Praktikum Schau Geometrie

Größe: px
Ab Seite anzeigen:

Download "Praktikum Schau Geometrie"

Transkript

1 Praktikum Schau Geometrie Intuition, Erklärung, Konstruktion Teil 1 Sehen auf intuitive Weise Teil 2 Formale Perspektive mit Aufriss und Grundriss Teil 3 Ein niederländischer Maler zeigt ein unmögliches Bild 1

2 1. Eine niederländische Landschaft >> Welches ist höher: der Turm oder die Brücke? Geben Sie eine Erklärung (auf der nächsten Seite) 2

3 Ihre Erklärung 2. Springende Daumen Schließen Sie das linke Auge. Strecken Sie den rechten Arm, Daumen nach oben. Bringen Sie Ihren Daumen mit einer festen vertikalen Linie an der Tafel zusammen. Wechsele von Auge! Was passiert mit dem Daumen? Lassen Sie jemanden die neue Position an die Tafel markieren Erklären Sie Ihre Beobachtung mit einer Zeichnung. Vergleiche die Ergebnisse von verschiedenen Personen Ihre Erklärung 3

4 3. Der Leuchtturm Wenn der Leuchtturmwärter sich dem Leuchtturm nähert, sieht er immer weniger Kaninchen. >> Erkläre das mit dieser Zeichnung: 4

5 Springende Daumen: Lösungen von Schülern 5

6 Der Leuchtturm: Lösungen von Schülern 6

7 4 Space Shuttle taking off Geht es wirklich höher und höher, oder kommt es am Ende auf den Boden? Erklären Sie mit einer Zeichnung, warum dies nicht eine Katastrophe ist. 7

8 5 Space Shuttle Problem mit etwas Hilfe A: Versuchen Sie, die Flugbahn des Shuttles in diesem Bild zu vervollständigen Das Shuttle sollte nie nach unten gehen Die Schau-Linie vom Auge zum Shuttle soll hoch gehen und nach einem bestimmten Punkt wieder nach unten. Genau, welche Stelle in Ihrer Skizze korrespondiert mit der Spitze der Kurve auf dem Foto? 8

9 6. Würfelbauwerke >> Markieren Sie die Stelle des höchsten Turms mit einer 5 auf den Grundriss. (Diese 5 werden wir eine Höhezahl nennen: sie sagt wie hoch der Turm an dieser Stelle ist.) >> Können Sie andere Stellen mit Höhezahlen markieren? >> Wie viel Würfel gibt es? Mindestens? Am meisten? Was ist zu tun, wenn Schuler Probleme haben? Bauen mit Würfel wie die sehr ernste Teenager tun in ihrer Mathematik-Klasse 9

10 Beispielen Aus KÄNGURU DER MATHEMATIK 2009: 10

11 7 Die Drongs (Shetland Inseln im Norden von Schottland) Diese beiden Bilder zeigen eine Gruppe von Felsen in St. Magnus Bay, Shetland. Aus dem Norden und aus Nordwesten. Die Drongs von aus Watch Hill Die Drongs von aus Cooperston Diese beiden Bilder zeigen eine Gruppe von Felsen, von zwei verschiedenen Standpunkten. Karte unten: Hier finden Sie die zwei Standpunkte auf der Karte (1:50.000). Die Drongs befinden sich im kleinen Kreis. 11

12 Einen Plan Machen für die Drongs im Kreis Die Skizze hier unten ist eine Kopie von dem Photo von Cooperston. Die drei Pfeile sind die Sehstrahlen. Diese Linien kann man verlängern. Zeichne in dem zweiten punktierten Rechteck das andere Photo (von Watch Hill). Konstruiere die Felsenspitzen A, B und C. 12

13 Schau-Geometrie: Haupt Ideen und Themen Kontext: Merkmale: was Sie sehen und wie Sie das sehen Ein intuitives und informales Konzept Eine starke Beziehung zur Wirklichkeit Kein Unterschied zwischen ebener und räumlicher Geometrie Mathematische Objekte: Geometrie: Techniken: Geraden, (Winkel) In Raum und Ebene beide zur gleichen Zeit - Finden von Gesichtspunkte - Konstruktionen mit Schau-Linien - Verschiedene Ansichten machen - Verwendung von Sichten (Prognosen) aus verschiedenen Punkte, verschiedene Richtungen Hauptproblem für die Studierenden: Sie sind Teil des Kontextes! Wichtig und sehr nützlich: Lernen sich selbst als Teil des Kontextes zu gebrauchen Zwei Arten von Bildern WAS - Für die Präsentation von realistischen Problemen - Sie sind Teil der gesamten Darstellung-Situation: - Sie sind dem Beobachter, aber nicht auf dem Bild - Schau-Linien erscheinen als Punkte - Zum Beispiel: Bilder und Ansichten WIE - Für Erklärungen - Sichtpunkt ist auf dem Bild Verwandten Themen: Schatten Schatten von der Sonne: parallele Projektion Schatten von einer nahe gelegenen Quelle: zentrale Projektion. In einer (geometrisch) Schatten Problem, Sie sind nicht Teil des Kontextes. 13

14 8 Perspektiv Zeichnung Zwei Teilen im Gang sind schon gezeichnet. Der Gang läuft weiter durch nach hinten. Konstruiere noch zwei Teile. 14

15 15

16 9 Perspektive Zeichnung: die zentrale Idee Zentral-Projektion: Von Raum zum Ebene Auf der nächsten Seite sehen Sie ein Tisch, ein Zeichenschirm, und ein Auge für die Schnur. Alles in Seitenansicht. Konstruiere das Bild von der Flasche auf dem Schirm. Setze die Flasche in B und Konstruiere das Bild von der Flasche auf dem Schirm. Und dann noch ein mahl mit die Flasche in C. Was kann man jetzt folgern? 16

17 17

18 10 Die klassische Methode mit Seitenriss und Grundriss (A) Diese Seite ist eine Übersicht. Die nächste Seite enthält die Methode, wie sie in Lehrmaterialien vorgelegt worden ist für 14 jährige Schüler. 18

