Einführung. Information Retrieval. IR-Aufgaben. IR in Beispielen. Adhoc-Suche: Web. IR in Beispielen. Was ist IR? Norbert Fuhr

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Einführung. Information Retrieval. IR-Aufgaben. IR in Beispielen. Adhoc-Suche: Web. IR in Beispielen. Was ist IR? Norbert Fuhr"

Transkript

1 Einführung Information Retrieval Norbert Fuhr 13. Oktober 2011 IR in Beispielen Was ist IR? Daten Information Wissen Dimensionen des IR Rahmenarchitektur für IR-Systeme Adhoc-Suche: Web IR in Beispielen Unterschiede zu klassischen Suchaufgaben:

2 Adhoc-Suche: Intranet Adhoc-Suche: Digitale Bibliotheken Adhoc-Suche: Multimedia (Bilder, Musik, Video) Klassifikation

3 Clustering Informationsextraktion/-markup (Text-)Zusammenfassung Frage-Antwort-Systeme

4 Recommender-Systeme Adhoc-Suche Klassifikation ( Vorlesung Information Mining) Clustering ( Vorlesung Information Mining) Informationsextraktion ( Vorlesung Information Engineering / Vorlesung Informationsextraktion aus Texten, Hoeppner) (Text-)Zusammenfassung Frage-Antwort-Systeme Recommender-Systeme Sprache Beispiel: cross-linguale Suche in Google Struktur Beispiel: XML-Retrieval

5 Medien Beispiel: Ähnlichkeitssuche auf Bildern Objekte Beispiel: Personensuche mit 123people statische/dynamische Inhalte Beispiel: Twitter-Suche Sprache: monolingual, cross-lingual, multilingual Struktur: atomar, Felder, baumartig (z.b. XML), Graph (z.b. Web) Medien: Text, Fakten, Bilder, Audio (Sprache/Musik), Video, 3D,... Objekte: Produkte, Personen, Firmen statische/dynamische Inhalte

6 Unterschiede zu klassischen Suchaufgaben: Schwierigkeit, passende Anfrage zu formulieren iterative Anfrageformulierung (abhängig von Antworten) viele Antworten, aber wenige davon relevant Rangordnung der Antworten (statt Antwortmenge) des Inhalts von Dokumenten inadäquat / unsicher Was ist IR? Definitionen IR = Unsicherheit und Vagheit in IS IR = inhaltsorientierte Suche Definitionen IR = Unsicherheit und Vagheit in IS Salton (1968): Information retrieval is a field concerned with the structure, analysis, organization, storage, searching, and retrieval of information. Definition der Fachgruppe IR in der GI (1992): Im Information Retrieval (IR) werden Informationssysteme in bezug auf ihre Rolle im Prozeß des Wissenstransfers vom menschlichen Wissensproduzenten zum Informations-Nachfragenden betrachtet. Die Fachgruppe Information Retrieval in der Gesellschaft für Informatik beschäftigt sich dabei schwerpunktmäßig mit jenen Fragestellungen, die im Zusammenhang mit vagen Anfragen und unsicherem Wissen entstehen. Vagheit: Benutzer kann seinen Informationswunsch nicht präzise spezifizieren vage Anfragebedingungen iterative Frageformulierung Unsicherheit System besitzt unsicheres (unzureichendes) Wissen über den Inhalt der verwalteten Objekte unsichere ( fehlerhafte Antworten) unvollständige ( fehlende Antworten)

7 IR = inhaltsorientierte Suche Syntax, Semantik und Pragmatik bei Texten (engere Definition) Suche auf verschiedenen Abstraktionsstufen: Syntax Semantik Pragmatik Willkommen beim Fachgebiet Informationssysteme. Schwerpunkte unserer Arbeit sind Information Retrieval, Digitale Bibliotheken und Web-basierte Informationssysteme, wobei wir insbesondere Nutzer-orientierte Forschungsansätze verfolgen. Syntax: Forschungsansatz no match Semantik Forschungsschwerpunkt match Pragmatik potenzielle Kooperationspartner für Entwicklung multimedialer Informationssysteme? Bildersuche auf der Syntaktischen Ebene Syntaktische Ebene: 2. Texturen Bild als Pixelmatrix mit Farbwerten 1. Konturen d001 d056 d095 d020 Textures: Muster im Grauwert-Bild strukturelle und/oder statistische Muster d014 d006 d003 d004 d087 d005 d111 d066 d011 d103 d049 d015

8 Syntaktische Ebene: 3. Farbe Häufigkeit/räumliche Verteilung von Pixelfarben Bildersuche: Semantische Ebene Objekte im Bild(+ räumliche Anordnung) Beispiel: Google Bildersuche nach kangaroo (basiert auf Textsuche im Dateinamen und der Bildunterschrift) Bildersuche: Pragmatische Ebene Syntax, Semantik und Pragmatik Bedeutung eines Bildes / durch das Bild illustriertes Thema Suche auf verschiedenen Abstraktionsstufen: Syntax Dokument als Folge von Symbolen (z.b. Zeichenkettensuche in Texten, Farbe/Textur/Kontur in Bildern) Semantik Bedeutung eines Dokumentes (z.b. Textsemantik, in einem Bild vorkommende Objekte) B1-Ausbaupläne liegen weiter auf Eis I I Themen sind sehr subjektiv Aber die pragmatische Ebene ist wichtig für viele Anwendungen Pragmatik Nutzung eines Dokumentes (Zweck) (z.b.: Löst das Dokument mein Problem? Was ist die Aussage des Textes / Bildes?) IR beschäftigt sich mit der Semantik und Pragmatik von Dokumenten

