Business Intelligence

Größe: px
Ab Seite anzeigen:

Download "Business Intelligence"

Transkript

1 Business Intelligence Anwendungssysteme (BIAS) Lösung Aufgabe 1 Übung WS 2012/13

2 Business Intelligence Erläutern Sie den Begriff Business Intelligence. Gehen Sie bei der Definition von Business Intelligence auch auf die Definitionsvielfalt ein. Nennen Sie die Einsatzgebiete von BI-Anwendungssystemen. (1./2.) Grenzen Sie die operativen Systeme von den analyseorientierten Systemen ab. Erläutern Sie die Unterschiede hinsichtlich der zu unterstützenden Prozesse, Daten und Datenmodelle. Gehen Sie in diesem Zusammenhang auch auf die Unterschiede zwischen operativen und dispositiven Datenbeständen ein. Nenne Sie je zwei Beispiele für operative und analyseorientierte Systeme. (3.) Operative Systeme Unterstützung täglicher, Geschäftsbetrieb-notwendiger Routinetransaktionen (operative Geschäftsprozesse) häufiger Zugriff, mit geringen Datenmengen Systeme der Personalverwaltung (Personalwesen), Auftragsbearbeitung (Vertrieb/Marketing), Lohnbuchhaltung (Finanz-/ReWe), Materialwirtschaft (Produktion) usw. Operative Daten Abwicklung d. Geschäftsprozesse häufige Aktualisierungen der Daten Aktuelle, detaillierte Daten Gefahr v. Redundanzen und Inkonsistenzen Analyseorientierte Systeme Unterstützung dispositiver bzw. analytischer Tätigkeiten (Informationsund Entscheidungsunterstützungssysteme) Verarbeitung großer Datenmengen (Auswertungen und Analysen) Systeme zur Unterstützung von CRM, SCM, Risikomanagement usw. Informationssysteme für Marketing und Vertrieb, Controlling, Management/Geschäftsführung usw. Dispositive Daten Informationen für das Management/ Entscheidungsunterstützung Fortschreiben/Ergänzen der Daten historische, verdichtete, transformierte Daten keine Inkonsistenzen, kontrollierte Redundanzen Literatur: Kemper, H.-G.; Mehanna, W.; Unger, C.: Business Intelligence Grundlagen und praktische Anwendungen, 2. Auflage, Stuttgart 2006, S. 13ff. Chamoni, P.; Gluchowski, P.: Analytische Informationssysteme Einordnung und Überblick, In:. Chamoni, P.; Gluchowski, P. (Hrsg.): Analytische Informationssysteme Business Intelligence-Technologien und-anwendungen, 4. Auflage, Berlin 2010, S

3 Business Intelligence Erläutern Sie das BI-Architektur-Konzept. Nehmen Sie Bezug auf folgende Aussage: Bei Business Intelligence handelt es sich um einen integrierten Gesamtansatz. (4.1) Zur Erläuterung o.g. Aussage sind folgende Punkte relevant: externe und interne Daten aus verschieden Bereichen für Managemententscheidungen von hoher Bedeutung einzelne isolierte Betrachtungsweisen reichen längst nicht mehr aus generieren, speichern, analysieren und verteilen von Informationen über mehrere Funktionsbereiche und Managementebenen hinweg Systemintegration: ausgehend von Datenbereitstellung über die Informationsgenerierung bis hin zum Informationszugriff beinhaltet BI-Werkzeuge, BI-Anwendungssysteme und Konzepte zur o.g. Umsetzung Was versteht man unter Präsentations- und Zugangssystemen? Erläutern Sie Darstellungsformen und Funktionen von Dashboards und BI-Portalen. Gehen Sie auch auf die Vor- und Nachteile ein. (4.2) Dashboards und BI-Portale klassische Reportinglösung ausgerichtet auf die Nutzung am Bildschirm (nicht druckoptimierte Form) Dashboards spezifische und komprimierte Darstellung wesentlicher Informationen Wahrnehmbarkeit mit einem Blick, rasche Erfassung relevanter Fakten (ggf. durch geeignete Markierungen/ Ampelfarben) Wesentliche Informationen, keine Überfrachtung mit Detailinformationen Portale Integration unterschiedlicher Inhalte unter einer gemeinsamen Oberfläche (Zentralisierung von Informationen und Diensten) Integration von Inhalten aus heterogenen Quellsystemen zentraler Zugang ( Single Sign-On ) weitere Informations- und Navigationsmöglichkeiten (z.b. Zugang zu Detailinformationen) Integration weiterer Dienste (z.b. ToDo-Listen, -und Newsgroup-Komponenten) Literatur: Gluchowski, Peter; Gabriel, Roland; Chamoni, Peter: Management Support Systeme und Business Intelligence. Computergestützte Informationssysteme für Führungskräfte und Entscheidungsträger, 2. Auflage, Berlin/Heidelberg 2008, S Kemper, H.-G.; Mehanna, W.; Unger, C.: Business Intelligence Grundlagen und praktische Anwendungen, 2. Auflage, Stuttgart 2006, S. 11.

