogic DWH, Hadoop, Monitoring, Audit Senior Solution Architect

3 Agenda Über Capgemini Warmup Hadoop RDBMS und Hadoop Oracle and Hadoop Demo Performance Oracle and Hadoop 3

4 Agenda Über Capgemini Warmup Hadoop RDBMS und Hadoop Oracle and Hadoop Demo Performance Oracle and Hadoop 4

5 Capgemini eine starke Gruppe Umsatz 2014: 10,57 Mrd. Operative Marge : 970 Mio. Operativer Gewinn : 853 Mio. Jahresgewinn : 580 Mio. Netto-Barmittel und bargleiche Mittel : 1.22 Mrd. Cap Gemini S.A. ist im CAC 40 gelistet; Paris, ISIN code: FR Unsere Marke ist Capgemini, an der Pariser Börse sind wir unter Cap Gemini S.A. gelistet. Umsatz nach Geschäftsbereichen* Umsatz nach Branchen* Local Professional Services 15% 4% Consulting Services Customer Products, Retail, Distribution & Transportation 16% 14% Energy, Utilities & Chemicals Other Managed Services 23% 58% Application Services Manufacturing, Automotive & Life Sciences 17% Public Sector 19% 7% 23% 4% Financial Services Others Telecom, Media & Entertainment * Stand: 1. Halbjahr 2015 * Stand: 1. Halbjahr

6 In über 40 Ländern engagieren sich Mitarbeiter für unsere Kunden (Stand Juli 2015) Kanada USA Europa China Japan Mexico Guatemala Marokko Vereinigte Arabische Emirate Indien Vietnam Taiwan Philippinen Kolumbien Malaysia Singapur Brasilien Chile Argentinien Südafrika Australien Mitarbeiter Offshore Neuseeland 6

7 Capgemini kombiniert seine hohe fachliche Kompetenz mit fundiertem Branchen-Know-how Ausgewählte Referenzkunden Automotive Energy, Utilities & Chemicals Financial Services Manufacturing, Retail & Distribution Public Sector Telecom, Media & Entertainment 7

8 Agenda Über Capgemini Warmup Hadoop RDBMS und Hadoop Oracle and Hadoop Demo Performance Oracle and Hadoop 8

9 Warm up Beispiel Uber Architektur Quelle: 9

10 Warm up Oracle and Cloudera RDBMS 10

11 Warm up RDBMS Quelle: 11

12 Agenda Über Capgemini Warmup Hadoop RDBMS und Hadoop Oracle and Hadoop Demo Performance Oracle and Hadoop 12

13 Hadoop Überblick Processing Layer Big Data SQL Resource Management YARN + MapReduce Storage Layer Filesystem (HDFS) 13

14 Impala HAWQ Drill Big Data SQL Hadoop Überblick SQL Queries Hadoop Hive Query HCatalog SerDes OTA4H MapReduce Spark* Tez Hadoop Storage HDFS HBase, Kudu ** External Tools Processing Layer SQL Engines Auswahl Storage Managers * Spark SQL über Hive, Hive Spark nicht für Produktion ** Kudu beta 14

15 Process Engines General Purpose Processing Frameworks, Apache Projekte MapReduce Erstes Process Framework auf Hadoop, Batchverarbeitung Tez schneller als MapReduce, interaktive Datenverarbeitung, in Memory Verarbeitung, Integration in YARN Spark Performance ähnlich Tez, auch Standalone möglich Weitere wie z.b. Flink Humboldt Uni Berlin Auf Basis der Engines laufen viele SQL Frameworks, das wichtigste Hive Es gibt auch SQL Frameworks mit eigener Process Engine wie z.b. Impala 15

16 Agenda Über Capgemini Warmup Hadoop RDBMS und Hadoop Oracle and Hadoop Demo Performance Oracle and Hadoop 16

17 Beispiel Hadoop Auslagern von Rechenlast 17

18 Mit Oracle Big Data SQL/Connectoren Part Demands Details Aggregates Oracle Big Data SQL 18

19 Vorteile Oracle Integration Hadoop - Datenbank Datenfluss mit Oracle Table Access for Hadoop and Spark (OTA4H) Big Data SQL Ein Einstiegspunkt Sicherheit Analog Datenbank Höhere Performance durch Verwendung optimierter Zugriffslayer Keine Änderungen in der Applikation Big Data SQL Big Data Appliance Exadata (!) 19

20 Agenda Über Capgemini Warmup Hadoop RDBMS und Hadoop Oracle and Hadoop Demo Performance Oracle and Hadoop 20

21 Big Data SQL und Hadoop Oracle Big Data SQL Cloudera Hadoop NOSQL R Advanced Analytics Connectors ODI Exadata Advanced Analytics Advanced Security 21

22 Was ist Big Data SQL? Externe Tabelle Hive HDFS DBMS_HADOOP Paket für Automatischen Import Schema-for-read Parallelität CREATE TABLE OEM_DATA (target_name VARCHAR2(4000), target_guid.. key_value6 VARCHAR2(4000), collection_timestamp VARCHAR2(4000)) ORGANIZATION EXTERNAL (TYPE ORACLE_HIVE DEFAULT DIRECTORY DEFAULT_DIR ACCESS PARAMETERS ( com.oracle.bigdata.cluster=bigdatalite com.oracle.bigdata.tablename=default. oem_data) ) ; 22

23 Big Data SQL - Schritte Übersicht Big Data SQL Create Rows and Columns Scan Detail Use scan and row methods to query any data format Smart Scn Storage Index Use data definition and column deserializations as exist in Hadoop Data Node RecordReader => Scans data (keys and values) InputFormat => Defines parallelism SerDe => Makes columns Metastore => Maps DDL to Java access classes Third level 23