9 Daten Information Wissen Daten Information Wissen Information vs. Wissen Wissen zur Entscheidungsunterstützung Wissen ist die Teilmenge von Information, die von jemandem in einer konkreten Situation zur Lösung von Problemen benötigt wird (und häufig nicht vorhanden ist) Nach Wissen wird in externen Quellen gesucht. Daten Information Wissen Entscheidung Nützlichkeit Die Transformation von Information in Wissen ist ein Mehrwert erzeugender Prozess

10 Dimensionen des IR Dimensionen des IR Datenbanken klassisches IR Matching exakt partiell, best match Inferenz Deduktion Induktion Modell deterministisch probabilistisch Klassifikation monothetisch polithetisch Anfragesprache formal natürlich Fragespezifikation vollständig unvollständig gesuchte Objekte die Fragespezif. erfüllende relevante Reaktion auf Datenfehler sensitiv insensitiv Rahmenarchitektur für IR-Systeme Rahmenarchitektur für IR-Systeme Informations bedürfnis Vergleich Ergebnisse fiktives/ reales Objekt

11 Beispiel für ein Textdokument Beispiel für Textsuche Objekt: Experiments with Indexing Methods. The analysis of 25 indexing algorithms has not produced consistent retrieval performance. The best indexing technique for retrieving documents is not known. : (experiment, index, method, analys, index, algorithm, produc, consistent, retriev, perform, best, index, techni, retriev, document, know) : {(experiment,1), (index,3), (method, 1), (analys,1), (algorithm,1), (produc,1), (consistent,1), (retriev,1), (perform,1), (best,1), (techni,1), (retriev,1), (document,1), (know,1)} Frage: What is the best indexing algorithm? : (best index algorithm) : best index algorithm Informations bedürfnis fiktives/ reales Objekt Bezug zu den Vorlesungskapiteln Evaluierung Informations bedürfnis Wissensrepräsentation Vergleich Ergebnisse fiktives/ reales Objekt Retrievalmodelle

Information Retrieval

Information Retrieval Information Retrieval Norbert Fuhr 12. April 2010 Einführung 1 IR in Beispielen 2 Was ist IR? 3 Dimensionen des IR 4 Daten Information Wissen 5 Rahmenarchitektur für IR-Systeme IR in Beispielen IR-Aufgaben

Mehr

Internet-Suchmaschinen. Web-Suche. Internet-Suche. Norbert Fuhr. 2. April 2015. 1. Einführung

Internet-Suchmaschinen. Web-Suche. Internet-Suche. Norbert Fuhr. 2. April 2015. 1. Einführung Einführung nternet-suchmaschinen 1. Einführung Norbert Fuhr 2. April 2015 1 / 1 Web-Suche nternet-suche 4 / 1 Produktsuche in nternet-shops ntranet-suche 5 / 1 6 / 1 Suche in Online-Publikationen Suche

Mehr

Internet-Suchmaschinen 1. Einführung

Internet-Suchmaschinen 1. Einführung Internet-Suchmaschinen 1. Einführung Norbert Fuhr 2. April 2015 1 / 1 Einführung Internet-Suche Internet-Suche Beispiele Web-Suche 4 / 1 Internet-Suche Beispiele Produktsuche in Internet-Shops 5 / 1 Internet-Suche

Mehr

Kapitel IR:I. I. Einführung. Retrieval-Szenarien Begriffsbildung Einordnung Information Retrieval

Kapitel IR:I. I. Einführung. Retrieval-Szenarien Begriffsbildung Einordnung Information Retrieval Kapitel IR:I I. Einführung Retrieval-Szenarien Begriffsbildung Einordnung Information Retrieval IR:I-1 Introduction STEIN 2005-2010 Retrieval-Szenarien Liefere Dokumente, die die Terme «Information» und

Mehr

Suchmaschinen. Anwendung RN Semester 7. Christian Koczur

Suchmaschinen. Anwendung RN Semester 7. Christian Koczur Suchmaschinen Anwendung RN Semester 7 Christian Koczur Inhaltsverzeichnis 1. Historischer Hintergrund 2. Information Retrieval 3. Architektur einer Suchmaschine 4. Ranking von Webseiten 5. Quellenangabe

Mehr

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik Grundlagen der Informatik II Teil I: Formale Modelle der Informatik 1 Einführung GdInfoII 1-2 Ziele/Fragestellungen der Theoretischen Informatik 1. Einführung abstrakter Modelle für informationsverarbeitende

Mehr

Internet-Suchmaschinen Kapitel 1: Einführung. Norbert Fuhr

Internet-Suchmaschinen Kapitel 1: Einführung. Norbert Fuhr Internet-Suchmaschinen Kapitel 1: Einführung Norbert Fuhr 25. Oktober 2012 Inhaltsverzeichnis 1 Einführung 2 1.1 Internet-Suche........................................... 2 1.1.1 Suchqualität........................................

Mehr

Web Data Mining. Alexander Hinneburg Sommersemester 2007

Web Data Mining. Alexander Hinneburg Sommersemester 2007 Web Data Mining Alexander Hinneburg Sommersemester 2007 Termine Vorlesung Mi. 10:00-11:30 Raum?? Übung Mi. 11:45-13:15 Raum?? Klausuren Mittwoch, 23. Mai Donnerstag, 12. Juli Buch Bing Liu: Web Data Mining

Mehr

Multimedia-Datenbanken im SS 2010 Einführung in MMDB

Multimedia-Datenbanken im SS 2010 Einführung in MMDB Multimedia-Datenbanken im SS 2010 Einführung in MMDB Dr.-Ing. Marcin Grzegorzek 27.04.2010 Ähnlichkeitssuche in Multimedia-Datenbanken 2/ 28 Inhalte und Termine 1. Einführung in MMDB 1.1 Grundlegende Begriffe

Mehr

2 Evaluierung von Retrievalsystemen

2 Evaluierung von Retrievalsystemen 2. Evaluierung von Retrievalsystemen Relevanz 2 Evaluierung von Retrievalsystemen Die Evaluierung von Verfahren und Systemen spielt im IR eine wichtige Rolle. Gemäß der Richtlinien für IR der GI gilt es,...