4 Metadaten & Metadatenmanagement Definieren Sie die Begriffe Metadaten und Metadatenmanagement.(5.) Erläutern Sie Bedeutung und Anwendungsgebiete des Metadatenmanagements. Nehmen Sie hierbei Bezug auf das BI-Architektur-Konzept. (6.) Bedeutung/Notwendigkeit: Unkenntnis über Herkunft, Bedeutung, Aggregationsgrad, Aktualität, Verfügbarkeit usw. der Daten -> Metadaten Ziele: Effizienzsteigerung bei Entwicklung und Vertrieb von BIAS sowie der Effektivitätssteigerung bei der Nutzung von BIAS Beispiele Data Warehouse: Operative Systeme: z.b. Metadaten über Hardware, Netze, Datenstrukturen, Änderungsfrequenzen ETL: z.b. Metadaten über Extraktionswerkzeuge, Bereinigungsregeln, Verantwortlichkeiten Grenzen Sie die fachlichen von den technischen Metadaten ab und nennen Sie jeweils drei Beispiele. (7.) Beispiele: technische Metadaten (IT-orientiert): Datentypen, Datenkonvertierung, Formate, Versionen, Extraktionswerkzeuge fachliche Metadaten: Metadaten über generierte Kennzahlen, Verantwortlichkeiten, Granularität der Daten Grenzen Sie die passiven von den (semi-)aktiven Metadaten ab und nennen Sie jeweils potentielle Nutzer dieser Metadaten. (8.) Passive Metadaten: ermöglichen konsistente Dokumentation von Struktur, Entwicklungsprozessen und Verwendung in BIAS Semi-Aktive Metadaten: werden zur Überprüfung von Strukturen herangezogen Aktive Metadaten: werden zur Laufzeit interpretiert und zur Ausführung (Transformation, Analyse) herangezogen Literatur: Kemper, H.-G.; Mehanna, W.; Unger, C.: Business Intelligence Grundlagen und praktische Anwendungen, 2. Auflage, Stuttgart 2006, S

5 Literatur Gluchowski, Peter; Gabriel, Roland; Chamoni, Peter: Management Support Systeme und Business Intelligence. Computergestützte Informationssysteme für Führungskräfte und Entscheidungsträger, 2. Auflage, Berlin/Heidelberg Chamoni, Peter; Gluchowski, Peter: Analytische Informationssysteme Business Intelligence- Technologien und-anwendungen, 4. Auflage, Berlin H.-G. Kemper, W. Mehanna, C. Unger: Business Intelligence Grundlagen und praktische Anwendungen, 2. Auflage, Stuttgart 2006.

Entscheidungsunterstützungssysteme

Entscheidungsunterstützungssysteme Vorlesung WS 2013/2014 Christian Schieder Professur Wirtschaftsinformatik II cschie@tu-chemnitz.eu Literatur zur Vorlesung Gluchowski, P.; Gabriel, R.; Dittmar, C.: Management Support Systeme und Business

Mehr

Business Intelligence Anwendungssysteme

Business Intelligence Anwendungssysteme Business Intelligence Anwendungssysteme Fakultät für Wirtschaftswissenschaften Professur Wirtschaftsinformatik II Prof. Dr. Peter Gluchowski Folie 1 Literatur zur Vorlesung BI- Anwendungssysteme Gluchowski,

Mehr

Vorlesung Mittwoch Literatur: MSS, Prof. Gluchowski

Vorlesung Mittwoch Literatur: MSS, Prof. Gluchowski Business Intelligence Anwendungssysteme (BIAS) Zusammenfassung Übung WS 2012/13 Lernziele Business Intelligence Aufgabe 1 Metadatenmanagement Aufgabe 1 Planungssysteme Aufgabe 2 Begriffe und Definitionsvielfalt

Mehr

Komponenten und Architekturen von Analytischen Informationssystemen

Komponenten und Architekturen von Analytischen Informationssystemen Komponenten und Architekturen von Analytischen Informationssystemen Sommersemester 2013 Prof Dr. Peter Gluchowski Literatur zur Vorlesung AIS/BIS Gluchowski, Peter; Gabriel, Roland; Dittmar, Carsten: Management

Mehr

Management Support Systeme

Management Support Systeme Folie 1 Management Support Systeme Literatur zur Vorlesung MSS Gluchowski, Peter; Gabriel, Roland; Chamoni, Peter (1997): Management Support Systeme. Computergestützte Informationssysteme für Führungskräfte

Mehr

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware 14. März 2013, IHK Osnabrück-Emsland-Grafschaft Bentheim Geschichte Kassenbuch des Liederkranz, 1886 Hutmachergesangvereins

Mehr

Inhaltliche Ausrichtung und organisatorische Sicherstellung Business Intelligence Governance

Inhaltliche Ausrichtung und organisatorische Sicherstellung Business Intelligence Governance Inhaltliche Ausrichtung und organisatorische Sicherstellung Business Intelligence Governance Ralf Heim Consultant Strategy and Technology Management Ralf.Heim@heimr.de Markus Linden Wissenschaftlicher

Mehr

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII Vorwort zur zweiten Auflage...V Vorwort zur ersten Auflage... VIII 1 Management Support Systeme und Business Intelligence Anwendungssysteme zur Unterstützung von Managementaufgaben...1 1.1 Computergestützte

Mehr

1 Einleitung. Betriebswirtschaftlich administrative Systeme

1 Einleitung. Betriebswirtschaftlich administrative Systeme 1 1 Einleitung Data Warehousing hat sich in den letzten Jahren zu einem der zentralen Themen der Informationstechnologie entwickelt. Es wird als strategisches Werkzeug zur Bereitstellung von Informationen

Mehr

Survival Guide für Ihr Business Intelligence-Projekt

Survival Guide für Ihr Business Intelligence-Projekt Survival Guide für Ihr Business Intelligence-Projekt Sven Bosinger Solution Architect BI Survival Guide für Ihr BI-Projekt 1 Agenda Was ist Business Intelligence? Leistungsumfang Prozesse Erfolgsfaktoren

Mehr

Business Intelligenceein Überblick

Business Intelligenceein Überblick Exkurs Business Intelligenceein Überblick Folie 1 Januar 06 Literatur Kemper, Hans-Georg; Mehanna, Walid; Unger, Carsten (2004): Business Intelligence: Grundlagen und praktische Anwendungen Eine Einführung