24 Oracle and Hadoop Big Data SQL Big Data SQL 1.x Erste Version mit Smart Scan auf Hadoop und NoSQL Optimierte Joins - Bloom filter mit Hadoop Daten Fan-out Parallelität auf Hadoop /2015 Storage Indexes für Big Data SQL Reduzierter IO auslassen von HDFS Blöcken aufgrund des Storage Index Minimierung User Administration Future Optimizer Columnar Parquet Partition pruning - Exadata? 24

25 Copy To BDA Big Data Appliance and Exadata? Export data pump file aus der Datenbank Kopieren des Files auf die BDA (hdfs put) Externe Tabelle in Hive einrichten auf das Data Pump File Abfrage als Hive Tabelle 25

26 Oracle Table Access for Hadoop and Spark (OTA4H) OTA4H AD Hoc Abfragen, direkte Abfragen Security Features der Datenbank bleiben erhalten Management, Column Masking, and Label and Row Security. Direkter Zugriff von Hadoop and Spark APIs sowie bei Tools wie Pig oder MapReduce CREATE[TEMPORARY] EXTERNAL TABLE [IF NOT EXISTS] [db_name.]table_name [(col_name data_type [COMMENTcol_comment],...)] [COMMENT table_comment] STORED BY 'oracle.hcat.osh.oraclestoragehandler' [WITHSERDEPROPERTIES(...)] [TBLPROPERTIES (property_name=property_value,...)] 26

27 Oracle SQL Connector for HDFS Connetoren Daten Data Pump files in HDFS Delimited text files in HDFS Delimited text files in Apache Hive tables Systeme BDA Hadoop Apache Cluster 27

28 Mehr Connectoren Oracle Loader for Hadoop Daten nach Hadoop Laden (ODI) Oracle XQuery for Hadoop: Auswertung XML Queries in Parallel Hadoop Oracle R Advanced Analytics for Hadoop R analog wie in der DB in Hadoop Oracle Data Integrator Jobs können im Hadoop Cluster laufen 28

29 Agenda Über Capgemini Warmup Hadoop RDBMS und Hadoop Oracle and Hadoop Demo Performance Oracle and Hadoop 29

30 Demo BDA and Exadata Generating CSV Files, DB Monitoring DATA HDFS HIVE Big Data SQL DB BDA Exadata 30

31 Load HIVE External Table Big Data SQL DB BDA Exadata 31

32 Calculation 1. Hash creation inside EXA 2. Hash creation inside BDA DB HIVE External Table Exadata BDA 32

33 The information contained in this presentation is proprietary. Copyright 2015 Capgemini. All rights reserved.

Logical Data Warehouse SQL mit Oracle DB und Hadoop

Logical Data Warehouse SQL mit Oracle DB und Hadoop Logical Data Warehouse SQL mit Oracle DB und Hadoop Matthias Fuchs DWH Architekt ISE Information Systems Engineering GmbH Ingo Reisky Senior Consultant Opitz Consulting Deutschland GmbH ISE Information

Mehr

Beratung. Results, no Excuses. Consulting. Lösungen. Grown from Experience. Ventum Consulting. SQL auf Hadoop Oliver Gehlert. 2014 Ventum Consulting

Beratung. Results, no Excuses. Consulting. Lösungen. Grown from Experience. Ventum Consulting. SQL auf Hadoop Oliver Gehlert. 2014 Ventum Consulting Beratung Results, no Excuses. Consulting Lösungen Grown from Experience. Ventum Consulting SQL auf Hadoop Oliver Gehlert 1 Ventum Consulting Daten und Fakten Results, no excuses Fachwissen Branchenkenntnis

Mehr

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics DATA WAREHOUSE Oracle BI&W Referenz Architektur Big Data und High Performance Analytics Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen

Mehr

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden

Mehr

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle DATA WAREHOUSE Big Data Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen aus Unternehmens- Daten ziehen! Datenmengen, Performance und Kosten Daten als Geschäftsmodell

Mehr

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh SQL on Hadoop für praktikables BI auf Big Data! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh War nicht BigData das gleiche NoSQL? 2 Wie viele SQL Lösungen für Hadoop gibt es mittlerweile? 3 ! No SQL!?

Mehr

Hans-Peter Zorn Inovex GmbH. Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke?

Hans-Peter Zorn Inovex GmbH. Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke? Hans-Peter Zorn Inovex GmbH Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke? War nicht BigData das gleiche NoSQL? Data Lake = Keine Struktur? flickr/matthewthecoolguy Oder gar ein Hadump? flickr/autohistorian

Mehr

Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel. Carsten Herbe metafinanz Informationssysteme GmbH

Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel. Carsten Herbe metafinanz Informationssysteme GmbH Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel Carsten Herbe metafinanz Informationssysteme GmbH In unserer Business Line Business Intelligence & Risk gibt es fünf Bereiche: Risk,

Mehr

Big Data Informationen neu gelebt

Big Data Informationen neu gelebt Seminarunterlage Version: 1.01 Copyright Version 1.01 vom 21. Mai 2015 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

Fast Analytics on Fast Data

Fast Analytics on Fast Data Fast Analytics on Fast Data Kudu als Storage Layer für Banking Applikationen Problem Klassischer Kreditprozess Beantragung in der Filiale Aufwendiger Prozess Nachweis durch Dokumente Manuelle Bewilligung

Mehr

Big Data Hype und Wirklichkeit Bringtmehrauchmehr?

Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Günther Stürner, Vice President Sales Consulting 1 Copyright 2011, Oracle and/or its affiliates. All rights Überschrift 2 Copyright 2011, Oracle and/or

Mehr

Die wichtigsten Hadoop-Komponenten für Big Data mit SAS

Die wichtigsten Hadoop-Komponenten für Big Data mit SAS Webinar@Lunchtime Die wichtigsten Hadoop-Komponenten für Big Data mit SAS Herzlich Willkommen bei Webinar@Lunchtime Moderation Anne K. Bogner-Hamleh SAS Institute GmbH Education Consultant Xing-Profil:

Mehr

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen DATA WAREHOUSE Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen Alfred Schlaucher, Detlef Schroeder DATA WAREHOUSE Themen Big Data Buzz Word oder eine neue Dimension

Mehr

BIG DATA IM RETAIL-SEKTOR AM BEISPIEL KASSENBONDATEN BUSINESS ANALYTICS DAY

BIG DATA IM RETAIL-SEKTOR AM BEISPIEL KASSENBONDATEN BUSINESS ANALYTICS DAY BIG DATA IM RETAIL-SEKTOR AM BEISPIEL KASSENBONDATEN BUSINESS ANALYTICS DAY 08.03.2017 REWE Systems GmbH Jonas Freiknecht inovex GmbH Bernhard Schäfer AGENDA 1 / Vorstellung REWE Systems GmbH und inovex

Mehr

einfach. gut. beraten. Oracle Big Data Konnektoren: Hadoop und die Oracle DB DOAG Konferenz + Ausstellung 2016 Nürnberg Philipp Loer

einfach. gut. beraten. Oracle Big Data Konnektoren: Hadoop und die Oracle DB DOAG Konferenz + Ausstellung 2016 Nürnberg Philipp Loer einfach. gut. beraten. Oracle Big Data Konnektoren: Hadoop und die Oracle DB DOAG Konferenz + Ausstellung 2016 Nürnberg Philipp Loer info@ordix.de www.ordix.de Agenda Hadoop Hive OLH: Oracle Loader for

Mehr

Oracle Big Data Discovery Ein Überblick

Oracle Big Data Discovery Ein Überblick Oracle Big Data Discovery Ein Überblick Hadoop Data Reservoir gewinnt weiter an Bedeutung Data Warehouse Bekannte Datenquellen Data Reservoir Entstehende Datenquellen Hadoop Umsatz und Forecast 49% CAGR,

Mehr

Exalytics - Deep dive with OBIEE, Timesten and Essbase

Exalytics - Deep dive with OBIEE, Timesten and Essbase Exalytics - Deep dive with OBIEE, Timesten and Essbase Renate Wendlik Senior DWH Consultant Matthias Fuchs DWH Architekt ISE Information Systems Engineering GmbH Agenda Einleitung Exalytics Konfiguration

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

IT-Trends 2014 IT-Kompetenz im Management steigt

IT-Trends 2014 IT-Kompetenz im Management steigt IT-Trends 2014 IT-Kompetenz im Management steigt IKT-Forum Linz, 9. Oktober 2014 DI Bernd Bugelnig Capgemini eine starke Gruppe (Gesamtjahr 2013) Umsatz 2013: 10,092 Mrd. Operative Marge : 857 Mio. Operativer

Mehr

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration June 2015 Automic Hadoop Agent Data Automation - Hadoop Integration + Aufbau der Hadoop Anbindung + Was ist eigentlich ist MapReduce? + Welches sind die Stärken von Hadoop + Welches sind die Schwächen

Mehr

Big Data im Retail-Sektor am Beispiel Kassenbondaten

Big Data im Retail-Sektor am Beispiel Kassenbondaten Big Data im Retail-Sektor am Beispiel Kassenbondaten REWE Systems GmbH Jonas Freiknecht inovex GmbH Bernhard Schäfer Business Analytics Day, 08.03.2017 AGENDA 1. Vorstellung REWE Systems GmbH und inovex

Mehr

<Insert Picture Here> 8. Business Intelligence & Data Warehouse Konferenz

<Insert Picture Here> 8. Business Intelligence & Data Warehouse Konferenz 1 The Safe Harbor The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment

Mehr

Step 0: Bestehende Analyse-Plattform

Step 0: Bestehende Analyse-Plattform Die Themen 09:30-09:45 Einführung in das Thema (Oracle) 09:45-10:15 Hadoop in a Nutshell (metafinanz) 10:15-10:45 Hadoop Ecosystem (metafinanz) 10:45-11:00 Pause 11:00-11:30 BigData Architektur-Szenarien

Mehr

Connectivity zwischen den Welten

Connectivity zwischen den Welten Connectivity zwischen den Welten Integration operativer Systeme, Data Warehouse und Hadoop-Plattform Christoph Blessing Systemberatung Stuttgart Safe Harbor Statement The following is intended to outline

Mehr

Big Data Anwendungen Chancen und Risiken

Big Data Anwendungen Chancen und Risiken Big Data Anwendungen Chancen und Risiken Dr. Kurt Stockinger Studienleiter Data Science, Dozent für Informatik Zürcher Hochschule für Angewandte Wissenschaften Big Data Workshop Squeezing more out of Data

Mehr

Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes

Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes Hadoop Eine Open-Source-Implementierung von MapReduce und BigTable von Philipp Kemkes Hadoop Framework für skalierbare, verteilt arbeitende Software Zur Verarbeitung großer Datenmengen (Terra- bis Petabyte)

Mehr

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer Big in Azure Ein Beispiel mit HD Insight Ralf Stemmer Agenda owas ist Big? Was ist HD Insight? owelche Probleme kann man damit lösen? odemo Was ist Big? Was ist HD Insight? Datenexplosion - Rasanter Zuwachs