Mehr

Lehrangebot. Fachgebiet Informationssysteme Prof. Dr. Norbert Fuhr. N. Fuhr, U. Duisburg-Essen. Lehrangebot

Lehrangebot. Fachgebiet Informationssysteme Prof. Dr. Norbert Fuhr. N. Fuhr, U. Duisburg-Essen. Lehrangebot Lehrangebot Fachgebiet Informationssysteme Prof. Dr. Norbert Fuhr N. Fuhr, U. Duisburg-Essen Lehrangebot 1 Lehrangebot des FG Informationssysteme Datenbanken Internet-Suchmaschinen Information Retrieval

Mehr

Einführung in die Wissensverarbeitung und Data Mining

Einführung in die Wissensverarbeitung und Data Mining Einführung in die Wissensverarbeitung und Data Mining Peter Becker FH Bonn-Rhein-Sieg Fachbereich Angewandte Informatik!" $# Vorlesung Wintersemester 2001/02 1. Einführung Vorbemerkungen 1 Einführung Vorbemerkungen

Mehr

WS 2002/03. Prof. Dr. Rainer Manthey. Institut für Informatik III Universität Bonn. Informationssysteme. Kapitel 1. Informationssysteme

WS 2002/03. Prof. Dr. Rainer Manthey. Institut für Informatik III Universität Bonn. Informationssysteme. Kapitel 1. Informationssysteme Informationssysteme Informationssysteme WS 2002/03 Prof. Dr. Rainer Manthey Institut für Informatik III Universität Bonn 2002 Prof. Dr. Rainer Manthey Informationssysteme 1 DB und/oder IS: terminologischer

Mehr

Präsentation des Dissertationsvorhabens Erste Schritte. Carola Carstens Hildesheim, 15. Oktober 2007

Präsentation des Dissertationsvorhabens Erste Schritte. Carola Carstens Hildesheim, 15. Oktober 2007 Präsentation des Dissertationsvorhabens Erste Schritte Carola Carstens Hildesheim, 15. Oktober 2007 Überblick Rahmenbedingungen Institut Thematische Interessen Erste Schritte Erfassung des State of the

Mehr

Datenbanken und Informationssysteme

Datenbanken und Informationssysteme Datenbanken und Informationssysteme Lehrangebot Stefan Conrad Heinrich-Heine-Universität Düsseldorf Institut für Informatik April 2012 Stefan Conrad (HHU) Datenbanken und Informationssysteme April 2012

Mehr

Information Retrieval in XML- Dokumenten

Information Retrieval in XML- Dokumenten Inhalt Information Retrieval in XML- Dokumenten Norbert Fuhr Universität Dortmund fuhr@cs.uni-dortmund.de I. Einführung II. III. IV. IR-Konzepte für XML XIRQL HyREX-Retrievalengine V. Zusammenfassung und

Mehr

1. Grundlegende Konzepte von Information Retrieval Systemen

1. Grundlegende Konzepte von Information Retrieval Systemen 1. Grundlegende Konzepte von IR-Systemen Charakterisierung von Information Retrieval 1. Grundlegende Konzepte von Information Retrieval Systemen Charakterisierung des Begriffs Information Retrieval Beispiele

Mehr

Studierende, die diese Vorlesung hören, haben sich auch für folgende Lehrveranstaltungen interessiert:

Studierende, die diese Vorlesung hören, haben sich auch für folgende Lehrveranstaltungen interessiert: Studierende, die diese Vorlesung hören, haben sich auch für folgende Lehrveranstaltungen interessiert: 1 des FG Informationssysteme Datenbanken Internet-Suchmaschinen Information Retrieval Information

Mehr

Studierende, die diese Vorlesung hören, haben sich auch für folgende Lehrveranstaltungen interessiert:

Studierende, die diese Vorlesung hören, haben sich auch für folgende Lehrveranstaltungen interessiert: Studierende, die diese Vorlesung hören, haben sich auch für folgende Lehrveranstaltungen interessiert: Lehrangebot des FG Informationssysteme Modellierung Datenbanken Internet-Suchmaschinen Information

Mehr

Datenbanken WS 02/03 (IR-Teil) Norbert Fuhr

Datenbanken WS 02/03 (IR-Teil) Norbert Fuhr Datenbanken WS 02/03 (IR-Teil) Norbert Fuhr 15. November 2002 Inhaltsverzeichnis 1 Einführung 4 1.1 Was ist Information Retrieval?................... 5 2 IR-Konzepte 7 2.1 Daten Information Wissen..................

Mehr

Universität Duisburg-Essen, Standort Duisburg Institut für Informatik und interaktive Systeme Fachgebiet Informationssysteme

Universität Duisburg-Essen, Standort Duisburg Institut für Informatik und interaktive Systeme Fachgebiet Informationssysteme Universität Duisburg-Essen, Standort Duisburg Institut für Informatik und interaktive Systeme Fachgebiet Informationssysteme Studienprojekt Invisible Web (Dipl.-Inform. Gudrun Fischer - WS 2003/04) Blockseminar

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen

Mehr

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion Was bisher geschah Daten, Information, Wissen explizites und implizites Wissen Wissensrepräsentation und -verarbeitung: Wissensbasis Kontextwissen Problemdarstellung fallspezifisches Wissen repräsentiert

Mehr

Lehrangebot. Fachgebiet Informationssysteme Prof. Dr. Norbert Fuhr

Lehrangebot. Fachgebiet Informationssysteme Prof. Dr. Norbert Fuhr Lehrangebot Fachgebiet Informationssysteme Prof. Dr. Norbert Fuhr N. Fuhr, U. Duisburg-Essen Lehrangebot 1 Lehrangebot des FG Informationssysteme Datenbanken Internet-Suchmaschinen Information Retrieval