Mehr

Business Intelligence im Krankenhaus

Business Intelligence im Krankenhaus Business Intelligence im Krankenhaus Dr. Thomas Lux Holger Raphael IT-Trends in der Medizin 03.September 2008 Essen Gliederung Herausforderungen für das Management im Krankenhaus Business Intelligence

Mehr

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

Begleitende Online-Lernkontrolle als Prüfungszulassungsvoraussetzung

Begleitende Online-Lernkontrolle als Prüfungszulassungsvoraussetzung Modulbezeichnung: Modulnummer: IWBI Business Intelligence Semester: -- Dauer: Minimaldauer 1 Semester Modultyp: Wahlpflicht Regulär angeboten im: WS, SS Workload: 300 h ECTS Punkte: 10 Zugangsvoraussetzungen:

Mehr

1. Einführung und Grundbegriffe

1. Einführung und Grundbegriffe 1. Einführung und Grundbegriffe Business Intelligence 1. Einführung und Grundbegriffe Lernziele: Wichtige Grundbegriffe verstehen, einordnen und erläutern können; Grundlegende Merkmale von Decision Support

Mehr

Internationaler Controller Verein. Gründungssitzung der Projektgruppe Business Intelligence Stuttgart, 26.01.2006

Internationaler Controller Verein. Gründungssitzung der Projektgruppe Business Intelligence Stuttgart, 26.01.2006 Internationaler Controller Verein Gründungssitzung der Projektgruppe Business Intelligence Stuttgart, 26.01.2006 Agenda 10.00 Begrüßung 10.00 Rolle des Controllers im Umfeld Business Intelligence (A. Seufert)

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

2.8. Business Intelligence

2.8. Business Intelligence 2.8. Zulieferer BeschaffungProduktion Kunde E-Procurement Customer Relationship (CRM) Supply Chain (SCM) Enterprise Resource Planning (ERP) Executive Information (EIS) Executive Support (ESS) Chef-Informations-

Mehr

1. Einführung und Grundbegriffe. Business Intelligence. Definitionsvielfalt

1. Einführung und Grundbegriffe. Business Intelligence. Definitionsvielfalt 1. Einführung und Grundbegriffe Lernziele: Wichtige Grundbegriffe verstehen, einordnen und erläutern können; Grundlegende Merkmale von Decision Support Systemen kennen; Arten von Wissen kennen und gegeneinander

Mehr

Sven Bosinger solution architect BI. Data Warehouse Architekturen Der Schlüssel zum Erfolg! DOAG 16.11.2007 1

Sven Bosinger solution architect BI. Data Warehouse Architekturen Der Schlüssel zum Erfolg! DOAG 16.11.2007 1 Sven Bosinger solution architect BI Data Warehouse Architekturen Der Schlüssel zum Erfolg! DOAG 16.11.2007 1 Agenda Kurze Vorstellung its-people Architektur als Erfolgsfaktor Verschiedene Architekturansätze

Mehr

Prof. Dr. Hans-Georg Kemper Dr. Ralf Finger. BI-Führungskräfte im Fokus. Aufgabenspektrum, Herausforderungen, Best Practices

Prof. Dr. Hans-Georg Kemper Dr. Ralf Finger. BI-Führungskräfte im Fokus. Aufgabenspektrum, Herausforderungen, Best Practices Prof. Dr. Hans-Georg Kemper Dr. Ralf Finger BI-Führungskräfte im Fokus Aufgabenspektrum, Herausforderungen, Best Practices Agenda Business Intelligence Entwicklungslinien der letzten 10 Jahre BI Executive

Mehr

Historie der analyseorientierten Informationssysteme

Historie der analyseorientierten Informationssysteme Gliederung MSS 1. Einführung in die Management Support Systeme (MSS) 2. Data Warehouse als Basis-Konzept aktueller MSS 3. Business Intelligence (BI) als Weiterführung des DW-Ansatzes 1. Grundlagen zum

Mehr

CRM Architektur. New Economy CRM Architektur Page 1

CRM Architektur. New Economy CRM Architektur Page 1 CRM Architektur Titel des Lernmoduls: CRM Architektur Themengebiet: New Economy Gliederungspunkt im Curriculum: 4.2.4.2 Zum Inhalt: Dieses Modul beschreibt mögliche Architekturen von CRM-Systemen. Insbesondere

Mehr

Orientierungsveranstaltung für Studierende der Bachelorstudiengänge. Schwerpunkt Wirtschaftsinformatik. Prof. Stefan Lessmann

Orientierungsveranstaltung für Studierende der Bachelorstudiengänge. Schwerpunkt Wirtschaftsinformatik. Prof. Stefan Lessmann Orientierungsveranstaltung für Studierende der Bachelorstudiengänge BWL und VWL Schwerpunkt Wirtschaftsinformatik Prof. Stefan Lessmann Agenda Schwerpunkt Wirtschaftsinformatik Gegenstand der Wirtschaftsinformatik

Mehr

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Konrad Linner, solvistas GmbH Nürnberg, 20.November 2012 Inhaltsverzeichnis Vorstellung solvistas

Mehr

BI WIKI START-UP YOUR DWH PARTIZIPATIVE BI IM ZEITALTER VON BIG DATA

BI WIKI START-UP YOUR DWH PARTIZIPATIVE BI IM ZEITALTER VON BIG DATA BI WIKI START-UP YOUR DWH PARTIZIPATIVE BI IM ZEITALTER VON BIG DATA Agenda VORSTELLUNG B.TELLIGENT WIE ENTSTEHT EINE KENNZAHL? WAS SIND METADATEN? AUFBAU UND FUNKTIONSWEISE DES BI WIKI LIVE DEMO ZUSAMMENFASSUNG