19 Der Schirm: 19

20 11 Rekonstruktion von einem Sichtpunkt eines Gemäldes Jede Perspektive Zeichnung repräsentiert "etwas"; Auch jede perspektivische Darstellung hat einen Standpunkt. Aber das ist nicht auf der Zeichnung, obwohl viele Schüler das denken! Dieses Beispiel verwendet zwei Gemälde von Pieter Saenredam, einem niederländischen Maler des 17en Jahrhunderts. Eine Skizze nach dem Leben, das er im Stehen irgendwo in der Kirch gemacht hat. 1 Suchen Sie genau den Sichtpunkt auf dem Plan: 20

21 2 Suchen Sie von diesem Bild auch genau die Sichtpunkt auf dem Plan. Hinweis: Verwenden Sie die Skizze auf der nächsten Seite um Saenredams Sichtpunkt zu finden. Zeichne in der Seitenansicht die Linie, die Punkt B verbindet mit Saenredams Auge! 21

22 22

8.Perspektive (oder Zentralprojektion)

8.Perspektive (oder Zentralprojektion) 8.Perspektive (oder Zentralprojektion) In unseren bisherigen Vorlesungen haben wir uns einfachheitshalber mit Parallelprojektionen beschäftigt. Das menschliche Sehen (damit meinen wir immer das Sehen mit

Mehr

2.3.1 Rechtshändiges und linkshändiges Koordinatensystem

2.3.1 Rechtshändiges und linkshändiges Koordinatensystem 2.3. Rechtshändiges und linkshändiges Koordinatensstem Die Koordinatenachsen im dreidimensionalen Raum lassen sich auf wei verschieden Arten anordnen: Linkshändig und Rechtshändig (s. Abbildung 2.9). Um

Mehr

Die Übereckperspektive mit zwei Fluchtpunkten

Die Übereckperspektive mit zwei Fluchtpunkten Perspektive Perspektive mit zwei Fluchtpunkten (S. 1 von 8) / www.kunstbrowser.de Die Übereckperspektive mit zwei Fluchtpunkten Bei dieser Perspektivart wird der rechtwinklige Körper so auf die Grundebene

Mehr

Geometrie-Aufgaben: Ähnlichkeit & Strahlensätze Berechne die fehlenden Strecken: (Skizzen sind nicht masssabgsgetreu)

Geometrie-Aufgaben: Ähnlichkeit & Strahlensätze Berechne die fehlenden Strecken: (Skizzen sind nicht masssabgsgetreu) Geometrie-Aufgaben: Ähnlichkeit & Strahlensätze 4 1. Berechne die fehlenden Strecken: (Skizzen sind nicht masssabgsgetreu) 1 2 2. Ein Baum und sein Schatten An einem Baum und an seinem Schatten sind die

Mehr

Darstellende Geometrie Übungen. Tutorial. Übungsblatt: Perspektive - Rekonstruktion

Darstellende Geometrie Übungen. Tutorial. Übungsblatt: Perspektive - Rekonstruktion Darstellende Geometrie Übungen Institut für Architektur und Medien Tutorial Übungsblatt: Perspektive - Rekonstruktion Gegeben sind ein Foto von einem quaderförmigen Objekt sowie die Abmessungen des Basisrechteckes.

Mehr

Legt man die vom Betrachter aus gesehen vor den, wird die spätere Konstruktion kleiner als die Risse. Legt man die hinter das Objekt, wird die perspek

Legt man die vom Betrachter aus gesehen vor den, wird die spätere Konstruktion kleiner als die Risse. Legt man die hinter das Objekt, wird die perspek Gegeben ist ein und ein. Der wird auf eine gezeichnet, der unterhalb von dieser in einiger Entfernung und mittig. Parallel zur wird der eingezeichnet. Dieser befindet sich in Augenhöhe. Üblicherweise wird

Mehr

Wo viel Licht ist, ist starker Schatten.

Wo viel Licht ist, ist starker Schatten. Wo viel Licht ist, ist starker Schatten. (Goethe; Götz von Berlichingen) Perspektive & Schatten Die senkrechte Parallelprojektion (Normalperspektive) Aufriss (Vorderansicht Blick von vorne) Seitenriss

Mehr

Zentralperspektive (1 FP) 2-Punkt-Fluchtpunktp. 3-Punkt-Fluchtpunktp.

Zentralperspektive (1 FP) 2-Punkt-Fluchtpunktp. 3-Punkt-Fluchtpunktp. Ein Auftrag: Eine Frage der Perspektive... Isometrie Dimetrie Zentralperspektive (1 FP) 2-Punkt-Fluchtpunktp. Sphärische Perspektive curvilinear perspective Kavalliersperspektive, Kabinettperspektive (Eine

Mehr

Einführung in die Grundlagen des Technischen Zeichnens: Thema dieser Präsentation: Die Parallelprojektion

Einführung in die Grundlagen des Technischen Zeichnens: Thema dieser Präsentation: Die Parallelprojektion Einführung in die Grundlagen des Technischen Zeichnens: Thema dieser Präsentation: Die Parallelprojektion 1. Was ist eine Projektion? 2. Alles Ansichtssache!? 3. Isometrische Projektion 4. Kabinett-Projektion

Mehr

Mitschriebe, Skripten, Bücher, einfacher Taschenrechner

Mitschriebe, Skripten, Bücher, einfacher Taschenrechner Prüfungsfach: Darstellende Geometrie Termin: 2. September 2015 Prüfungsbeginn: Prüfungsende: zugel. Hilfsmittel: Hinweis: 9.00 Uhr 10.00 Uhr Mitschriebe, Skripten, Bücher, einfacher Taschenrechner Wir

Mehr

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte AB Mathematik Experimentieren mit GeoGebra Merke Alle folgenden Aufgaben sind mit dem Programm GEOGEBRA auszuführen! Eine ausführliche Einführung in die Bedienung des Programmes erfolgt im Unterricht.