Mehr

Predictive Modeling Markup Language. Thomas Morandell

Predictive Modeling Markup Language. Thomas Morandell Predictive Modeling Markup Language Thomas Morandell Index Einführung PMML als Standard für den Austausch von Data Mining Ergebnissen/Prozessen Allgemeine Struktur eines PMML Dokuments Beispiel von PMML

Mehr

Block R (Rahmen): SE Aktivitäten 21.10.04 2. Vorlesung Methoden des Software Engineering. Block R Rahmen Aktivitäten der Software-Entwicklung

Block R (Rahmen): SE Aktivitäten 21.10.04 2. Vorlesung Methoden des Software Engineering. Block R Rahmen Aktivitäten der Software-Entwicklung Block R (Rahmen): SE Aktivitäten 21.10.04 1 Vorlesung Methoden des Software Engineering Block R Rahmen Aktivitäten der Software-Entwicklung Martin Wirsing Einheit R.2, 21.10.2004 Block R (Rahmen): SE Aktivitäten

Mehr

Lehrangebot. Fachgebiet Informationssysteme Prof. Dr. Norbert Fuhr

Lehrangebot. Fachgebiet Informationssysteme Prof. Dr. Norbert Fuhr Lehrangebot Fachgebiet Informationssysteme Prof. Dr. Norbert Fuhr N. Fuhr, U. Duisburg-Essen Lehrangebot 1 Lehrangebot des FG Informationssysteme Datenbanken Internet-Suchmaschinen Information Retrieval

Mehr

Information Retrieval in P2P-Netzen

Information Retrieval in P2P-Netzen Information Retrieval in P2P-Netzen Vorstellung der Vortragsthemen zum Seminar Henrik Nottelmann 30. Oktober 2003 Henrik Nottelmann 1/21 Grundstruktur A) Filesharing-Systeme (3 Themen) B) Zugriffsstrukturen

Mehr

Modulhandbuch für das BA Kombinationsfach Angewandte Informatik Multimedia

Modulhandbuch für das BA Kombinationsfach Angewandte Informatik Multimedia Modulhandbuch für das BA Kombinationsfach Angewandte Informatik Multimedia Kenntnisse im Programmieren für das World Wide Web mit der Programmiersprache JAVA werden vermittelt, ebenso das Erstellen von

Mehr

Internet-Suchmaschinen Skriptum zur Vorlesung im SS 2013. Norbert Fuhr

Internet-Suchmaschinen Skriptum zur Vorlesung im SS 2013. Norbert Fuhr Internet-Suchmaschinen Skriptum zur Vorlesung im SS 2013 Norbert Fuhr 22. Juli 2013 Inhaltsverzeichnis 1 Einführung 4 1.1 Internet-Suche........................................... 4 1.1.1 Suchqualität........................................

Mehr

Datenbanken WS 04/05 (IR-Teil) Norbert Fuhr

Datenbanken WS 04/05 (IR-Teil) Norbert Fuhr Datenbanken WS 04/05 (IR-Teil) Norbert Fuhr 10. Januar 2005 Inhaltsverzeichnis 1 Einführung 3 1.1 Was ist Information Retrieval?................... 4 2 IR-Konzepte 6 2.1 Daten Information Wissen..................

Mehr

Wie recherchiere ich Fachinformationen zur Berufsbildung im Internet? Die Literaturdatenbank Berufliche Bildung (LDBB)

Wie recherchiere ich Fachinformationen zur Berufsbildung im Internet? Die Literaturdatenbank Berufliche Bildung (LDBB) Überblick Wie recherchiere ich Fachinformationen zur Berufsbildung im Internet? Die Literaturdatenbank Berufliche Bildung (LDBB) 1. Suchen und Finden im Internet 2. Portale und Informationssysteme der

Mehr

Information Retrieval

Information Retrieval Information Retrieval Peter Becker FH Bonn-Rhein-Sieg Fachbereich Angewandte Informatik peter.becker@fh-bonn-rhein-sieg.de Vorlesung Sommersemester 2004 In die Vorlesung integriert Übungen Bearbeitungszeit:

Mehr

Überblick und Vergleich von NoSQL. Datenbanksystemen

Überblick und Vergleich von NoSQL. Datenbanksystemen Fakultät Informatik Hauptseminar Technische Informationssysteme Überblick und Vergleich von NoSQL Christian Oelsner Dresden, 20. Mai 2011 1 1. Einführung 2. Historisches & Definition 3. Kategorien von

Mehr

Seminar Datenbanksysteme

Seminar Datenbanksysteme Seminar Datenbanksysteme Recommender System mit Text Analysis für verbesserte Geo Discovery Eine Präsentation von Fabian Senn Inhaltsverzeichnis Geodaten Geometadaten Geo Discovery Recommendation System

Mehr

Web Information Retrieval. Zwischendiskussion. Überblick. Meta-Suchmaschinen und Fusion (auch Rank Aggregation) Fusion

Web Information Retrieval. Zwischendiskussion. Überblick. Meta-Suchmaschinen und Fusion (auch Rank Aggregation) Fusion Web Information Retrieval Hauptseminar Sommersemester 2003 Thomas Mandl Überblick Mehrsprachigkeit Multimedialität Heterogenität Qualität, semantisch, technisch Struktur Links HTML Struktur Technologische

Mehr

Textmining Klassifikation von Texten Teil 1: Naive Bayes

Textmining Klassifikation von Texten Teil 1: Naive Bayes Textmining Klassifikation von Texten Teil 1: Naive Bayes Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten 1: Naive