Mehr

Business Intelligence Data Warehouse. Jan Weinschenker

Business Intelligence Data Warehouse. Jan Weinschenker Business Intelligence Data Warehouse Jan Weinschenker 28.06.2005 Inhaltsverzeichnis Einleitung eines Data Warehouse Data Warehouse im Zusammenfassung Fragen 3 Einleitung Definition: Data Warehouse A data

Mehr

Data Warehouse. für den Microsoft SQL SERVER 2000/2005

Data Warehouse. für den Microsoft SQL SERVER 2000/2005 Warehouse für den Microsoft SQL SERVER 2000/2005 Begriffe 1 DWH ( Warehouse) ist eine fachübergreifende Zusammenfassung von Datentabellen. Mart ist die Gesamtheit aller Datentabellen für einen fachlich

Mehr

Big Data: Nutzen und Anwendungsszenarien. CeBIT 2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC

Big Data: Nutzen und Anwendungsszenarien. CeBIT 2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Big Data: Nutzen und Anwendungsszenarien CeBIT 2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Big Data steht für den unaufhaltsamen Trend, dass immer mehr Daten in Unternehmen anfallen und von

Mehr

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 MIS Glossar by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 Aggregat Data Cube Data Marts Data Mining Data Warehouse (DWH) Daten Decision Support Systeme (DSS)

Mehr

Data Warehouse und Business Intelligence: Mehrwert eines analytischen Informationssystems für Entscheider an Hochschulen

Data Warehouse und Business Intelligence: Mehrwert eines analytischen Informationssystems für Entscheider an Hochschulen Data Warehouse und Business Intelligence: Mehrwert eines analytischen Informationssystems für Entscheider an Hochschulen Sonja Schulze Zentrales Berichtswesen (ZBW) Stiliana Lüttecke Zentrum für Informationsmanagement

Mehr

Data Mining (ehem. Entscheidungsunterstützungssysteme)

Data Mining (ehem. Entscheidungsunterstützungssysteme) Data Mining (ehem. Entscheidungsunterstützungssysteme) Melanie Pfoh Anja Tetzner Christian Schieder Übung WS 2014/15 AGENDA TEIL 1 Aufgabe 1 (Wiederholung OPAL / Vorlesungsinhalte) ENTSCHEIDUNG UND ENTSCHEIDUNGSTHEORIE

Mehr

WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE'

WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE' Take control of your decision support WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE' Sommersemester 2008 Gliederung Business Intelligence und Data Warehousing On-Line Analytical Processing Ziel

Mehr

Komponenten und Architekturen von Analytischen Informationssystemen (AIS)

Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation 27. Juni 2013 Hinweis Diese Folien ersetzen keinesfalls den Übungsstoff des zugehörigen e-learning-kurses.

Mehr

Einsatz von Anwendungssystemen

Einsatz von Anwendungssystemen Einsatz von Anwendungssystemen WS 2013/14 7 Führungssysteme 7.1 Data Warehouse 7.2 Planungssysteme 7.3 Balanced Scorecard (BSC) 7.4 Business Intelligence 7 Führungssysteme 7.1 Data Warehouse Ein Data Warehouse

Mehr

Einführung in Business Intelligence

Einführung in Business Intelligence Einführung in Business Intelligence Grundlagen und Anwendungsmöglichkeiten Prof. Dr. Wolfram Höpken wolfram.hoepken@eloum.net eloum @ Hochschule Ravensburg-Weingarten Informationsveranstaltung ebusiness-lotse

Mehr

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle 40. Congress der Controller, Themenzentrum C, München Steffen Vierkorn, Geschäftsführer Qunis GmbH, Neubeuern Die

Mehr

Analyse der wirtschaftlichen Potentiale von Business Intelligence in KMU. Bachelorarbeit

Analyse der wirtschaftlichen Potentiale von Business Intelligence in KMU. Bachelorarbeit Analyse der wirtschaftlichen Potentiale von Business Intelligence in KMU Bachelorarbeit zur Erlangung des akademischen Grades Bachelor of Science (B.Sc.) im Studiengang Wirtschaftswissenschaft der Wirtschaftswissenschaftlichen

Mehr

Kapitel 2 Terminologie und Definition

Kapitel 2 Terminologie und Definition Kapitel 2 Terminologie und Definition In zahlreichen Publikationen und Fachzeitschriften tauchen die Begriffe Data Warehouse, Data Warehousing, Data-Warehouse-System, Metadaten, Dimension, multidimensionale

Mehr

Konzeption eines maschinenorientierten Data- Warehouses zur Unterstützung von Managementenscheidungen

Konzeption eines maschinenorientierten Data- Warehouses zur Unterstützung von Managementenscheidungen Konzeption eines maschinenorientierten Data- Warehouses zur Unterstützung von Managementenscheidungen Philip Hollstein Lehrstuhl für ABWL und Wirtschaftsinformatik Universität Stuttgart Abstract In der

Mehr

Data Warehouse Version: June 26, 2007. Andreas Geyer-Schulz und Anke Thede

Data Warehouse Version: June 26, 2007. Andreas Geyer-Schulz und Anke Thede Data Warehouse Version: June 26, 2007 Andreas Geyer-Schulz und Anke Thede Schroff-Stiftungslehrstuhl Informationsdienste und Elektronische Märkte Fakultät für Wirtschaftswissenschaften Gebäude 20.20 Rechenzentrum,

Mehr

Business Intelligence & professionelles Datenmanagement als Erfolgsfaktor

Business Intelligence & professionelles Datenmanagement als Erfolgsfaktor Yves-Deniz Obermeier Sales Manager Financial Services Ing. Thomas Heinzmann Division Management BI Mag. Martin Feith Senior Expert Business Intelligence & professionelles Datenmanagement als Erfolgsfaktor

Mehr

Konzeption eines Master-Data-Management-Systems. Sven Schilling

Konzeption eines Master-Data-Management-Systems. Sven Schilling Konzeption eines Master-Data-Management-Systems Sven Schilling Gliederung Teil I Vorstellung des Unternehmens Thema der Diplomarbeit Teil II Master Data Management Seite 2 Teil I Das Unternehmen Vorstellung

Mehr

Business Intelligence

Business Intelligence Business Intelligence Anwendung 1 MInf1 HAW Hamburg Betreuender Professor: Prof. Dr. Zukunft by Jason Hung Vuong [12] Gliederung 1. Hamburg Energie Kooperation 2. Motivation 3. Business Intelligence 4.