Mehr

Freies und konstruktives Zeichnen

Freies und konstruktives Zeichnen Lehrplan Freies und konstruktives Zeichnen Fachoberschule Fachbereich Design Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024 Saarbrücken

Mehr

Die Zentralprojektion

Die Zentralprojektion Perspektive Perspektivmodell (S. 1 von 6) / www.kunstbrowser.de Die Zentralprojektion Die Zentralprojektion eines Gegenstandes auf eine ebene Bildfläche ist das Grundprinzip, aus dem sich alle zentralperspektivischen

Mehr

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Logisch Übersicht. Liebe Kolleginnen und Kollegen

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Logisch Übersicht. Liebe Kolleginnen und Kollegen Kanton Schaffhausen Abteilung Schulentwicklung und Aufsicht Herrenacker 3 CH-8200 Schaffhausen www.sh.ch An alle Primarschulen des Kantons SH Schaffhausen, 11.04.2012 Geometrie im Mathematiklehrmittel

Mehr

8.Kreisdarstellung in Perspektive

8.Kreisdarstellung in Perspektive 8.Kreisdarstellung in Perspektive Kegelschnitte durch fünf Punkte Wie wir bereits wissen, läßt sich ein Kegel grundsätzlich nach 4 verschiedenen Kurven schneiden: Kreis, Ellipse, Parabel oder Hyperbel.

Mehr

Normalprojektion. Verlaufen die Projektionsstrahlen s einer Parallelprojektion normal zur Bildebene π, so spricht man von einer Normalprojektion.

Normalprojektion. Verlaufen die Projektionsstrahlen s einer Parallelprojektion normal zur Bildebene π, so spricht man von einer Normalprojektion. 4. Der dreidimensionale Raum 4.5 Hauptrisse Normalprojektion Verlaufen die Projektionsstrahlen s einer Parallelprojektion normal zur Bildebene π, so spricht man von einer Normalprojektion. Zum Beispiel:

Mehr

Perspektive Vertiefung

Perspektive Vertiefung Perspektive Vertiefung Hans-Peter Schröcker Arbeitsbereich Geometrie und CAD, Universität Innsbruck Wintersemester 2007/08 Teil I Einleitung Organisatorisches Perspektive Vertiefung Seminar, 2 Std. Donnerstag,

Mehr

DG für Kunstpädagogik

DG für Kunstpädagogik DG für Kunstpädagogik Kreisdarstellung in Perspektive Kegelschnitte durch fünf Punkte Wie wir bereits wissen, läßt sich ein Kegel grundsätzlich nach 4 verschiedenen Kurven schneiden: Kreis, Ellipse, Parabel

Mehr

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1 Das Mathematikabitur Abiturvorbereitung Geometrie Autor: Claus Deser Abiturvorbereitung Mathematik 1 Gliederung Was sind Vektoren/ ein Vektorraum? Wie misst man Abstände und Winkel? Welche geometrischen

Mehr

2. Propädeutische Geometrie Klasse 5/6. Für den Geometrieunterricht ausnützen!

2. Propädeutische Geometrie Klasse 5/6. Für den Geometrieunterricht ausnützen! 2. Propädeutische Geometrie Klasse 5/6 2.1 Zur Entwicklung der Schüler Kinder im Alter von 10-12 Jahren sind wissbegierig neugierig leicht zu motivieren anhänglich (Lehrperson ist Autorität) zum Spielen

Mehr

Basteln und Zeichnen

Basteln und Zeichnen Titel des Arbeitsblatts Seite Inhalt 1 Falte eine Hexentreppe 2 Falte eine Ziehharmonika 3 Die Schatzinsel 4 Das Quadrat und seine Winkel 5 Senkrechte und parallele Linien 6 Ein Scherenschnitt 7 Bastle

Mehr

Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen

Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen Geometrie Ich kann... Formen und Körper erkennen und beschreiben Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen Symmetrien in Figuren erkennen

Mehr

Geometrie mit dem Finger. Forschungsstelle für Mobiles Lernen mit digitalen Medien Universität Bayreuth

Geometrie mit dem Finger. Forschungsstelle für Mobiles Lernen mit digitalen Medien Universität Bayreuth Geometrie mit dem Finger An.ke: Zeichnen mit dem Finger im Sand Archimedes (212 v. Chr.) Noli turbare circulos meos ( Störe meine Kreise nicht! ) Quelle: commons.wikimedia.org 21. Jahrhundert: Zeichnen

Mehr

9 Würfel und Quader (angepasst an das Lehrmittel Mathematik 1)

9 Würfel und Quader (angepasst an das Lehrmittel Mathematik 1) Name: Geometrie-Dossier 9 Würfel und Quader (angepasst an das Lehrmittel Mathematik 1) Inhalt: Körper untersuchen und skizzieren Einfache Schnittflächen in Würfel und Quader Schwierige Schnittflächen in

Mehr

Vorschlag informeller Test zu den Themen Die Grundlagen der Erde sowie Orientierung und Karten

Vorschlag informeller Test zu den Themen Die Grundlagen der Erde sowie Orientierung und Karten Vorschlag informeller Test zu den Themen Die Grundlagen der Erde sowie Orientierung und Karten Ziele Erklären können, warum es Tag und Nacht gibt Die Drehbewegungen der Erde erläutern können Über das Gradnetz

Mehr

Übungsaufgaben Klasse 7

Übungsaufgaben Klasse 7 Übungsaufgaben Klasse 7 2. Oktober 2006 Dreieckskonstruktion Versuche erst, alle Aufgaben zu lösen. Die Lösungen findest du ab Montag auf: http://www.hagener-berg.de/serdar/ unter dem Punkt Schulinfos.

Mehr

Grundregeln der Perspektive und ihre elementargeometrische Herleitung

Grundregeln der Perspektive und ihre elementargeometrische Herleitung Vortrag zu Mathematik, Geometrie und Perspektive von Prof. Dr. Bodo Pareigis am 15.10.2007 im Vorlesungszyklus Naturwissenschaften und Mathematische Wissenschaften im Rahmen des Seniorenstudiums der LMU.

