6.4 Poisson-Verteilung

Größe: px
Ab Seite anzeigen:

Download "6.4 Poisson-Verteilung"

Transkript

1 6.4 Poisson-Verteilung Sei {N t } t T eine Menge von Zufallsvariablen (ein stochastischer Prozeß ) mit folgenden Eigenschaften: V1: Zuwächse sind unabhängig, dh. die Zufallsvariablen N t+h N t und N t N t h sind unabhängig a V2: es ist egal wo wir Zeitintervall betrachten, dh. N t+h und N t haben dieselbe Verteilung V3: Wkt., daß mindestens ein Ereignis in der Zeit h eintritt, z.b. ein Kunde ankommt. p(h) = a h + o(h), a > 0,h 0 V4: Wkt. für 2 Ereignisse in der Zeit h: o(h) 213 W.Kössler, Humboldt-Universität zu Berlin

2 Anmerkung: Zwei Zufallsvariablen X und Y heißen unabhängig, falls A,B B; P(X A,Y B) = P(X A) P(X B) 214 W.Kössler, Humboldt-Universität zu Berlin

3 Frage: Wkt. daß bis zum Zeitpunkt t genau k Ereignisse eintreten? (eingetroffene Kunden, zerfallene Teilchen) P k (t) := P(N t = k), P k (t) = 0 für k < 0 Offenbar: p(h) = k=1 P k (h) 1 = k=0 1Ereignis tritt ein P k (t) 215 W.Kössler, Humboldt-Universität zu Berlin

4 V 3 V 4 P 0 (h) = 1 p(h) = 1 ah + o(h) P k (h) = o(h), (h 0) k=2 216 W.Kössler, Humboldt-Universität zu Berlin

5 1. Schritt: Bestimmen P 0 (t). P 0 (t + h) = P(N t = 0,N t+h N t = 0) = P 0 (t)p(n t+h N t = 0) wegen V1 = P 0 (t)p(n h N 0 = 0) wegen V2 = P 0 (t)p 0 (h) wegen N 0 = 0 = P 0 (t)(1 p(h)) = P 0 (t)(1 ah + o(h)) wegen V4 Nacheinander folgt: P 0 (t + h) P 0 (t) h = P 0 (t)( a + o(h) h ) 217 W.Kössler, Humboldt-Universität zu Berlin

6 P 0(t) = ap 0 (t) P 0 (t) = ce at Wegen P 0 (0) = 1 folgt: c = 1 und P 0 (t) = e at 218 W.Kössler, Humboldt-Universität zu Berlin

7 2. Schritt: Bestimmen P k (t). Zerlegen das Ereignis {N t+h = k} in disjunkte Teilereignisse. {N t+h = k} = {N t = 0,N t+h N t = k} {N t = 1,N t+h N t = k 1} {N t = 2,N t+h N t = k 2}... {N t = k,n t+h N t = 0} 219 W.Kössler, Humboldt-Universität zu Berlin

8 P k (t + h) = = = k P(N t = k j,n t+h N t = j) j=0 k P k j (t)p(n t+h N t = j) }{{} =P(N h N 0 =j) k P k j (t)p j (h) wegen V2 j=0 j=0 = P k (t)p 0 (h) + P k 1 (t)p 1 (h) + wegen V1 k P k j (t)p j (h) j=2 220 W.Kössler, Humboldt-Universität zu Berlin

9 P 1 (h) = P k j (t)p j (h) j=2 Nacheinander folgt: P j (h) j=1 = p(h) + o(h) = ah + o(h) P j (h) j=2 P j (h) = o(h) j=2 wegen V2 P k (t + h) P k (t) = (P 0 (h) 1)P k (t) + P k 1 (t)p 1 (h) + o(h) P k (t + h) P k (t) h = ahp k (t) + ahp k 1 (t) + o(h) = ap k (t) + ap k 1 (t) + o(h) h 221 W.Kössler, Humboldt-Universität zu Berlin

10 P k(t) = ap k (t) + ap k 1 (t), P k (0) = 0 Q k (t) := P k (t)e at Q k(t) = P k(t)e at + P k (t)ae at Q k (t) = eat ( ap k (t) + ap k 1 (t) +ap }{{} k (t)) P k (t) = aq k 1 (t) Q 1(t) = aq 0 (t) = ae at e at = a Q 1 (t) = at Q 2(t) = aq 1 (t) = a 2 t Q 2 (t) = a2 t W.Kössler, Humboldt-Universität zu Berlin

11 Durch vollständige Induktion: Q k (t) = ak t k k! P k (t) = ak t k e at k! Poisson-Verteilung mit Parameter λ = at. 223 W.Kössler, Humboldt-Universität zu Berlin