Mehr

DWH Szenarien. www.syntegris.de

DWH Szenarien. www.syntegris.de DWH Szenarien www.syntegris.de Übersicht Syntegris Unser Synhaus. Alles unter einem Dach! Übersicht Data-Warehouse und BI Projekte und Kompetenzen für skalierbare BI-Systeme. Vom Reporting auf operativen

Mehr

3. Integrationsdimensionen, u. a. Integrationsrichtungen (vgl. 1 und 2) 4. Vertikale und horizontale Integrationsrichtung (vgl.

3. Integrationsdimensionen, u. a. Integrationsrichtungen (vgl. 1 und 2) 4. Vertikale und horizontale Integrationsrichtung (vgl. Anwendungssysteme 1. Vertikal: unterstützte organisationale Ebene Informationsdichtegrad 2. Horizontal: unterstützter Funktionsbereich betriebliche Grundfunktion 3. Integrationsdimensionen, u. a. Integrationsrichtungen

Mehr

Datawarehouse Architekturen. Einheitliche Unternehmenssicht

Datawarehouse Architekturen. Einheitliche Unternehmenssicht Datawarehouse Architekturen Einheitliche Unternehmenssicht Was ist Datawarehousing? Welches sind die Key Words? Was bedeuten sie? DATA PROFILING STAGING AREA OWB ETL OMB*PLUS SAS DI DATA WAREHOUSE DATA

Mehr

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Ein Data-Warehouse bzw. Datenlager ist eine zentrale Datensammlung (meist eine Datenbank), deren Inhalt sich aus Daten unterschiedlicher

Mehr

Visual Business Intelligence Eine Forschungsperspektive

Visual Business Intelligence Eine Forschungsperspektive Visual Business Intelligence Eine Forschungsperspektive Dr. Jörn Kohlhammer Fraunhofer-Institut für Graphische Datenverarbeitung IGD Fraunhoferstraße 5 64283 Darmstadt Tel.: +49 6151 155 646 Fax.: +49

Mehr

Business Intelligence braucht mehr Business!

Business Intelligence braucht mehr Business! Business Intelligence braucht mehr Business! Oder: Raus aus der BI-Falle! Dr. Guido Kemper 16. Handelsblatt Jahrestagung: Strategisches IT-Management. München, 25.01.2010 prometis - Management & Technology

Mehr

Informationssysteme für das Management

Informationssysteme für das Management FHBB l Departement Wirtschaft l Informationssysteme für das Management Michael Pülz, Hanspeter Knechtli Lernziele Den Unterschied zwischen operativen und analytischen Informationssystemen beschreiben können

Mehr

Data Warehouse Grundlagen

Data Warehouse Grundlagen Seminarunterlage Version: 2.10 Version 2.10 vom 24. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

INVEST projects. Besseres Investitionscontrolling mit INVESTprojects

INVEST projects. Besseres Investitionscontrolling mit INVESTprojects Besseres Investitionscontrolling mit Der Investitionsprozess Singuläres Projekt Idee, Planung Bewertung Genehmigung Realisierung Kontrolle 0 Zeit Monate, Jahre Perioden Der Investitionsprozess Singuläres

Mehr

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06 Business Intelligence Data Warehouse / Analyse Sven Elvers 2005-07-06 Einleitung Dieses Dokument beschreibt einen für das Verständnis relevanten Teil der Präsentation. Business Intelligence Motivation

Mehr

ORACLE PROFIL UND REFERENZEN

ORACLE PROFIL UND REFERENZEN ORACLE PROFIL UND REFERENZEN _ Das Orbit Oracle-Profil: Referenzen & Leistungen DAS ORBIT ORACLE-PROFIL: REFERENZEN & LEISTUNGEN ORBIT hat seinen Ursprung im Bereich Datenbanken & Applikationsentwicklung

Mehr

1 Business Intelligence Begriffsabgrenzung und

1 Business Intelligence Begriffsabgrenzung und 1 Business Intelligence Begriffsabgrenzung und Ordnungsrahmen Im Mittelpunkt des ersten Kapitels steht neben der Abgrenzung des Begriffes Business Intelligence (BI) die Entwicklung eines BI- Rahmenkonzeptes,

Mehr

Ontologiebasiertes Kennzahlenmanagement

Ontologiebasiertes Kennzahlenmanagement Ontologiebasiertes Kennzahlenmanagement Dan Garconita Competence Center Information Management Bundesrechenzentrum GmbH www.brz.gv.at Der IT-Dienstleister des Bundes Kennzahlensysteme No doubt companies

Mehr

Business Performance Management Next Generation Business Intelligence?