Mehr

Wir gehen aus von euklidischen Anschauungsraum bzw. von der euklidischen Zeichenebene. Parallele Geraden schneiden einander nicht.

Wir gehen aus von euklidischen Anschauungsraum bzw. von der euklidischen Zeichenebene. Parallele Geraden schneiden einander nicht. 2 Ein wenig projektive Geometrie 2.1 Fernpunkte 2.1.1 Projektive Einführung von Fernpunkten Wir gehen aus von euklidischen Anschauungsraum bzw. von der euklidischen Zeichenebene. Parallele Geraden schneiden

Mehr

Autodesk AutoCAD Certified User Skills

Autodesk AutoCAD Certified User Skills Autodesk Einführung Die erfolgreich abgelegte Zertifizierung Autodesk Certified User (ACU) ist ein verlässlicher Nachweis der vermittelten Kenntnisse und Fähigkeiten und kann die berufliche Entwicklung

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

Geometrisches Wissen in der Grundschule Der Weg zu einer experimentellen Studie

Geometrisches Wissen in der Grundschule Der Weg zu einer experimentellen Studie Didaktisches Kolloquium Mathematik Institut für Didaktik der Mathematik und Elementarmathematik der TU Braunschweig 13. 12. 2011 Geometrisches Wissen in der Grundschule Der Weg zu einer experimentellen

Mehr

FreeCAD. Erste Schritte Autor: Bernhard Seibert. Der erste Körper... 2 Turmbau... 3 Teilnut... 4 Führungsblock... 5 Video-Tutorials...

FreeCAD. Erste Schritte Autor: Bernhard Seibert. Der erste Körper... 2 Turmbau... 3 Teilnut... 4 Führungsblock... 5 Video-Tutorials... FreeCAD Erste Schritte Autor: Bernhard Seibert Hilfreiche Seiten http://freecadweb.org FreeCAD-Homepage http://fachlehrerseite.de für Lehrer http://lerntheke.com für Schüler Inhalt Der erste Körper...

Mehr

Bild 1: Gegeben ist der in der Zentralperspektive zentrale Fluchtpunkt, der Distanzpunkt und der Grundriss des zu zeichnenden Vierecks.

Bild 1: Gegeben ist der in der Zentralperspektive zentrale Fluchtpunkt, der Distanzpunkt und der Grundriss des zu zeichnenden Vierecks. Bild 1: Gegeben ist der in der Zentralperspektive zentrale, der und der Grundriss des zu zeichnenden Vierecks. Die Breite des Vierecks trägt man auf der ab und verbindet die Schnittpunkte mit dem zentralen

Mehr

Geometrie 1. 1.)Geometrische Grundkonstruktionen. Halbierung einer Strecke, Mittelsenkrechte. Teilung einer Strecke. Winkelhalbierung.

Geometrie 1. 1.)Geometrische Grundkonstruktionen. Halbierung einer Strecke, Mittelsenkrechte. Teilung einer Strecke. Winkelhalbierung. Geometrie 1 1.)Geometrische Grundkonstruktionen Halbierung einer Strecke, Mittelsenkrechte Teilung einer Strecke Winkelhalbierung Thaleskreis Konstruktion von Dreiecken Kongruenzsätze: SSS-Satz, SWS-Satz,

Mehr

Einführung in die Geometrie SS 2007. Prof.Dr.R.Deissler

Einführung in die Geometrie SS 2007. Prof.Dr.R.Deissler Einführung in die Geometrie SS 2007 Prof.Dr.R.Deissler Titelblatt Literatur Krauter, Siegfried Erlebnis Elementargeometrie Ein Arbeitsbuch zum selbstständigen und aktiven Entdecken Spektrum Akad.Verlag,

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Prüfungsdauer: 50 Minuten bschlussprüfung 00 an den Realschulen in ayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: ufgabe Nachtermin.0 ie nebenstehende Skizze zeigt ein Schrägbild des Würfels

Mehr

II* III* IV* Niveau. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:...

II* III* IV* Niveau. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:... Titel MB 9 LU Nr nhaltliche Allg. Buch Arbeitsheft AB * V* Form MB 9 LU 5 * nhaltliche Allg. Buch Arbeitsheft AB ähnliche Figuren und Körper erkennen V 1-2 1.1-1.2, 1.4 Figuren vergrössern und verkleinern

Mehr

Themen: Versuchsbeschreibungen, Optik 1 (Licht und Schatten)

Themen: Versuchsbeschreibungen, Optik 1 (Licht und Schatten) Klasse 7a Physik Vorbereitung zur Lernkontrolle am 13.1.2016 Themen: Versuchsbeschreibungen, Optik 1 (Licht und Schatten) Checkliste Was ich alles können soll Ich kenne die wichtigen Teile / Abschnitte

Mehr

Kapitel 4: Zeichnerische Darstellung von Körpern. Darstellung von Körpern in der Ebene. Ziel bei der Darstellung von räumlichen Figuren (Körpern):

Kapitel 4: Zeichnerische Darstellung von Körpern. Darstellung von Körpern in der Ebene. Ziel bei der Darstellung von räumlichen Figuren (Körpern): Kapitel 4: Zeichnerische Darstellung von Körpern Darstellung von Körpern in der Ebene. Quelle im Wesentlichen: Krauter, Elementargeometrie S.1-17 Ziel bei der Darstellung von räumlichen Figuren (Körpern):

Mehr

1. Was ist GeoGebra? GeoGebra installieren Öffnen Sie die Website und klicken Sie auf der Startseite auf Download.

1. Was ist GeoGebra? GeoGebra installieren Öffnen Sie die Website  und klicken Sie auf der Startseite auf Download. 1. Was ist GeoGebra? GeoGebra ist eine dynamische Mathematiksoftware, die für Schülerinnen und Schüler aller Altersklassen geeignet ist und auf allen gängigen Betriebssystemen läuft. Sie verbindet Geometrie,