Mehr

Big Data für die Internet Sicherheit

Big Data für die Internet Sicherheit Big Data für die Internet Sicherheit Ralph Kemperdick Hans Wieser Microsoft 1 Mobile-first Data-driven Cloud-first 2 2 3 Messenger Wi nd ow s Liv e 4 5 Anwendung: Das Microsoft Cybercrime Center 6 Betrug

Mehr

Hadoop Demo HDFS, Pig & Hive in Action. Oracle DWH Konferenz 2014 Carsten Herbe

Hadoop Demo HDFS, Pig & Hive in Action. Oracle DWH Konferenz 2014 Carsten Herbe Hadoop Demo HDFS, Pig & Hive in Action Oracle DWH Konferenz 2014 Carsten Herbe Wir wollen eine semi-strukturierte Textdatei in Hadoop verarbeiten und so aufbereiten, dass man die Daten relational speichern

Mehr

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution EXASOL @ Symposium on Scalable Analytics Skalierbare Analysen mit EXASolution EXASOL AG Wer sind wir R&D: + seit 2000 + laufend Forschungsprojekte Produkt: Analytische Datenbank EXASolution Focus auf Komplexität

Mehr

Hadoop & SQL Wie Hadoop um SQL erweitert werden kann. Oracle/metafinanz Roadshow 11./18. Februar

Hadoop & SQL Wie Hadoop um SQL erweitert werden kann. Oracle/metafinanz Roadshow 11./18. Februar Hadoop & SQL Wie Hadoop um SQL erweitert werden kann Oracle/metafinanz Roadshow 11./18. Februar Head of Data Warehousing DWH Principal Consultant DWH Senior Consultant Wir fokussieren mit unseren Services

Mehr

R Statistik im Oracle Produktstack

R Statistik im Oracle Produktstack R Statistik im Oracle Produktstack Matthias Fuchs DWH Architect ISE Information Systems Engineering GmbH ISE Information Systems Engineering Gegründet 1991 Mitarbeiteranzahl: 50 Hauptsitz in Gräfenberg,

Mehr

Zend PHP Cloud Application Platform

Zend PHP Cloud Application Platform Zend PHP Cloud Application Platform Jan Burkl System Engineer All rights reserved. Zend Technologies, Inc. Zend PHP Cloud App Platform Ist das ein neues Produkt? Nein! Es ist eine neue(re) Art des Arbeitens.

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Jürgen Vester Oracle Deutschland B.V. & Co KG Um was geht es bei Big Data? Bei Big Data sprechen wir eine Klasse von Daten an, die in der

Mehr

Oracle OLAP 11g: Performance für das Oracle Data Warehouse

Oracle OLAP 11g: Performance für das Oracle Data Warehouse Oracle OLAP 11g: Performance für das Oracle Data Warehouse Marc Bastien Oracle BI Presales Agenda Performanceprobleme in Oracle DWH: gibt s das überhaupt? Mögliche Gründe und Lösungen

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden Neue Beziehungen finden...

Mehr

Oracle Bare Metal Cloud Service

Oracle Bare Metal Cloud Service Oracle Bare Metal Cloud Service Ein Überblick Marcus Schröder Master Principal Sales Consultant Business Unit Core & Cloud Technologies November, 2017 2 Safe Harbor Statement The following is intended

Mehr

on Azure mit HDInsight & Script Ac2ons

on Azure mit HDInsight & Script Ac2ons Willkommen beim #GAB 2015! on Azure mit HDInsight & Script Ac2ons Lokale Sponsoren: HansPeter Grahsl Netconomy Entwickler & Berater FH CAMPUS 02 Twi9er: @hpgrahsl Überblick Inhalte Was ist HDInsight? Wozu

Mehr

Parallelisierung. Grundlagen und Nutzung. Stefan Seck Solution Engineer Inforsacom Logicalis GmbH. Düsseldorf,

Parallelisierung. Grundlagen und Nutzung. Stefan Seck Solution Engineer Inforsacom Logicalis GmbH. Düsseldorf, Parallelisierung Grundlagen und Nutzung Stefan Seck Solution Engineer Inforsacom Logicalis GmbH Düsseldorf, 30.05.2017 Inforsacom Logicalis Über Ca. Umsatz im Fiskaljahr Mitarbeiter in Deutschland Niederlassungen

Mehr

Oracle Database Cloud Service

Oracle Database Cloud Service 1 Oracle Database Cloud Service Gerd Schoen Senior Leitender Systemberater 2 Copyright 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from

Mehr

Big Data: Die ersten Schritte eines Oracle Experten

Big Data: Die ersten Schritte eines Oracle Experten Big Data: Die ersten Schritte eines Oracle Experten Schlüsselworte Jan Ott Senior Consultant Business Intelligence Trivadis AG Glattbrugg Big Data, Oracle Connectoren, Hadoop, Claudera, Oracle Einleitung

Mehr

Hadoop und SAS Status und Ausblick WIEN, JUNI 2015 GERNOT ENGEL, CLIENT SERVICE MANAGER SAS AUSTRIA

Hadoop und SAS Status und Ausblick WIEN, JUNI 2015 GERNOT ENGEL, CLIENT SERVICE MANAGER SAS AUSTRIA Copyright o p y r i g h t 2012, 2 0 1 2, SAS S A S Institute s t i t u tinc e In. c All. Arights l l r i g hreserved. t s r e s e r ve d. Hadoop und SAS Status und Ausblick WIEN, JUNI 2015 GERNOT ENGEL,

Mehr

Oracle Data Warehouses und Big Data im Zusammenspiel

Oracle Data Warehouses und Big Data im Zusammenspiel Oracle Data Warehouses und Big Data im Zusammenspiel Peter Welker Trivadis GmbH Stuttgart Schlüsselworte: Oracle, Big Data, Connectors, SQL, ODBC Gateway, ODI, Golden Gate Einleitung Immer häufiger stellt

Mehr

Datenaustausch Hadoop & Oracle DB. DOAG Konferenz 2013 Nürnberg, 19.-21. November 2013 Carsten Herbe metafinanz Informationssysteme GmbH

Datenaustausch Hadoop & Oracle DB. DOAG Konferenz 2013 Nürnberg, 19.-21. November 2013 Carsten Herbe metafinanz Informationssysteme GmbH DOAG Konferenz 2013 Nürnberg, 19.-21. November 2013 Carsten Herbe metafinanz Informationssysteme GmbH Wir fokussieren mit unseren Services die Herausforderungen des Marktes und verbinden Mensch und IT.