Business Performance Management Next Generation Business Intelligence? Business Performance Management Next Generation Business Intelligence? München, 23. Juni 2004 Jörg Narr Business Application Research Center Untersuchung von Business-Intelligence-Software am Lehrstuhl

Mehr

Big Data Herausforderungen und Chancen für Controller. ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC

Big Data Herausforderungen und Chancen für Controller. ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Big Data Herausforderungen und Chancen für Controller ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC BARC: Expertise für datengetriebene Organisationen Beratung Strategie

Mehr

intelligenz kann man endlich kaufen

intelligenz kann man endlich kaufen intelligenz kann man endlich kaufen Flexibles Echtzeitreporting. Erweitertes Standardreporting. Ihre Zeit. Ihr Vorteil. bringen sie leben in ihre sap daten SAP-Daten zum Anfassen Holen Sie das Maximum

Mehr

Geschäftsprozessmodellierung und implementierung am Beispiel SAP ERP

Geschäftsprozessmodellierung und implementierung am Beispiel SAP ERP Geschäftsprozessmodellierung und implementierung am Beispiel SAP ERP V04 02. Mai 2011, 16.15-17.45 Uhr, ITS-Pool nur zugelassene Teilnehmer Niedersächsisches Hochschulkompetenzzentrum für SAP (CCC) Aktuelles

Mehr

AKAD Hochschule Stuttgart Wirtschaftsinformatik. Assignment. Arten und Rolle von Metadaten in Business Intelligence-Lösungen

AKAD Hochschule Stuttgart Wirtschaftsinformatik. Assignment. Arten und Rolle von Metadaten in Business Intelligence-Lösungen AKAD Hochschule Stuttgart Wirtschaftsinformatik Assignment Arten und Rolle von Metadaten in Business Intelligence-Lösungen zum Seminar BIN01 am 11.11.2011 in Stuttgart von Manfred Schiefers Pflasteräckerstr.

Mehr

Customer Relationship Management

Customer Relationship Management Customer Relationship Management Hauptseminar im WS 03/04 Neue Ansätze im IT-Service-Management- Prozessorientierung (ITIL/eTOM) Thema: Customer Relationship Management in etom Name: Wen-Wang Wu Betreuer:

Mehr

Marketing Intelligence Übersicht über Business Intelligence. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Übersicht über Business Intelligence. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Übersicht über Business Intelligence Josef Kolbitsch Manuela Reinisch Übersicht Beispiel: Pantara Holding Der Begriff Business Intelligence Übersicht über ein klassisches BI-System

Mehr

ENTERBRAIN Reporting & Business Intelligence

ENTERBRAIN Reporting & Business Intelligence Überblick Vorhandene Listen/Analysen in ENTERBRAIN Die Daten in ENTERBRAIN Das Fundament des BI - Hauses Details zur ENTERBRAIN Staging Area Reports und Cubes auf Basis der Staging Area Data Mining mit

Mehr

Industrie 4.0. Potentiale für BI-/DWH-Lösungen und Big-Data-Ansätze

Industrie 4.0. Potentiale für BI-/DWH-Lösungen und Big-Data-Ansätze Industrie 4.0 Potentiale für BI-/DWH-Lösungen und Big-Data-Ansätze Prof. Dr. Hans-Georg Kemper Keplerstr. 17 70174 Stuttgart Telefon: +49 (711) 685-83194 Telefax: +49 (711) 685-83197 E-Mail: kemper@wi.uni-stuttgart.de

Mehr

Geschäftsdaten auswerten

Geschäftsdaten auswerten Geschäftsdaten auswerten Schwachstellen erkennen, Ursachen analysieren und gezielter steuern Thomas Menner thomas.menner@eloum.net ebusiness-lotse Oberschwaben-Ulm IHK Bodensee-Oberschwaben, Weingarten,

Mehr

Vergleich von Open-Source und kommerziellen Programmen zur Durchführung eines ETL-Prozesses

Vergleich von Open-Source und kommerziellen Programmen zur Durchführung eines ETL-Prozesses Vergleich von Open-Source und kommerziellen Programmen zur Durchführung eines ETL-Prozesses Exposé zur Diplomarbeit Humboldt-Universität zu Berlin Mathematisch-Naturwissenschaftliche Fakultät II Institut

Mehr

IBM Smart Analytics System und IBM Cognos BI: Vom Single Point of Truth zum mobilen Cockpit - ein Praxisbericht beim Unternehmen Theo Förch

IBM Smart Analytics System und IBM Cognos BI: Vom Single Point of Truth zum mobilen Cockpit - ein Praxisbericht beim Unternehmen Theo Förch IBM Smart Analytics System und IBM Cognos BI: Vom Single Point of Truth zum mobilen Cockpit - ein Praxisbericht beim Unternehmen Theo Förch Markus Ruf, Geschäftsführer mip GmbH Jens Kretzschmar, Senior

Mehr

Vertriebssteuerung & Controlling Konkrete Vertriebsziele, passend zur Unternehmensstrategie

Vertriebssteuerung & Controlling Konkrete Vertriebsziele, passend zur Unternehmensstrategie Konkrete Vertriebsziele, passend zur Unternehmensstrategie Wir ermöglichen Ihnen mit dem Service Vertriebssteuerung die erfolgreiche Umsetzung Ihrer Unternehmensstrategie in operativ umsetzbare Vertriebsziele.