Mehr

Unterrichtsprojekt Flaschenöffner 4 WM

Unterrichtsprojekt Flaschenöffner 4 WM Unterrichtsprojekt Flaschenöffner 4 WM Das Team Bernd Sonderegger (Kaufmann) Dominik Scherrer (Hirschmann) Inhalt 1. Vorwort 2. Projektbeginn und Konstruktion 3. Arbeitsvorbereitung und Fertigung 4. Ende

Mehr

Malen für Anfänger: Erste Grundlagen. Farbe

Malen für Anfänger: Erste Grundlagen. Farbe Malen für Anfänger: Erste Grundlagen Die unten angeführten ersten Grundlagen sind Ihnen bereits aus Ihrer Schulzeit bekannt. Bitte wiederholen Sie die Informationen. Die Arbeitsaufträge sind auszuführen

Mehr

ISSN 2364-5520. Der Kreis als geometrische Ortslinie. Eine Einführung

ISSN 2364-5520. Der Kreis als geometrische Ortslinie. Eine Einführung ISSN 2364-5520 Der Kreis als geometrische Ortslinie Eine Einführung 4 Herausgeber Universität Bayreuth Forschungsstelle für Mobiles Lernen mit digitalen Medien sketchometry Universitätsstraße 30 95447

Mehr

2. Berechnungen mit Pythagoras

2. Berechnungen mit Pythagoras 2. Berechnungen mit 2.1. Grundaufgaben 1) Berechnungen an rechtwinkligen Dreiecken a) Wie lang ist die Hypotenuse, wenn die beiden Katheten eines rechtwinkligen Dreiecks 3.6 cm und 4.8 cm lang sind? b)

Mehr

STANDORTBESTIMMUNG. Seite 1

STANDORTBESTIMMUNG. Seite 1 STANDORTBESTIMMUNG Der rasante Fortschritt moderner Medien bringt es mit sich, dass der Mensch einerseits als Anwender immer öfter mit virtuellen räumlichen (geometrischen) Objekten in Berührung kommt

Mehr

Unterrichtseinheit zum Thema Reverskragen

Unterrichtseinheit zum Thema Reverskragen Das virtuelle Bildungsnetzwerk für Textilberufe Unterrichtseinheit zum Thema Reverskragen Autor: Thema Konstruktion des Reverskragens Autoren / Quellen Hofenbitzer Datum 21.

Mehr

Unmögliche Figuren trotzdem möglich?

Unmögliche Figuren trotzdem möglich? Unmögliche Figuren trotzdem möglich? Eine Denkanleitung von Rolf Wirz 10.03.2008 Rolf Wirz 1 Rolf Wirz, Prof. für Math., Berner Fachhochschule Burgdorf 2 Unmögliche Figuren trotzdem möglich? Eine Denkanleitung

Mehr

Dynamische Geometrie

Dynamische Geometrie Dynamische Geometrie 1) Die Mittelsenkrechten, die Seitenhalbierenden, die Höhen und die Winkelhalbierenden eines beliebigen Dreiecks schneiden sich jeweils in einem Punkt. a) Untersuchen Sie die Lage

Mehr

Körper erkennen und beschreiben

Körper erkennen und beschreiben Vertiefen 1 Körper erkennen und beschreiben zu Aufgabe 6 Schulbuch, Seite 47 6 Passt, passt nicht Nenne zu jeder Aussage alle Formen, auf die die Aussage zutrifft. a) Die Form hat keine Ecken. b) Die Form

Mehr

Definition und Begriffe

Definition und Begriffe Merkblatt: Das Dreieck Definition und Begriffe Das Dreieck ist ein Vieleck. In der Ebene ist es die einfachste Figur, die von geraden Linien begrenzt wird. Ecken: Jedes Dreieck hat drei Ecken, die meist

Mehr

IM05FTLS Textgestaltung und Layout 2008-01-21 Zeichnen in Word, Grafik, WordArt. Über das Kontextmenü (rechter Mausklick in die Symbolleiste)

IM05FTLS Textgestaltung und Layout 2008-01-21 Zeichnen in Word, Grafik, WordArt. Über das Kontextmenü (rechter Mausklick in die Symbolleiste) ZEICHNEN IN WORD, GRAFIK, WORDART Symbolleiste Zeichnen Aktivieren/Deaktivieren der Symbolleiste Zeichnen: Über Icon in der Symbolleiste Über das Kontextmenü (rechter Mausklick in die Symbolleiste) Über

Mehr

Durchstoßpunkt Gerade Ebene. Vorkurs Darstellende Geometrie. Erstprojizierende Hilfsebene ν durch g. Teil I. Lösung mit erstprojizierender Hilfsebene

Durchstoßpunkt Gerade Ebene. Vorkurs Darstellende Geometrie. Erstprojizierende Hilfsebene ν durch g. Teil I. Lösung mit erstprojizierender Hilfsebene Durchstoßpunkt Gerade Ebene Vorkurs Darstellende Geometrie Durchstoßpunkt Gerade Ebene Bestimmen Sie den Durchstoßpunkt D der Geraden g mit der Ebene ε. Hans-Peter Schröcker Arbeitsbereich Geometrie und

Mehr

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich Mathematik Primarschule, Teil 2 Übungsheft Lektion 7 Umfangberechnungen Lektion 7 Umfangberechnungen 4. Miss alle Seiten und schreibe sie an, berechne

Mehr

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Neues Zahlenbuch Übersicht

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Neues Zahlenbuch Übersicht Kanton Schaffhausen Abteilung Schulentwicklung und Aufsicht Herrenacker 3 CH-8200 Schaffhausen www.sh.ch An alle Primarschulen des Kantons SH Schaffhausen, 11.04.2012 Geometrie im Mathematiklehrmittel

Mehr

Geometrische Anmerkungen zu den Gedankenstrichen in documenta_landschaft_kunst Hannover

Geometrische Anmerkungen zu den Gedankenstrichen in documenta_landschaft_kunst Hannover Geometrische Anmerkungen zu den Gedankenstrichen in documenta_landschaft_kunst Hannover Albert Schmid-Kirsch Die vor kurzem vorgelegte Konzeptstudie zu einer dokumenta-landschaft-kunst in Hannover durch