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

MySQL Queries on "Nmap Results"

MySQL Queries on Nmap Results MySQL Queries on "Nmap Results" SQL Abfragen auf Nmap Ergebnisse Ivan Bütler 31. August 2009 Wer den Portscanner "NMAP" häufig benutzt weiss, dass die Auswertung von grossen Scans mit vielen C- oder sogar

Mehr

SODA. Die Datenbank als Document Store. Rainer Willems. Master Principal Sales Consultant Oracle Deutschland B.V. & Co. KG

SODA. Die Datenbank als Document Store. Rainer Willems. Master Principal Sales Consultant Oracle Deutschland B.V. & Co. KG SODA Die Datenbank als Document Store Rainer Willems Master Principal Sales Consultant Oracle Deutschland B.V. & Co. KG vs No Anforderungskonflikte Agile Entwicklung Häufige Schema-Änderungen Relationales

Mehr

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht)

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Christian Haag, DATA MART Consulting Consulting Manager Oracle DWH Team

Mehr

Konferenz Nürnberg 2014. NoSQL Vortrag Taiwan/Taipei 2014. Zusammen ein Team? ORACLE UND HADOOP. Seite 1. Gunther Pippèrr 2014 http://www.pipperr.

Konferenz Nürnberg 2014. NoSQL Vortrag Taiwan/Taipei 2014. Zusammen ein Team? ORACLE UND HADOOP. Seite 1. Gunther Pippèrr 2014 http://www.pipperr. Konferenz Nürnberg 2014 NoSQL Vortrag Taiwan/Taipei 2014 Zusammen ein Team? ORACLE UND HADOOP Seite 1 Warum nun Big DATA Was treibt uns an? Neue Lösungen für alte Probleme? Seite 2 Herausforderung Datenqualität

Mehr

Big Data Mythen und Fakten

Big Data Mythen und Fakten Big Data Mythen und Fakten Mario Meir-Huber Research Analyst, IDC Copyright IDC. Reproduction is forbidden unless authorized. All rights reserved. About me Research Analyst @ IDC Author verschiedener IT-Fachbücher

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Ralf Lange Global ISV & OEM Sales NoSQL: Eine kurze Geschichte Internet-Boom: Erste Ansätze selbstgebauter "Datenbanken" Google stellt "MapReduce"

Mehr

Virtual Unified Environments Infrastructure Service Installation und Lifecycle im Oracle Produktumfeld

Virtual Unified Environments Infrastructure Service Installation und Lifecycle im Oracle Produktumfeld www.ise-informatik.de Virtual Unified Environments Infrastructure Service Installation und Lifecycle im Oracle Produktumfeld Andreas Chatziantoniou Fusion Middleware Expert Foxglove-IT BV Matthias Fuchs

Mehr

BIG SQL FOR HORTONWORKS (MOGELPACKUNG ODER GENIALER SCHACHZUG?)

BIG SQL FOR HORTONWORKS (MOGELPACKUNG ODER GENIALER SCHACHZUG?) THOMAS KALB BIG SQL FOR HORTONWORKS (MOGELPACKUNG ODER GENIALER SCHACHZUG?) Big SQL for Hortonworks (Mogelpackung oder genialer Schachzug) Copyright 2017 ITGAIN GmbH 1 AGENDA ITGAIN Big SQL Aktionen PoC

Mehr

Living Lab Big Data Konzeption einer Experimentierplattform

Living Lab Big Data Konzeption einer Experimentierplattform Living Lab Big Data Konzeption einer Experimentierplattform Dr. Michael May Berlin, 10.12.2012 Fraunhofer-Institut für Intelligente Analyseund Informationssysteme IAIS www.iais.fraunhofer.de Agenda n Ziele

Mehr

Java Application 1 Java Application 2. JDBC DriverManager. JDBC-ODBC Br idge. ODBC Driver Manager. Dr iver C. Dr iver D.

Java Application 1 Java Application 2. JDBC DriverManager. JDBC-ODBC Br idge. ODBC Driver Manager. Dr iver C. Dr iver D. 1 Copyright 1996-1997 by Axel T. Schreiner. All Rights Reserved. 7 Datenbankzugriff Prinzip Dieser Abschnitt beschäftigt sich mit dem Paket java.sql, das eine SQL-Schnittstelle für Java verkapselt. Java-Programme

Mehr

Stratosphere. Next-Generation Big Data Analytics Made in Germany

Stratosphere. Next-Generation Big Data Analytics Made in Germany Stratosphere Next-Generation Big Data Analytics Made in Germany Robert Metzger Stratosphere Core Developer Technische Universität Berlin Ronald Fromm Head of Big Data Science Telekom Innovation Laboratories

Mehr

Technologietag SharePoint 2010

Technologietag SharePoint 2010 Technologietag SharePoint 2010 Business Applications in SharePoint 2010 Marco Leithold, Thomas Lorenz conplement AG 2 conplement AG 2010. All Rights Reserved. Agenda Einführung Business Applications mit