Mehr

Wie Google Webseiten bewertet. François Bry

Wie Google Webseiten bewertet. François Bry Wie Google Webseiten bewertet François Bry Heu6ge Vorlesung 1. Einleitung 2. Graphen und Matrizen 3. Erste Idee: Ranking als Eigenvektor 4. Fragen: Exisi6ert der Eigenvektor? Usw. 5. Zweite Idee: Die Google

Mehr

Entwurf und Implementierung einer XML-Volltext-Suchmaschine

Entwurf und Implementierung einer XML-Volltext-Suchmaschine Technische Universität Kaiserslautern Fachbereich Informatik AG Datenbanken und Informationssysteme Prof. Dr.-Ing. Dr. h.c. Theo Härder Entwurf und Implementierung einer XML-Volltext-Suchmaschine Diplomarbeit

Mehr

Information Retrieval 1

Information Retrieval 1 Andreas Henrich Information Retrieval 1 Grundlagen, Modelle und Anwendungen Version: 1.2 (Rev: 5727, Stand: 7. Januar 2008) Otto-Friedrich-Universität Bamberg Lehrstuhl für Medieninformatik, 2001 2008

Mehr

Kapitel 1 Überblick Content Management und Digitale Bibliotheken

Kapitel 1 Überblick Content Management und Digitale Bibliotheken Kapitel 1 Überblick Content Management und Digitale Bibliotheken Prof. Dr.-Ing. Stefan Deßloch Geb. 36, Raum 329 Tel. 0631/205 3275 dessloch@informatik.uni-kl.de 1 Überblick Was ist Content? Daten, Dokumente,

Mehr

Information Retrieval Skriptum zur Vorlesung im SS 06. Norbert Fuhr

Information Retrieval Skriptum zur Vorlesung im SS 06. Norbert Fuhr Information Retrieval Skriptum zur Vorlesung im SS 06 Norbert Fuhr 7. Dezember 2006 Inhaltsverzeichnis 1 Einführung 5 1.1 Was ist Information Retrieval?.................................. 5 2 IR-Konzepte

Mehr

Non-Standard-Datenbanken

Non-Standard-Datenbanken Non-Standard-Datenbanken Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Marc Stelzner (Übungen) Raphael Allner, Lina Schad (Tutoren) Organisatorisches: Übungen Start: Freitag,

Mehr

Einsatz moderner Technologien der Bild- und Videoanalyse in der Fashionbranche

Einsatz moderner Technologien der Bild- und Videoanalyse in der Fashionbranche Workshop Fashion Future Einsatz moderner Technologien der Bild- und Videoanalyse in der Fashionbranche Adrian Ulges Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI) Kompetenzzentrum Multimediaanalyse

Mehr

Vorlesung Information Retrieval Wintersemester 04/05

Vorlesung Information Retrieval Wintersemester 04/05 Vorlesung Information Retrieval Wintersemester 04/05 14. Oktober 2004 Institut für Informatik III Universität Bonn Tel. 02 28 / 73-45 31 Fax 02 28 / 73-43 82 jw@informatik.uni-bonn.de 1 Themenübersicht

Mehr

Zum State of the Art automatischer Inhaltsanalyse

Zum State of the Art automatischer Inhaltsanalyse Zum State of the Art automatischer Inhaltsanalyse Michael Scharkow, M.A. Universität Hohenheim Institut für Kommunikationswissenschaft (540G) michael.scharkow@uni-hohenheim.de Typologie der Verfahren deskriptive/explorative

Mehr

Information Retrieval - Übersicht. Norbert Fuhr

Information Retrieval - Übersicht. Norbert Fuhr Information Retrieval - Übersicht Norbert Fuhr 1 1. Einführung IR unterscheidet sich wesentlich zur Suche in klassischen Datenbanken IR beschäftigt sich mit Unsicherheit und Vagheit in Informationssystemen

Mehr

Was ist ein Compiler?

Was ist ein Compiler? Was ist ein Compiler? Was ist ein Compiler und worum geht es? Wie ist ein Compiler aufgebaut? Warum beschäftigen wir uns mit Compilerbau? Wie ist die Veranstaltung organisiert? Was interessiert Sie besonders?

Mehr

Social Media Analytics Aktuelle Herausforderungen

Social Media Analytics Aktuelle Herausforderungen Lehrstuhl für Informatik 5 Informationssysteme RWTH Aachen Social Media Analytics Aktuelle Herausforderungen Ralf Klamma RWTH Aachen I5-KL-111010-1 Gesellschaft für Informatik Regionalgruppe Köln Themenabend

Mehr

Anlage 1: Modularisierung des Bachelor-Studiengangs Theoretische und Angewandte Computerlinguistik

Anlage 1: Modularisierung des Bachelor-Studiengangs Theoretische und Angewandte Computerlinguistik Anlage : Modularisierung des Bachelor-Studiengangs Theoretische und Angewandte Legende: PM = Pflichtmodul; WPM = Wahlpflichtmodul; WM = Wahlmodul VL = Vorlesung; PS = Proseminar; HS = Hauptseminar; Ü =

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Lösungsvorschlag für das Übungsblatt 1. Aufgabe 1.