Mehr

Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft

Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich Mathematik Primarschule, Teil 2 Übungsheft Lektion 7 Umfangberechnungen Lektion 7 Umfangberechnungen 4. Miss alle Seiten und schreibe sie an, berechne

Mehr

Geometrische Grundkonstruktionen

Geometrische Grundkonstruktionen Geometrische Grundkonstruktionen Strecken...2 Halbierung einer Strecke und Mittelsenkrechte...2 Teilung einer Strecke in eine bestimmte Anzahl gleicher Teile...2 Halbierung eines Winkels...3 Tangente an

Mehr

Winkelmessen und Gehrungen schneiden in der Praxis

Winkelmessen und Gehrungen schneiden in der Praxis Winkelmessen und Gehrungen schneiden in der Praxis Wir zeigen hier ein praxisgerechtes Verfahren wie Sie sogar ohne Winkelmesser und ohne komplexe Berechnungen Winkel messen und Umrahmungen entsprechend

Mehr

Landesabitur 2007 Beispielaufgaben 2005_M-LK_A 7. Eine quadratische Pyramide (Grundkante 4 und Höhe 6) steht neben einer Stufe. 1.

Landesabitur 2007 Beispielaufgaben 2005_M-LK_A 7. Eine quadratische Pyramide (Grundkante 4 und Höhe 6) steht neben einer Stufe. 1. I. Thema und Aufgabenstellung Lineare Algebra / Analytische Geometrie Aufgaben Eine quadratische Pyramide (Grundkante 4 und Höhe 6) steht neben einer Stufe. 3. Achse 2. Achse 1. Achse Die Sonne scheint

Mehr

Mathematik Aufnahmeprüfung 2013 Profile m,n,s

Mathematik Aufnahmeprüfung 2013 Profile m,n,s Mathematik Aufnahmeprüfung 2013 Profile m,n,s Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Aufgabe

Mehr

Selbstbeurteilung Ich habe es mehrheitlich. Ich habe grosse Mühe. Ich fühle mich sicher. Ich fühle mich etwas. verstanden.

Selbstbeurteilung Ich habe es mehrheitlich. Ich habe grosse Mühe. Ich fühle mich sicher. Ich fühle mich etwas. verstanden. Geografie Kartenkunde: Test Name Was habe ich gelernt? Ich fühle mich sicher Selbstbeurteilung Ich habe es mehrheitlich verstanden Ich fühle mich etwas unsicher Ich kann einen Gegenstand aus verschiedenen

Mehr

Übungen zum Verbessern der Raumvorstellung. Josef Molnár

Übungen zum Verbessern der Raumvorstellung. Josef Molnár ROMOTE MSc UIT DESCRITOR MATHEMATIK 3 Titel der Einheit Stoffgebiet ame und Email des Einsenders Ziel der Einheit Inhalt Voraussetzungen Übungen zum Verbessern der Raumvorstellung Geometrie Josef Molnár

Mehr

AOK Pflege: Praxisratgeber Sturzprävention Übungen zur Stärkung des Gleichgewichts

AOK Pflege: Praxisratgeber Sturzprävention Übungen zur Stärkung des Gleichgewichts Gut für das Gleichgewicht Ein trainierter Gleichgewichtssinn gibt dem Pflegebedürftigen Sicherheit und Selbstvertrauen. Je abwechslungsreicher die Bewegungen, desto besser wird das Zusammenspiel von Muskeln

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2014

Sekundarschulabschluss für Erwachsene. Geometrie A 2014 SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60 Für

Mehr

Visualisierung von Geodaten. Visualisierung von Geodaten

Visualisierung von Geodaten. Visualisierung von Geodaten 1 Inhalt Visualisierung Motivation Definition Vorteile Geoobjekte Geometrische Modellierung Rastermodelle Vektormodelle Hybridmodelle Software Kartographie Client-Server Server-Anwendungen 3D-Visualisierung

Mehr

Die Ellipse, Zusammenhänge und Konstruktion

Die Ellipse, Zusammenhänge und Konstruktion ie Ellipse, Zusammenhänge und Konstruktion ie Ellipse hat eine große chse und eine kleine chse. Es lassen sich zwei Kreise bilden, einen mit dem großen urchmesser und einen dem kleinen urchmesser. In der

Mehr

Das große Buch. Google SketchUp. Christine Peyton DATA BECKER

Das große Buch. Google SketchUp. Christine Peyton DATA BECKER Das große Buch Google SketchUp Christine Peyton DATA BECKER Inhnlt Einleitung 13 1 Die SketchUp-Basics per Praxis- Workshop kennenlernen: 3D-Räume anhand eines Gartenhauses einfach konstruieren 15 1.1

Mehr

schiefer Zylinder Ellipsen

schiefer Zylinder Ellipsen schiefer Zylinder Ellipsen 1. Einleitung...Seite 2 2. Zielsetzung...Seite 2 3. Lernziele...Seite 2 4. Definitionen - Formeln...Seite 3 5. Berechnungen...Seite 4 6. Ellipsenkonstruktion...Seite 5 7. Schnittflächen...Seite

Mehr

Großer Wagen. zum Sternbild. Großer Bär

Großer Wagen. zum Sternbild. Großer Bär B1 Sterne / Sternbilder Termin:....................... 1. Suchen Sie auf einer Sternkarte die Sternbilder Großer Bär, Kleiner Bär und Kassiopeia. 2. Bereiten Sie eine Skizze vor, die den Horizont zeigt

Mehr

Sekundarschulabschluss für Erwachsene. 1. Grundkonstruktionen 1.1 Zeichnen Sie alle Winkelhalbierenden ein. (3 P)

Sekundarschulabschluss für Erwachsene. 1. Grundkonstruktionen 1.1 Zeichnen Sie alle Winkelhalbierenden ein. (3 P) SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2013 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die

Mehr

Der Geometrie-Unterricht in der I. und II. Klasse der Kantonsschule und in Realschulen