Mehr

SAS Predictive Analytics Factory The SAS approach for the production and maintenance of analytical models

SAS Predictive Analytics Factory The SAS approach for the production and maintenance of analytical models Predictive Analytics Factory The approach for the production and maintenance of analytical models Dr. Gerhard Svolba Austria Forum Finnland Helsinki September24 h, 2013 Agenda Rationale and idea of a Predictive

Mehr

Einsatzmöglichkeiten der Open Text SharePoint Erweiterungen an einem Beispielprojekt

Einsatzmöglichkeiten der Open Text SharePoint Erweiterungen an einem Beispielprojekt Einsatzmöglichkeiten der Open Text SharePoint Erweiterungen an einem Beispielprojekt BTC NetWork Forum ECM Bernd Hennicke Portfolio Manager Microsoft Solutions September 29, 2010 Rev 1.1 02092009 Slide

Mehr

IBM Informix Tuning und Monitoring

IBM Informix Tuning und Monitoring Seminarunterlage Version: 11.01 Copyright Version 11.01 vom 25. Juli 2012 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Oracle DWH-Konferenz 21. März 2012 Dr. Carsten Bange Gründer & Geschäftsführer BARC Big Data bietet Methoden und Technologien

Mehr

Die perfekte Kombination im Agilen Data Warehouse Oracle Engineered Systems mit Data Vault

Die perfekte Kombination im Agilen Data Warehouse Oracle Engineered Systems mit Data Vault Die perfekte Kombination im Agilen Data Warehouse Oracle Engineered Systems mit Data Vault Herbert Rossgoderer Geschäftsführer Matthias Fuchs DWH Architekt ISE Information Systems Engineering GmbH ISE

Mehr

WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN?" HANS-JOACHIM EDERT

WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN? HANS-JOACHIM EDERT WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN?" Copyr i g ht 2012, SAS Ins titut e Inc. All rights res er ve d. HANS-JOACHIM EDERT EBINAR@LUNCHTIME

Mehr

Skalierbare Webanwendungen

Skalierbare Webanwendungen Skalierbare Webanwendungen Thomas Bachmann Lead Software Architect & CIO Mambu GmbH Twitter: @thobach Anwendungsbeispiel Hohe Nichtfunktionale Anforderungen Sicherheit Vertraulichkeit Integrität Verfügbarkeit

Mehr

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS AGENDA VISUAL ANALYTICS 9:00 09:30 Das datengetriebene Unternehmen: Big Data Analytics mit SAS die digitale Transformation: Handlungsfelder für IT

Mehr

MySQL Performance Tuning für Entwickler

MySQL Performance Tuning für Entwickler MySQL Performance Tuning für Entwickler Cebit 2015, Hannover Oli Sennhauser Senior MySQL Consultant, FromDual GmbH oli.sennhauser@fromdual.com 1 / 18 FromDual GmbH Support Beratung remote-dba Schulung

Mehr

Copyright 2014, Oracle and/or its affiliates. All rights reserved.

Copyright 2014, Oracle and/or its affiliates. All rights reserved. 1 Integrierte Systeme für ISVs Matthias Weiss Direktor Mittelstand Technologie ORACLE Deutschland B.V. & Co. KG 2 Agenda Engineered Systems Lösungsansatz aus der Praxis Engineered Systems Oracle s Strategie

Mehr

Copyright 2014, Oracle and/or its affiliates. All rights reserved.

Copyright 2014, Oracle and/or its affiliates. All rights reserved. 1 Integrierte Systeme für SIs und VARs Matthias Weiss Direktor Mittelstand Technologie ORACLE Deutschland B.V. & Co. KG 2 Agenda Engineered Systems Oracle s Strategie Engineered Systems Big Data einmal

Mehr

Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann

Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann Adam Stambulski Project Manager Viessmann R&D Center Wroclaw Dr. Moritz Gomm Business Development Manager Zühlke Engineering

Mehr

Einführung in Hadoop & MapReduce. Dr. Kathrin Spreyer Big Data Engineer

Einführung in Hadoop & MapReduce. Dr. Kathrin Spreyer Big Data Engineer Einführung in Hadoop & MapReduce Dr. Kathrin Spreyer Big Data Engineer München, 19.06.2013 Agenda Einleitung 1. HDFS 2. MapReduce 3. APIs 4. Hive & Pig 5. Mahout Tools aus Hadoop-Ökosystem 6. HBase 2 Worum

Mehr

Oracle Data Warehouses und Big Data im Zusammenspiel

Oracle Data Warehouses und Big Data im Zusammenspiel Oracle Data Warehouses und Big Data im Zusammenspiel Peter Welker, Trivadis GmbH Immer häufiger stellt sich die Frage, wie man Daten aus der Oracle-Datenbank und solche aus Big-Data- Plattformen wie Hadoop

Mehr

Software EMEA Performance Tour 2013. 17.-19 Juni, Berlin

Software EMEA Performance Tour 2013. 17.-19 Juni, Berlin Software EMEA Performance Tour 2013 17.-19 Juni, Berlin Accenture s High Performance Analytics Demo-Umgebung Dr, Holger Muster (Accenture), 18. Juni 2013 Copyright 2012 Hewlett-Packard Development Company,

Mehr

USER CASE: SCOUT ALS FRAMEWORK FÜR FINANCIAL TECH

USER CASE: SCOUT ALS FRAMEWORK FÜR FINANCIAL TECH USER CASE: 2. Scout User Group Meeting eclipsecon Unconference 2015 LUDWIGSBURG, 2. NOVEMBER 2015» DAVID KLEIN, ENRION GMBH Content 1. Kurzvorstellung Enrion 2. Die Suche nach einem passenden Framework