Mehr

Business Intelligence für Controller

Business Intelligence für Controller Controllers Best Practice Fachbuch Business Intelligence für Controller Hermann Hebben und Dr. Markus Kottbauer Verlag für ControllingWissen ÄG, Freiburg und Wörthsee Ein Unternehmen der Haufe Mediengruppe

Mehr

proalpha Geschäftssoftware für den Mittelstand

proalpha Geschäftssoftware für den Mittelstand Whitepaper proalpha Geschäftssoftware für den Mittelstand Januar 2013 proalpha Integrierte Geschäftssoftware für den Mittelstand 2 Herausgegeben von proalpha Software AG Auf dem Immel 8 67685 Weilerbach

Mehr

4. WORKSHOP - OSBI Big Data und Datenvirtualisierung. Dr. Sebastian Streit & Maxim Zehe

4. WORKSHOP - OSBI Big Data und Datenvirtualisierung. Dr. Sebastian Streit & Maxim Zehe 4. WORKSHOP - OSBI Big Data und Datenvirtualisierung Dr. Sebastian Streit & Maxim Zehe F. Hoffmann-La Roche AG Gegründet 1896 in Basel Über 80.000 Mitarbeitende Führende Position in Pharma Fokussierung

Mehr

DATA WAREHOUSE Optimiertes und flexibles Datenmanagement für das Investment Reporting

DATA WAREHOUSE Optimiertes und flexibles Datenmanagement für das Investment Reporting DATA WAREHOUSE Optimiertes und flexibles Datenmanagement für das Investment Reporting 1 Lange bewährt immer noch gelitten Das Data Warehouse ist vielen ein Dorn im Auge IT-Manager messen der zentralen

Mehr

Raber+Märcker Business Intelligence Lösungen und Leistungen

Raber+Märcker Business Intelligence Lösungen und Leistungen Business Intelligence Raber+Märcker Business Intelligence Lösungen und Leistungen www.raber-maercker.de 2 LEISTUNGEN Business Intelligence Beratungsleistung Die Raber+Märcker Business Intelligence Beratungsleistung

Mehr

Vorlesung Anwendungssysteme WS 2005/06 - Studentische Präsentationen und Ausarbeitungen - Themenliste und Leitfragen

Vorlesung Anwendungssysteme WS 2005/06 - Studentische Präsentationen und Ausarbeitungen - Themenliste und Leitfragen Prof. Dr. Katja Lenz Prof. Dr. Urs Andelfinger Vorlesung Anwendungssysteme WS 2005/06 - Studentische Präsentationen und Ausarbeitungen - Themenliste und Leitfragen 1 27.. Thema: Modellierung von betrieblichen

Mehr

Fakultät. Modulkoordinator Frank Termer. Modul-Name Wirtschaftsinformatik Modul-Nr : 51012

Fakultät. Modulkoordinator Frank Termer. Modul-Name Wirtschaftsinformatik Modul-Nr : 51012 Fakultät Wirtschaftswissenschaften Studiengang Betriebswirtschaft f. kleine u. mitt. Unternehmen Modulbeschreibung Modulkoordinator Frank Termer Modul-Name Wirtschaftsinformatik Modul-Nr : 51012 CP SWS

Mehr

Non-Profit-Organisationen: Vom Controlling zum Strategischen Management

Non-Profit-Organisationen: Vom Controlling zum Strategischen Management Non-Profit-Organisationen: Vom Controlling zum Strategischen Management Einordnung der Begriffe Business Intelligence Strategic Association Management Controlling and Data Warehousing Data Mining, Knowledge

Mehr

Data Warehousing in der Lehre

Data Warehousing in der Lehre Data Warehousing in der Lehre Prof. Dr.-Ing. Tomas Benz Dipl.-Inform. Med. Alexander Roth Agenda Vorstellung Fachhochschule Heilbronn Vorstellung i3g Vorlesungen im DWH-Bereich Seminare Projekte Studien-

Mehr

Technische Integration des Informationssystems über SAP (1/6)

Technische Integration des Informationssystems über SAP (1/6) Technische Integration des Informationssystems über SAP (1/6) Software Systemsoftware Anwendungssoftware Betriebssysteme Standardsoftware Individualsoftware Übersetzungsprogramme Dienstprogramme andere

Mehr

Mehr Visibility. Wie Sie täglich mehr aus Ihren Daten machen.

Mehr Visibility. Wie Sie täglich mehr aus Ihren Daten machen. Mehr Visibility. Wie Sie täglich mehr aus Ihren Daten machen. Definitionen Business Intelligence (BI) bezeichnet Verfahren, Prozesse und Techniken zur systematischen Analyse von Daten in elektronischer

Mehr

Richtige und schnelle Entscheidungen trotz sich änderner Anforderungen mit Microsoft Dynamics AX und Microsoft SQL Server Reporting Services

Richtige und schnelle Entscheidungen trotz sich änderner Anforderungen mit Microsoft Dynamics AX und Microsoft SQL Server Reporting Services Launch Microsoft Dynamics AX 4.0 Richtige und schnelle Entscheidungen trotz sich änderner Anforderungen mit Microsoft Dynamics AX und Microsoft SQL Server Reporting Services Sonia Al-Kass Partner Technical

Mehr

Linked Open Data (LOD) in der Landwirtschaft. Workshop 23.04.2013-24.04.2013 Anwendungsbeispiele nach Themen I

Linked Open Data (LOD) in der Landwirtschaft. Workshop 23.04.2013-24.04.2013 Anwendungsbeispiele nach Themen I Linked Open Data (LOD) in der Landwirtschaft Workshop 23.04.2013-24.04.2013 Anwendungsbeispiele nach Themen I zentrum der BLE (Qualitative Aspekte in Bezug auf linked Data) Dr. Maul 1 Ziele des zentrums

Mehr

Business Intelligence

Business Intelligence Business Intelligence Aktuelle Anwendungen & Zukunftsperspektiven Dr. Tobias Günther Themenübersicht Aktuelle Beispiele aus der Praxis Definition Historische Entwicklung Vorgehensmodelle und Phasen Infrastruktur

Mehr

Kapitel II. Datenbereitstellung 2004 AIFB / FZI 1. Vorlesung Knowledge Discovery

Kapitel II. Datenbereitstellung 2004 AIFB / FZI 1. Vorlesung Knowledge Discovery Kapitel II Datenbereitstellung 2004 AIFB / FZI 1 II. Datenbereitstellung 2004 AIFB / FZI 2 II. Datenbereitstellung Collect Initial Data identify relevant attributes identify inconsistencies between sources

Mehr

Logische Modellierung von Data Warehouses

Logische Modellierung von Data Warehouses Logische Modellierung von Data Warehouses Vertiefungsarbeit von Karin Schäuble Gliederung. Einführung. Abgrenzung und Grundlagen. Anforderungen. Logische Modellierung. Methoden.. Star Schema.. Galaxy-Schema..