Der Geometrie-Unterricht in der I. und II. Klasse der Kantonsschule und in Realschulen Die Pyramide Autor(en): Pünchera, J. Objekttyp: Article Zeitschrift: Jahresbericht des Bündnerischen Lehrervereins Band (Jahr): 17 (1899) Heft: Der Geometrie-Unterricht in der I. und II. Klasse der Kantonsschule

Mehr

Mitschriebe, Skripten, Bücher, einfacher Taschenrechner

Mitschriebe, Skripten, Bücher, einfacher Taschenrechner Prüfungsfach: Darstellende Geometrie Termin: 20. März 2014 Prüfungsbeginn: Prüfungsende: zugel. Hilfsmittel: Hinweis: 13.00 Uhr 14.00 Uhr Mitschriebe, Skripten, Bücher, einfacher Taschenrechner Wir bitten

Mehr

Übungshandbuch Organic Shape Modellierung

Übungshandbuch Organic Shape Modellierung Übungshandbuch Organic Shape Modellierung Ashlar Vellum Graphite Copyright: Ashlar Incorporated Copyright: Arnold CAD GmbH www.arnold-cad.com Handbuchversion: 1.0 Inhaltsverzeichnis EINLEITUNG...2 ORGANIC

Mehr

Kompetenzmodell. Geometrisches Zeichnen. Arbeitsblätter

Kompetenzmodell. Geometrisches Zeichnen. Arbeitsblätter Kompetenzmodell Geometrisches Zeichnen Arbeitsblätter 4.10.2012 Inhaltsdimension Arbeitsblätter Risse Lesen und Skizzieren Bausteine Länge von Strecken Flächenmodelle Bedienung eines CAD-Programms 3D-CAD-Software:

Mehr

Programmierung von Konturzügen aus Geraden und Kreisbögen

Programmierung von Konturzügen aus Geraden und Kreisbögen 40 Programmieren Drehen CNC-Kompakt Programmierung von Konturzügen aus Geraden und Kreisbögen Geometrie - Übung 6 Bild 96 Drehteil Geometrie-Übung 6 Die Kontur dieses Drehteiles (Bild 96) werden wir vor

Mehr

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt.

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Lösungen zum Thema Geometrie Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Höhe h c Winkelhalbierende w α Mittelsenkrechte ms c Seitenhalbierende s c b)

Mehr

Recherchieren Sie im Internet die Präsidenten der USA oder Nobelpreisträger und Nobelpreisträgerinnen.

Recherchieren Sie im Internet die Präsidenten der USA oder Nobelpreisträger und Nobelpreisträgerinnen. 1 Übung 7 für leicht Fortgeschrittene Objekte Übungen Objekte Überprüfen Sie Ihre erworbenen Fähigkeiten. Lösen Sie beide Übungen alleine. Dann sind Sie bereit für die nächsten Themen: Tabellen, Diagramme

Mehr

Projektbeschreibung Wohnhaus Cumberlandstr. Architekt Helmut Wimmer

Projektbeschreibung Wohnhaus Cumberlandstr. Architekt Helmut Wimmer Projektbeschreibung Wohnhaus Cumberlandstr. Architekt Helmut Wimmer Anmerkungen rot Anleitung zu Konstruktionen, die ich später gelöscht und anders gemacht habe blau Anmerkungen, warum ich etwas neu zeichnen

Mehr

Bezeichnungen am Dreieck

Bezeichnungen am Dreieck ezeichnungen am Dreieck Verbindet man drei Punkte, die nicht auf einer Geraden liegen, so entsteht ein Dreieck. llgemeine ezeichnungen: Die Eckpunkte des Dreiecks werden mit den uchstaben, und bezeichnet.

Mehr

Seite 1 von 8. Schulinternes Curriculum Mathematik. Jahrgang 5

Seite 1 von 8. Schulinternes Curriculum Mathematik. Jahrgang 5 Seite 1 von 8 Schulinternes Curriculum Mathematik Jahrgang 5 Gültig ab: 2011/2012 Erläuterungen: prozessbezogene bereiche inhaltsbezogene bereiche P1 mathematisch argumentieren I1 Zahlen und Operationen

Mehr

Allerdings ist die Bearbeitung von Standardobjekten vorerst eingeschränkt. Wir wollen uns dies im folgenden Beispiel genauer betrachten.

Allerdings ist die Bearbeitung von Standardobjekten vorerst eingeschränkt. Wir wollen uns dies im folgenden Beispiel genauer betrachten. 7. KURVEN UND KNOTEN INFORMATION: Sämtliche Objekte bestehen in CorelDRAW aus Linien oder Kurven. So ist ein Rechteck ein Gebilde aus einem Linienzug, ein Kreis hingegen besteht aus einer Kurve. Zum Bearbeiten

Mehr

Die Parabel als Ortskurve

Die Parabel als Ortskurve Die Parabel als Ortskurve Autor: Andreas Nüesch, Gymnasium Oberwil/BL, Schweiz Idee: Gegeben ist eine Konstruktionsvorschrift für einen Punkt P im Koordinatensystem. 1. Konstruieren der Ortskurve mit HIlfe

Mehr

Bewegliche Geometrie mit dem Computer Was beobachtest Du? (Warum ist das so?)

Bewegliche Geometrie mit dem Computer Was beobachtest Du? (Warum ist das so?) Bewegliche Geometrie mit dem Computer Was beobachtest Du? (Warum ist das so?) 12.10.2009, Oliver Seif nach einer Vorlage von H.Hischer/A. Lambert 1 Das Werkzeug Computer (dynamische Geometriesoftware,

Mehr

Computational Geometry, MU Leoben

Computational Geometry, MU Leoben Computational Geometry, MU Leoben www.unileoben.ac.at Computational Geometry Lehrveranstaltung: Darstellende Geometrie I, Übungen SS 2011 http://institute.unileoben.ac.at/anggeom/dg1 Übungsleiterin: S.