Mehr

Und was wird aus meinem Berichtswesen? <Speaker> Oracle Deutschland B.V. & Co. KG

Und was wird aus meinem Berichtswesen? <Speaker> Oracle Deutschland B.V. & Co. KG Und was wird aus meinem Berichtswesen? Oracle Deutschland B.V. & Co. KG Die Zukunft von Oracle Reports Statement of Direction (März 2012) Oracle Application Development Tools: Statement of Direction

Mehr

Performante Verarbeitung großer Datenbanken am praktischem Beispiel

Performante Verarbeitung großer Datenbanken am praktischem Beispiel Performante Verarbeitung großer Datenbanken am praktischem Beispiel Thomas Lehmann 08.09.2015, Dresden Agenda 1. Technische Rahmenbedingungen 2. Theoretische Grundlagen 3. Verschiedene Probleme am praktischen

Mehr

Big Data und Oracle bringen die Logistik in Bewegung

Big Data und Oracle bringen die Logistik in Bewegung OPITZ CONSULTING Deutschland GmbH Dortmund, 07.05.2014 Bild-Quelle: Web-Seite von Pasta ZARA, Big Artikel Data So und entstehen Oracle bringen unsere die Nudeln Logistik in Bewegung http://de.pastazara.com/so-entstehen-unsere-nudeln

Mehr

Oracle Enterprise Manager 12c:

Oracle Enterprise Manager 12c: Oracle Enterprise Manager 12c: Historisierung und Analyse von Daten aus OEM Cloud Control in Hadoop Ingo Reisky Senior Consultant OPITZ CONSULTING Deutschland GmbH Matthias Fuchs Solutions Architect ISE

Mehr

Open Source Data Center Virtualisierung mit OpenNebula. 22.05.2013 LinuxTag Berlin. Bernd Erk www.netways.de

Open Source Data Center Virtualisierung mit OpenNebula. 22.05.2013 LinuxTag Berlin. Bernd Erk www.netways.de Open Source Data Center Virtualisierung mit OpenNebula 22.05.2013 LinuxTag Berlin Bernd Erk VORSTELLUNG NETWAYS NETWAYS! Firmengründung 1995! GmbH seit 2001! Open Source seit 1997! 38 Mitarbeiter! Spezialisierung

Mehr

Public Cloud im eigenen Rechenzentrum

Public Cloud im eigenen Rechenzentrum Public Cloud im eigenen Rechenzentrum Matthias Weiss Direktor Mittelstand Technologie Oracle Deutschland B.V. & Co.KG Copyright 2016 Oracle and/or its affiliates. All rights reserved. Agenda Oracle Cloud

Mehr

PRODATIS CONSULTING AG. Folie 1

PRODATIS CONSULTING AG. Folie 1 Folie 1 Führend im Gartner Magic Quadranten für verteilte, interagierende SOA Projekte Oracle ist weltweit auf Rang 1 auf dem Markt der Enterprise Service Bus Suiten (ESB) für SOA Software 2010 26,3 %

Mehr

Analytisches CRM. Workshop Data Mining im Datenbasierten Marketing. Michael Lamprecht und Jan Frick, Altran GmbH & Co. KG 26.06.

Analytisches CRM. Workshop Data Mining im Datenbasierten Marketing. Michael Lamprecht und Jan Frick, Altran GmbH & Co. KG 26.06. Analytisches CRM Workshop Data Mining im Datenbasierten Marketing Michael Lamprecht und Jan Frick, Altran GmbH & Co. KG 26.06.2015 Data Mining bietet Antworten auf zahlreiche analytische Fragestellungen

Mehr

Data Mart Offload nach Hadoop Star Schema in HDFS anstatt RDBMS. Carsten Herbe DOAG Konferenz November 2014

Data Mart Offload nach Hadoop Star Schema in HDFS anstatt RDBMS. Carsten Herbe DOAG Konferenz November 2014 Data Mart Offload nach Hadoop Star Schema in HDFS anstatt RDBMS Carsten Herbe DOAG Konferenz November 2014 Wir fokussieren mit unseren Services die Herausforderungen des Marktes und verbinden Mensch und

Mehr

Roadshow - What s new in SQL Server 2016

Roadshow - What s new in SQL Server 2016 1 Roadshow - What s new in SQL Server 2016 Kursleitung: Dieter Rüetschi (ruetschi@ability-solutions.ch) 2 Inhalt Fachreferat Everything-Built-In Mission Critical Plattform Security Hochverfügbarkeit Advanced

Mehr

Review Freelancer-Workshop: Fit für Big Data. Mittwoch, 29.04.2015 in Hamburg

Review Freelancer-Workshop: Fit für Big Data. Mittwoch, 29.04.2015 in Hamburg Review Freelancer-Workshop: Fit für Big Data Mittwoch, 29.04.2015 in Hamburg Am Mittwoch, den 29.04.2015, hatten wir von productive-data in Zusammenarbeit mit unserem langjährigen Partner Informatica zu

Mehr

Oracle PaaS and IaaS Public Cloud Services P I L L A R - D O K U M E N T A T I O N J U L I 2016

Oracle PaaS and IaaS Public Cloud Services P I L L A R - D O K U M E N T A T I O N J U L I 2016 Oracle PaaS and IaaS Public Cloud Services P I L L A R - D O K U M E N T A T I O N J U L I 2016 Inhaltsverzeichnis Geltungsbereich 1 Oracle Cloud Service Level Objective Policy: Angestrebte Verfügbarkeit