Mehr

Individuelle Live Dashboards mit Detaildurchgriff. CP-Cockpit ist ein Modul der Corporate Planning Suite.

Individuelle Live Dashboards mit Detaildurchgriff. CP-Cockpit ist ein Modul der Corporate Planning Suite. Individuelle Live Dashboards mit Detaildurchgriff CP-Cockpit ist ein Modul der Corporate Planning Suite. InDIvIDueLLe LIve DaShboarDS Individuelle Live Dashboards. In Form von Livedashboards werden alle

Mehr

Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr

Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr Copyright 2007 Infor. Alle Rechte vorbehalten. Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr Hubertus Thoma Presales Consultant PM Schalten Sie bitte während

Mehr

gallestro BPM - weit mehr als malen...

gallestro BPM - weit mehr als malen... Ob gallestro das richtige Tool für Ihr Unternehmen ist, können wir ohne weitere rmationen nicht beurteilen und lassen hier die Frage offen. In dieser rmationsreihe möchten wir Ihre Entscheidungsfindung

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

Summary... 4. Keywords... 4. Granularität der Daten... 5. Mit Vorverdichtung hochaggregierte Daten bereithalten... 6

Summary... 4. Keywords... 4. Granularität der Daten... 5. Mit Vorverdichtung hochaggregierte Daten bereithalten... 6 Inhaltsverzeichnis Summary... 4 Keywords... 4 Granularität der Daten... 5 Mit Vorverdichtung hochaggregierte Daten bereithalten... 6 Partitionierung der Datenbestände... 7 Vergrößerter Aktionsradius von

Mehr

Business Intelligence Funktionsweise und technische Grundlagen

Business Intelligence Funktionsweise und technische Grundlagen Business Intelligence Funktionsweise und technische Grundlagen Whitepaper 1/5 HINTERGRUND Die richtige Information zur richtigen Zeit abrufen zu können kann für ein Unternehmen entscheidend sein. Doch

Mehr

SOA und Business Intelligence. Whitepaper von Thomas Volz

SOA und Business Intelligence. Whitepaper von Thomas Volz SOA und Business Intelligence Whitepaper von Thomas Volz I N H A LT 1 Zielsetzung dieses Whitepapers 2 Was ist SOA? 3 Warum ist das gerade jetzt ein Thema? 3 Was ist der Nutzen für den BI-Anwender? 4 Wird

Mehr

Mission. Vortragender: Dipl. Inform. Reinhard IRSIGLER

Mission. Vortragender: Dipl. Inform. Reinhard IRSIGLER Mission Vortragender: Dipl. Inform. Reinhard IRSIGLER INTERVISTA Mission: Corporate Software: umfassende, das Kerngeschäft von großen Unternehmen tragende, dedizierte IT-Systeme, Streamlining und Realisierung

Mehr

REAL-TIME DATA WAREHOUSING

REAL-TIME DATA WAREHOUSING REAL-TIME DATA WAREHOUSING Lisa Wenige Seminarvortrag Data Warehousing und Analytische Datenbanken Friedrich-Schiller-Universität Jena - 19.01.12 Lisa Wenige 19.01.2012 2 Agenda 1. Motivation 2. Begriffsbestimmung

Mehr

Anwendertage WDV2012

Anwendertage WDV2012 Anwendertage WDV2012 28.02.-01.03.2013 in Pferdingsleben Thema: Business Intelligence mit Excel 2010 Referent: Dipl. Wirtsch.-Inf. Torsten Kühn PRAXIS-Consultant Alles ist möglich! 1 Torsten Kühn Dipl.

Mehr

Worum geht es beim CRM? Geben Sie den Inhalt des nachstehenden Textes mit eigenen Worten wieder.

Worum geht es beim CRM? Geben Sie den Inhalt des nachstehenden Textes mit eigenen Worten wieder. Präsenzübung Service 2.1. CRM Customer-Relationship Management a) Anliegen des CRM Worum geht es beim CRM? Geben Sie den Inhalt des nachstehenden Textes mit eigenen Worten wieder. CRM, auch Beziehungsmanagement

Mehr

Eignung unterschiedlicher Faktenmodellierungen in Data Warehouse-Systemen

Eignung unterschiedlicher Faktenmodellierungen in Data Warehouse-Systemen Christoph Arnold (B. Sc.) Prof. Dr. Harald Ritz Eignung unterschiedlicher Faktenmodellierungen in Data Warehouse-Systemen AKWI-Tagung, 17.09.2012, Hochschule Pforzheim Christoph Arnold, Prof. Dr. Harald

Mehr

Data Warehousing. Kapitel 1: Data-Warehousing-Architektur. Folien teilweise übernommen von Matthias Gimbel

Data Warehousing. Kapitel 1: Data-Warehousing-Architektur. Folien teilweise übernommen von Matthias Gimbel Data Warehousing Kapitel 1: Data-Warehousing-Architektur Folien teilweise übernommen von Matthias Gimbel 2 Analyse von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser Umsatz im Vergleich

Mehr

Einführung in die Wirtschaftsinformatik

Einführung in die Wirtschaftsinformatik NWB-Studienbücher Wirtschaftsinformatik Herausgegeben von Professor Dr. Jochen Schwarze Einführung in die Wirtschaftsinformatik Von Professor Dr. Jochen Schwarze 5., völlig überarbeitete Auflage Verlag

Mehr