Mehr

Heimat- und Sachunterricht

Heimat- und Sachunterricht Herzlich willkommen zur Fortbildung Grundlagen des LehrplanPLUS: Heimat- und Sachunterricht LehrplanPLUS HSU Grundschule Das erwartet Sie heute: Präsentation des Kompetenzstrukturmodells Vorstellung der

Mehr

Einstiegsqualifizierung

Einstiegsqualifizierung Einstiegsqualifizierung Technisches Zeichnen Tätigkeitsbereiche: Grundlagen des technischen Zeichnens Betriebliche Organisation und Kommunikation Lesen und Anwenden technischer Unterlagen Sicherheit und

Mehr

Einstiegsqualifizierung

Einstiegsqualifizierung Einstiegsqualifizierung Technisches Zeichnen Tätigkeitsbereiche: Grundlagen des technischen Zeichnens Betriebliche Organisation und Kommunikation Lesen und Anwenden technischer Unterlagen Sicherheit und

Mehr

Geometrie. Grundkonstruktionen. Grundkonstruktionen

Geometrie. Grundkonstruktionen. Grundkonstruktionen Geometrie Grundkonstruktionen Sehr oft wird am Ende der Gymiprüfung eine Geometrieaufgabe gestellt. Diese kombiniert alle Techniken, die du in der Primarschule gelernt hast: Kreise zeichnen, parallel verschieben,

Mehr

Geometrie, Einführung

Geometrie, Einführung Geometrie, Einführung Punkte, Linien 1. Gib die Längen von 3 Strecken r, s. t an, welche nicht die Seiten eines Dreiecks sein können. Begründe deine Wahl. 2. a) Zeichne Punkte und Geraden, welche folgende

Mehr

Optische Phänomene im Sachunterricht

Optische Phänomene im Sachunterricht Peter Rieger Uni Leipzig Optische Phänomene im Sachunterricht Sehen Schatten Spiegel Brechung Optische Phänomene im Sachunterricht Die Kinder kennen die Erscheinung des Schattens, haben erste Erfahrungen

Mehr

Was kann ich? 1 Geometrie. Vierecke (Teil 1)

Was kann ich? 1 Geometrie. Vierecke (Teil 1) Was kann ich? 1 Geometrie. Vierecke (Teil 1) 1 Markiere Strecken rot und Geraden blau. 2 Welche Strecken und Geraden sind senkrecht zueinander, welche parallel? Schreibe mit den Zeichen und. 3 Zeichne

Mehr

Ute May Lern- und Übungsheft Mathematik 4. Klasse als Vorbereitung für den Schulübertritt

Ute May Lern- und Übungsheft Mathematik 4. Klasse als Vorbereitung für den Schulübertritt Ute May Lern- und Übungsheft Mathematik 4. Klasse als Vorbereitung für den Schulübertritt Bestellnummer 20-038 Zur Autorin Ute May, Jahrgang 1984, hat an der RWTH Aachen Mathematik studiert. Nach ihrem

Mehr

Mein Indianerheft: Geometrie 4. Lösungen

Mein Indianerheft: Geometrie 4. Lösungen Mein Indianerheft: Geometrie 4 Lösungen So lernst du mit dem Indianerheft Parallele Linien Flächen Kapitel: Flächen Flächen nicht? Prüfe mit dem Geodreieck. e parallele Linien. parallel nicht parallel

Mehr

Klausur Nr. 2. Einführung analytische Geometrie. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

Klausur Nr. 2. Einführung analytische Geometrie. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Klausur Nr. 2 Einführung analytische Geometrie Pflichtteil keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche Darstellung,

Mehr

2.3 Verkehrsbezogener Bereich

2.3 Verkehrsbezogener Bereich 2.3 Verkehrsbezogener Bereich 2.3.1 Sicher zu Fuß unterwegs (Schuljahrgang 2) Lauras Schulumgebung Laura beschreibt ihre Schulumgebung so: Unser Schulgarten mit seinem großen Kräuterbeet befindet sich

Mehr

Lösungen und definitive Korrekturanweisung

Lösungen und definitive Korrekturanweisung Bündner Mittelschulen Einheitsprüfung 2016 Geometrie Lösungen und definitive Korrekturanweisung Es werden nur ganze Punkte vergeben. Negative Punktzahlen sind nicht möglich. Punktzahl in die freie Spalte

Mehr

Diagnostisches Interview zur Bruchrechnung

Diagnostisches Interview zur Bruchrechnung Diagnostisches Interview zur Bruchrechnung (1) Tortendiagramm Zeigen Sie der Schülerin/dem Schüler das Tortendiagramm. a) Wie groß ist der Teil B des Kreises? b) Wie groß ist der Teil D des Kreises? (2)

Mehr

Top. Karte 1:50000 Bayern, Maßstab 1:16303 Landesamt für Vermessung und Geoinformation Bayern, Bundesamt für Kartographie und Geodäsie 2006 Seite 1

Top. Karte 1:50000 Bayern, Maßstab 1:16303 Landesamt für Vermessung und Geoinformation Bayern, Bundesamt für Kartographie und Geodäsie 2006 Seite 1 Top. Karte 1:50000 Bayern, Maßstab 1:16303 Top. Karte 1:50000 Bayern, Maßstab 1:16322 Top. Karte 1:50000 Bayern, Maßstab 1:16303 Top. Karte 1:50000 Bayern, Maßstab 1:16303 Top. Karte 1:50000 Bayern,

Mehr

- Arbeitsblätter - Evtl. Weitere Arbeitsblätter zum Thema (gratis herunterzuladen auf www.laureundtom.ch > Arbeitsblätter)

- Arbeitsblätter - Evtl. Weitere Arbeitsblätter zum Thema (gratis herunterzuladen auf www.laureundtom.ch > Arbeitsblätter) 4 Karten Anleitung LP Ziel Aufgabe Die Schüler/-innen lernen Begriffe wie Kartenmassstab, Grundriss, Vogelperspektive usw. kennen. Sie berechnen Distanzen und machen sich Gedanken zur Entstehung von Karten.

Mehr