Mehr

Oracle Exadata Storage Server Performance erklärt SmartScan

Oracle Exadata Storage Server Performance erklärt SmartScan Products 31 Daniel Rey, OPITZ CONSULTING Schweiz GmbH Oracle Exadata Storage Server Performance erklärt SmartScan Im Herbst 2008 präsentierte Oracle an der OpenWorld den Exadata Storage Server und die

Mehr

Open Source Data Center Virtualisierung mit OpenNebula. 05.03.2013 CeBIT 2013. Bernd Erk www.netways.de

Open Source Data Center Virtualisierung mit OpenNebula. 05.03.2013 CeBIT 2013. Bernd Erk www.netways.de Open Source Data Center Virtualisierung mit OpenNebula 05.03.2013 CeBIT 2013 Bernd Erk VORSTELLUNG NETWAYS NETWAYS! Firmengründung 1995! GmbH seit 2001! Open Source seit 1997! 35 Mitarbeiter! Spezialisierung

Mehr

1 Copyright 2012, Oracle and/or its affiliates. All rights reserved. ileana.somesan@oracle.com

1 Copyright 2012, Oracle and/or its affiliates. All rights reserved. ileana.somesan@oracle.com 1 Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle Datenbanken in der Oracle Public Cloud nutzen Ileana Someşan Systemberaterin ORACLE Deutschland The following is intended to

Mehr

Performance Tuning mit @enterprise

Performance Tuning mit @enterprise @enterprise Kunden-Forum 2005 Performance Tuning mit @enterprise Herbert Groiss Groiss Informatics GmbH, 2005 Inhalt Datenbank RMI JAVA API HTTP Konfiguration Analyse Groiss Informatics GmbH, 2005 2 Datenbank

Mehr

Peter Dikant mgm technology partners GmbH. Echtzeitsuche mit Hadoop und Solr

Peter Dikant mgm technology partners GmbH. Echtzeitsuche mit Hadoop und Solr Peter Dikant mgm technology partners GmbH Echtzeitsuche mit Hadoop und Solr ECHTZEITSUCHE MIT HADOOP UND SOLR PETER DIKANT MGM TECHNOLOGY PARTNERS GMBH WHOAMI peter.dikant@mgm-tp.com Java Entwickler seit

Mehr

Datenbank-Refactoring mit LiquiBase

Datenbank-Refactoring mit LiquiBase Datenbank-Refactoring mit LiquiBase Agile Software-Entwicklung mit RDBMS Refactoring & Change Management Benjamin Schmid Softwareentwicklung in der Praxis Hervorragende Lösungen beim Programmcode für:

Mehr

IT-Symposium 2008 05.06.2008

IT-Symposium 2008 05.06.2008 Selftuning Database Ein Traum oder Wirklichkeit Ralf Durben Oracle Deutschland GmbH www.hp-user-society.de 1 Die Arbeitswelt des Gestern, heute und morgen Früher Ein für wenige Datenbanken

Mehr

DB2 Version 10 Kapitel IT-Sicherheit

DB2 Version 10 Kapitel IT-Sicherheit (*) IBM DB2 for z/os DB2 Version 10 Kapitel IT-Sicherheit (06_DB2V10_itsicherheit.pptx) (*) ist eingetragenes Warenzeichen der IBM International Business Machines Inc. 1 DB2 Version 10 IT Sicherheit DB2

Mehr

daniel.kreuzhofer@microsoft.com Image source http://commons.wikimedia.org/wiki/file:modern_warehouse_with_pallet_rack_storage_system.jpg Definitionen Azure Region Eine Ansammlung von Rechenzentren, die

Mehr

RavenDB, schnell und skalierbar

RavenDB, schnell und skalierbar RavenDB, schnell und skalierbar Big Data & NoSQL, Aydin Mir Mohammadi bluehands GmbH & Co.mmunication KG am@bluehands.de Immer mehr Mehr Performance Mehr Menge Mehr Verfügbarkeit Skalierung http://www.flickr.com/photos/39901968@n04/4864698533/

Mehr

Big Data Konnektoren: Hadoop und die Oracle DB

Big Data Konnektoren: Hadoop und die Oracle DB Big Data Konnektoren: Hadoop und die Oracle DB Philipp Loer ORDIX AG, Paderborn Schlüsselwörter Hadoop, Hive, OLH, OSCH Einleitung Der Vortrag beginnt mit einer Einführung in die Big Data Welt mit Apache

Mehr

Erfahrungen aus dem Betatest Oracle Database 11g

Erfahrungen aus dem Betatest Oracle Database 11g Erfahrungen aus dem Betatest Oracle Database 11g Torsten Schlautmann torsten.schlautmann@opitz-consulting.de OPITZ CONSULTING GmbH +49 2261 6001-0 Agenda Facts & Figures Test vor Ort spannende Features

Mehr

Oracle Data Integrator Ein Überblick

Oracle Data Integrator Ein Überblick Oracle Data Integrator Ein Überblick Uwe Barz Christoph Jansen Hamburg, 15.04.2008 Basel Baden Bern Lausanne Zürich Düsseldorf Frankfurt/M. Freiburg i. Br. Hamburg München Stuttgart Wien Agenda Überblick

Mehr

Oracle Database 12c In-Memory Option 7/18/2014. Eckart Mader Oracle Deutschland B.V. & Co. KG. Karlsruhe, den

Oracle Database 12c In-Memory Option 7/18/2014. Eckart Mader Oracle Deutschland B.V. & Co. KG. Karlsruhe, den Oracle Database 12c In-Memory Option Eckart Mader Oracle Deutschland B.V. & Co. KG Karlsruhe, den 17.07.2014 2 1 Safe Harbor Statement The following is intended to outline our general product direction.

Mehr