Lösungsvorschlag für das Übungsblatt 1. Aufgabe 1. Lösungsvorschlag für das Übungsblatt 1. Aufgabe 1. Zusammengefasst aus Ihren Beiträgen Wie bewerten sie das System ingesamt? Das Watson System verdeutlicht den Fortschritt der Künstlichen Intelligenz Forschung/Computerlinguistik/Informatik

Mehr

Formale Sprachen und Grammatiken

Formale Sprachen und Grammatiken Formale Sprachen und Grammatiken Jede Sprache besitzt die Aspekte Semantik (Bedeutung) und Syntax (formaler Aufbau). Die zulässige und korrekte Form der Wörter und Sätze einer Sprache wird durch die Syntax

Mehr

Web Mining und Farming

Web Mining und Farming Web Mining und Farming Shenwei Song Gliederung Übersicht über Web Mining und Farming Web Mining Klassifikation des Web Mining Wissensbasierte Wrapper-Induktion Web Farming Übersicht über Web-Farming-Systeme

Mehr

Seminar Informationsintegration und Informationsqualität. Dragan Sunjka. 30. Juni 2006

Seminar Informationsintegration und Informationsqualität. Dragan Sunjka. 30. Juni 2006 Seminar Informationsintegration und Informationsqualität TU Kaiserslautern 30. Juni 2006 Gliederung Autonomie Verteilung führt zu Autonomie... Intra-Organisation: historisch Inter-Organisation: Internet

Mehr

Information Retrieval. Peter Kolb

Information Retrieval. Peter Kolb Information Retrieval Peter Kolb Semesterplan Einführung Boolesches Retrievalmodell Volltextsuche, invertierter Index Boolesche Logik und Mengen Vektorraummodell Evaluation im IR Term- und Dokumentrepräsentation

Mehr

Markus Krötzsch DIAMOND. Data Integration and Access. by Merging. Ontologies and Databases. 13. Juni 2013

Markus Krötzsch DIAMOND. Data Integration and Access. by Merging. Ontologies and Databases. 13. Juni 2013 Data Integration and Access by Merging Ontologies and Databases 13. Juni 2013 Zielstellung Verbesserter Zugriff auf große, heterogene und dynamische Datenmengen Seite 2 Seite 3 Seite 4 Wikidata Offizielle

Mehr

Information Engineering und Information Life Cycle

Information Engineering und Information Life Cycle Information Engineering und Information Life Cycle Ingo Frommholz Universität Duisburg-Essen Vorlesung "Information Engineering" SS 2007 UNIVERSITÄT D U I S B U R G E S S E N Inhaltsverzeichnis 1 Übersicht

Mehr

Praxis Digitaler Bibliotheken (1/16)

Praxis Digitaler Bibliotheken (1/16) Praxis Digitaler Bibliotheken Bachelor Informationsmanagement Modul Digitale Bibliothek (SS 2014) Dr. Jakob Voß 2014-03-03 Praxis Digitaler Bibliotheken (1/16) Was sind Digitale Bibliotheken? Der Wikipedia-Artikel

Mehr

Information Engineering und Information Life Cycle

Information Engineering und Information Life Cycle Norbert Fuhr Universität Duisburg-Essen Information Engineering Einführung Inhaltsverzeichnis 1 Übersicht über die Vorlesung 2 Information Engineering 3 Informationskompetenz 4 Suchkompetenz 5 Daten Information

Mehr

Recommender Systems. Stefan Beckers Praxisprojekt ASDL SS 2006 Universität Duisburg-Essen April 2006

Recommender Systems. Stefan Beckers Praxisprojekt ASDL SS 2006 Universität Duisburg-Essen April 2006 Recommender Systems Stefan Beckers Praxisprojekt ASDL SS 2006 Universität Duisburg-Essen April 2006 Inhalt 1 - Einführung 2 Arten von Recommender-Systemen 3 Beispiele für RCs 4 - Recommender-Systeme und

Mehr

Weiterentwicklung digitaler Bibliothekssysteme zu OpenArchives-Systemen

Weiterentwicklung digitaler Bibliothekssysteme zu OpenArchives-Systemen Weiterentwicklung digitaler Bibliothekssysteme zu OpenArchives-Systemen Osnabrück, 2003-03-13 Prof. Dr. G. Specht, U Ulm Dipl.-Inform. Michael G. Bauer, TU München 1. OMNIS/2 Motivation 2. Übersicht über

Mehr

4. Nicht-Probabilistische Retrievalmodelle

4. Nicht-Probabilistische Retrievalmodelle 4. Nicht-Probabilistische Retrievalmodelle 1 4. Nicht-Probabilistische Retrievalmodelle Norbert Fuhr 4. Nicht-Probabilistische Retrievalmodelle 2 Rahmenarchitektur für IR-Systeme Evaluierung Informations

Mehr

Informationswissenschaftliche Entwicklungen in der Mediendokumentation. Prof. Geribert E. Jakob h_da fbmd IW (2015)

Informationswissenschaftliche Entwicklungen in der Mediendokumentation. Prof. Geribert E. Jakob h_da fbmd IW (2015) Informationswissenschaftliche Entwicklungen in der Mediendokumentation Prof. Geribert E. Jakob h_da fbmd IW (2015) Verständnis Wesensdefinition einer Wissenschaft (über:) Positivdefintion Abgrenzungsdefintion

Mehr

Darstellung, Verarbeitung und Erwerb von Wissen

Darstellung, Verarbeitung und Erwerb von Wissen Darstellung, Verarbeitung und Erwerb von Wissen Gabriele Kern-Isberner LS 6 Information Engineering TU Dortmund Wintersemester 2008/09 G. Kern-Isberner (TU Dortmund) DVEW 1 / 38 Kapitel 1 Einführung und

Mehr

Lernende Suchmaschinen

Lernende Suchmaschinen Lernende Suchmaschinen Qingchui Zhu PG 520 - Intelligence Service (WiSe 07 / SoSe 08) Verzeichnis 1 Einleitung Problemstellung und Zielsetzung 2 Was ist eine lernende Suchmaschine? Begriffsdefinition 3

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Woche 10 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Satz Sei G = (V, Σ, R, S) eine kontextfreie

Mehr

In Richtung eines Wissensmanagement an Hochschulen Integrierte Infrastrukturen für Information, Kommunikation und Multimedia

In Richtung eines Wissensmanagement an Hochschulen Integrierte Infrastrukturen für Information, Kommunikation und Multimedia In Richtung eines Wissensmanagement an Hochschulen Integrierte Infrastrukturen für Information, Kommunikation und Multimedia Bielefeld 28.5.2002 Rainer Kuhlen Universität Konstanz FB Informatik und Informationswissenschaft

Mehr

Beschreibungslogiken. Daniel Schradick 1schradi@informatik.uni-hamburg.de

Beschreibungslogiken. Daniel Schradick 1schradi@informatik.uni-hamburg.de Beschreibungslogiken Daniel Schradick 1schradi@informatik.uni-hamburg.de Was sind Beschreibungslogiken? Definition: Formalisms that represent knowledge of some problem domain (the world ) by first defining

Mehr

INEX. INitiative for the Evaluation of XML Retrieval. Sebastian Rassmann, Christian Michele

INEX. INitiative for the Evaluation of XML Retrieval. Sebastian Rassmann, Christian Michele INEX INitiative for the Evaluation of XML Retrieval Was ist INEX? 2002 gestartete Evaluierungsinitiative Evaluierung von Retrievalmethoden für XML Dokumente Berücksichtigt die hierarchische Dokumentstruktur

Mehr

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Hauptseminar: Nichtrelationale Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Mai 2006 Was ist eine Datenbank? Erweiterung relationaler um eine Deduktionskomponente Diese

Mehr

Kapitel IR:III (Fortsetzung)

Kapitel IR:III (Fortsetzung) Kapitel IR:III (Fortsetzung) III. Retrieval-Modelle Modelle und Prozesse im IR Klassische Retrieval-Modelle Bool sches Modell Vektorraummodell Retrieval-Modelle mit verborgenen Variablen Algebraisches

Mehr

Einführung in Information Retrieval Skriptum zur Vorlesung im WS 11/12. Norbert Fuhr

Einführung in Information Retrieval Skriptum zur Vorlesung im WS 11/12. Norbert Fuhr Einführung in Information Retrieval Skriptum zur Vorlesung im WS 11/12 Norbert Fuhr 16. Dezember 2011 Inhaltsverzeichnis 1 Einführung 3 1.1 IR-Methoden und -Anwendungen.................................

Mehr

Ähnlichkeitssuche auf XML-Daten

Ähnlichkeitssuche auf XML-Daten Ähnlichkeitssuche auf XML-Daten Christine Lehmacher Gabriele Schlipköther Übersicht Information Retrieval Vektorraummodell Gewichtung Ähnlichkeitsfunktionen Ähnlichkeitssuche Definition, Anforderungen

Mehr

Universität zu Köln Prof. Dr. Manfred Thaller Aktuelle Probleme digitaler Medien Referat von Marcel Kemmerich vom 18.12.14

Universität zu Köln Prof. Dr. Manfred Thaller Aktuelle Probleme digitaler Medien Referat von Marcel Kemmerich vom 18.12.14 Universität zu Köln Prof. Dr. Manfred Thaller Aktuelle Probleme digitaler Medien Referat von Marcel Kemmerich vom 18.12.14 Inhalt Das Deep Web Tor-Netzwerk & Hidden Services Hacktivism Regierung im Deep

Mehr

Data/Information Quality Management

Data/Information Quality Management Data/Information Quality Management Seminar WI/Informationsmanagement im Sommersemester 2002 Markus Berberov, Roman Eder, Peter Gerstbach 11.6.2002 Inhalt! Daten und Datenqualität! Einführung und Definition!

Mehr

Treffsichere Absatzprognosen durch Predictive Analytics

Treffsichere Absatzprognosen durch Predictive Analytics Treffsichere Absatzprognosen durch Predictive Analytics Prof. Dr. Michael Feindt, Karlsruhe Institute of Technology KIT Chief Scientific Advisor, Phi-T GmbH und Blue Yonder GmbH & Co KG 3. Europäischer

Mehr

Inhaltsverzeichnis: Definitionen Informationssysteme als Kommunikationssystem Problemlösende Perspektiven Allgemeine System Annäherung Fazit

Inhaltsverzeichnis: Definitionen Informationssysteme als Kommunikationssystem Problemlösende Perspektiven Allgemeine System Annäherung Fazit Informationssysteme Inhaltsverzeichnis: Definitionen Informationssysteme als Kommunikationssystem Problemlösende Perspektiven Allgemeine System Annäherung Fazit Definitionen: Informationen Informationssysteme

Mehr

... MathML XHTML RDF

... MathML XHTML RDF RDF in wissenschaftlichen Bibliotheken (LQI KUXQJLQ;0/ Die extensible Markup Language [XML] ist eine Metasprache für die Definition von Markup Sprachen. Sie unterscheidet sich durch ihre Fähigkeit, Markup

Mehr

Requirements-Engineering Requirements-Engineering

Requirements-Engineering Requirements-Engineering -Engineering Copyright Chr. Schaffer, Fachhochschule Hagenberg, MTD 1 Was ist ein Requirement? IEEE-Standard (IEEE-726 83) A condition or capability needed by a user to solve a problem or achieve an objective.

Mehr

Text-Mining: Einführung

Text-Mining: Einführung Text-Mining: Einführung Claes Neuefeind Fabian Steeg 22. April 2010 Organisatorisches Was ist Text-Mining? Definitionen Anwendungsbeispiele Textuelle Daten Aufgaben u. Teilbereiche Literatur Kontakt Sprechstunde:

Mehr

Semantic Web. Anwendungsbereiche & Entwicklungen. http://www.know-center.at. Dr. Michael Granitzer

Semantic Web. Anwendungsbereiche & Entwicklungen. http://www.know-center.at. Dr. Michael Granitzer Semantic Web Anwendungsbereiche & Entwicklungen Dr. Michael Granitzer - gefördert durch das Kompetenzzentrenprogramm Agenda Die Vision und warum das Semantic Web Sinn macht Grundlagen: Wissensrepräsentation

Mehr

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining.

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining. Personalisierung Personalisierung Thomas Mandl Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung Klassifikation Die Nutzer werden in vorab bestimmte Klassen/Nutzerprofilen

Mehr

Answer Set Programming

Answer Set Programming Answer Set Programming mit Answer Set Prolog (A-Prolog) Wangler Thomas Logikprogrammierung Institut für Computerlinguistik Universität Heidelberg Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis

Mehr

VBA-Programmierung: Zusammenfassung

VBA-Programmierung: Zusammenfassung VBA-Programmierung: Zusammenfassung Programmiersprachen (Definition, Einordnung VBA) Softwareentwicklung-Phasen: 1. Spezifikation 2. Entwurf 3. Implementierung Datentypen (einfach, zusammengesetzt) Programmablaufsteuerung

Mehr

DIGITAL SIGNAGE SETZEN SIE IHR GESCHÄFT GEKONNT IN SZENE

DIGITAL SIGNAGE SETZEN SIE IHR GESCHÄFT GEKONNT IN SZENE DIGITAL SIGNAGE SETZEN SIE IHR GESCHÄFT GEKONNT IN SZENE DER KÜRZESTE WEG ZU HERZ UND HIRN DES KUNDEN GEHT ÜBER DAS AUGE Worauf warten Sie noch? Starten Sie in die Zukunft der Werbung. Jetzt. Sicherlich

Mehr

Exploration und Klassifikation von BigData

Exploration und Klassifikation von BigData Exploration und Klassifikation von BigData Inhalt Einführung Daten Data Mining: Vorbereitungen Clustering Konvexe Hülle Fragen Google: Riesige Datenmengen (2009: Prozessieren von 24 Petabytes pro Tag)

Mehr

Programmieren Formulierung eines Algorithmus in einer Programmiersprache

Programmieren Formulierung eines Algorithmus in einer Programmiersprache Zum Titel der Vorlesung: Programmieren Formulierung eines in einer Programmiersprache Beschreibung einer Vorgehensweise, wie man zu jedem aus einer Klasse gleichartiger Probleme eine Lösung findet Beispiel:

Mehr

Enterprise Content Management

Enterprise Content Management Enterprise Content Management Dr.-Ing. Raymond Bimazubute Lehrstuhl für Künstliche Intelligenz Friedrich Alexander Universität Erlangen-Nürnberg Email: raymond.bimazubute@informatik.uni-erlangen.de Vorbemerkungen

Mehr

Uniform Resource Identifiers (URI) und Domain Name Service (DNS)

Uniform Resource Identifiers (URI) und Domain Name Service (DNS) Kurzvortrag zum Thema: Uniform Resource Identifiers (URI) und Domain Name Service (DNS) Beschreiben Sie Aufbau und Einsatzzweck von URI, URL und URN. Lesen Sie die dazu passenden RFCs. Was ist der Domain

Mehr

Christian Zietzsch / Norman Zänker. Text Mining. und dessen Implementierung. Diplomica Verlag

Christian Zietzsch / Norman Zänker. Text Mining. und dessen Implementierung. Diplomica Verlag Christian Zietzsch / Norman Zänker Text Mining und dessen Implementierung Diplomica Verlag Christian Zietzsch, Norman Zänker Text Mining und dessen Implementierung ISBN: 978-3-8428-0970-3 Herstellung:

Mehr

Program = Logic + Control

Program = Logic + Control Program = Logic + Control Prozedurale/imperative Sprachen: Abläufe formulieren Computer führt aus von-neumann-maschine Idee von deklarativen/logischen/funktionalen Programmiersprachen: Zusammenhänge formulieren

Mehr

Digital Publishing auf Basis von PDF

Digital Publishing auf Basis von PDF Ein Vortrag im Rahmen der Vorlesung Vertiefung PostScript und PDF im Bachelor-Studiengang Druck- und Medientechnologie an der Bergischen Universität Wuppertal 27. Januar 2012 Struktur Einführung Was ist

Mehr

Cognitive Systems Master thesis

Cognitive Systems Master thesis Cognitive Systems Master thesis Recherche Phase SS 2011 Gliederung 1. Einleitung 2. Analogie Modelle 2.1 SME 2.2 Ava 2.3 Lisa 3. Zusammenfassung 4. Ausblick 2 Einleitung Analogie Problemsituation wird

Mehr

Technische Aspekte einer Videosuchmaschine. Björn Wilmsmann, CEO - MetaSieve GmbH

Technische Aspekte einer Videosuchmaschine. Björn Wilmsmann, CEO - MetaSieve GmbH Technische Aspekte einer Videosuchmaschine Björn Wilmsmann, CEO - MetaSieve GmbH 1 Über MetaSieve http://www.metasieve.com Softwareentwicklung Internet Software Spezialisiert auf Suchmaschinentechnologie

Mehr

Maschinelle Übersetzung

Maschinelle Übersetzung Hauptstudiumsprojekt SoSe 07 Maschinelle Übersetzung Walther v. Hahn, Cristina Vertan {vhahn,vertan}@informatik.uni-hamburg.de Wozu dient ein Projekt? Projekte im Umfang von 6 SWS dienen der Bearbeitung

Mehr

Data Mining Anwendungen und Techniken

Data Mining Anwendungen und Techniken Data Mining Anwendungen und Techniken Knut Hinkelmann DFKI GmbH Entdecken von Wissen in banken Wissen Unternehmen sammeln ungeheure mengen enthalten wettbewerbsrelevantes Wissen Ziel: Entdecken dieses

Mehr

Data Mining und Text Mining Einführung. S2 Einfache Regellerner

Data Mining und Text Mining Einführung. S2 Einfache Regellerner Data Mining und Text Mining Einführung S2 Einfache Regellerner Hans Hermann Weber Univ. Erlangen, Informatik 8 Wintersemester 2003 hans.hermann.weber@gmx.de Inhalt Einiges über Regeln und Bäume R1 ein

Mehr