12 Programme: Descr_Binomial_neu.sas Descr_Poisson.sas Descr_Geometr.sas Descr_Hypergeom.sas Bem: In den Wahrscheinlichkeiten können Parameter auftreten, die in der Regel unbekannt sind. Die Parameter sind anhand der Beobachtungen (der Daten) zu bestimmen/zu schätzen! Aufgabe der Statistik 224 W.Kössler, Humboldt-Universität zu Berlin

13 7 Charakteristika von Verteilungsfunktionen 7.1 Der Erwartungswert Bsp. Eine Münze wird 3 mal geworfen. Wie oft können wir erwarten, daß Blatt oben liegt? Wie oft wird im Mittel Blatt oben liegen? X : /8 3/8 3/8 1/8 Erwartungswert: = 12 8 = W.Kössler, Humboldt-Universität zu Berlin

14 D.h. bei 10maliger Durchführung des Experiments können wir im Mittel mit 15mal Blatt rechnen. 226 W.Kössler, Humboldt-Universität zu Berlin

15 Def. 19 : Sei X diskrete Zufallsvariable, X : x 1... x n... p 1... p n... EX = i=1 p i x i heißt Erwartungswert von X. 227 W.Kössler, Humboldt-Universität zu Berlin

16 Bsp.: a) X Poisson(λ) X : p 0 p 1 p 2 p 3... p i = λi i! e λ EX = i=0 p i i = i=0 λ i i! e λ i = λ λ i 1 (i 1)! i=1 }{{} e λ e λ = λ. z.b. mittlere Ankunftsrate. 228 W.Kössler, Humboldt-Universität zu Berlin

17 b) X B(n,p) n ( ) n EX = k p k (1 p) n k k k=0 n n! = p (k 1)!(n k)! pk 1 (1 p) n k k=1 = p n = p n = n p. n ( ) n 1 p k 1 (1 p) n k k 1 ( n 1 k=1 n 1 i=0 i ) p i (1 p) n 1 i, k = i W.Kössler, Humboldt-Universität zu Berlin

18 c) X Geo(p) k... X : p pq pq 2... pq k 1... q = 1 p EX = k=0 x k p k = k=1 kpq k 1 = p k=1 kq k 1 = p (1 q) 2 = 1 p. Beweis des vorletzten Gleichheitszeichens: a) durch vollst. Induktion b) Differenzieren der geometrischen Reihe 230 W.Kössler, Humboldt-Universität zu Berlin

Werkzeuge der empirischen Forschung

Werkzeuge der empirischen Forschung Wolfgang Kössler Institut für Informatik, Humboldt-Universität zu Berlin SS2008 18. April 2008 Übersicht 1 2 Dateneingabe und Transformation Allgemeine Eingabe über die Eingabe durch externes File Wichtige

Mehr

5.3 Diskrete zufällige Variablen

5.3 Diskrete zufällige Variablen 5.3 Diskrete zufällige Variablen X(ω) { x 1,x 2,x 3,... } X : x 1 x 2 x 3 x n p 1 p 2 p 3 p n p i = P(X = x i ) > 0, i = 1, 2, 3,... Die Funktion f(x i ) = p i heißt Wahrscheinlichkeitsfunktion. i=1 p

Mehr

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt.

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt. Normalverteilung Diskrete Stetige f(x) = 1 2πσ 2 e 1 2 ((x µ)2 σ 2 ) Gauß 91 / 169 Normalverteilung Diskrete Stetige Satz: f aus (1) ist Dichte. Beweis: 1. f(x) 0 x R und σ > 0. 2. bleibt z.z. lim F(x)

Mehr

13 Grenzwertsätze Das Gesetz der großen Zahlen

13 Grenzwertsätze Das Gesetz der großen Zahlen 13 Grenzwertsätze 13.1 Das Gesetz der großen Zahlen Der Erwartungswert einer zufälligen Variablen X ist in der Praxis meist nicht bekannt. Um ihn zu bestimmen, sammelt man Beobachtungen X 1,X 2,...,X n

Mehr

3.4 Anwendung bedingter Wahrscheinlichkeiten

3.4 Anwendung bedingter Wahrscheinlichkeiten 3.4 Anwendung bedingter Wahrscheinlichkeiten Bsp. 23 Betrachtet werden mehrere Kanonen. Für i N bezeichne A i das Ereignis, daß Kanone i einen Schuß abgibt. A sei das Ereignis, daß ein Treffer erzielt

Mehr

4.2 Moment und Varianz

4.2 Moment und Varianz 4.2 Moment und Varianz Def. 2.10 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: EX p

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Diskrete Verteilungen

Diskrete Verteilungen Diskrete Verteilungen Bernoulli-Verteilung: X Bernoulli(p) Symbol für «verteilt wie» «Eperiment» mit zwei Ausgängen: «Erfolg» ( 1) oder «Misserfolg» ( ). Die Erfolgswahrscheinlichkeit sei p. Wertebereich

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen. Bsp (3-maliges Werfen einer Münze) Menge der Elementarereignisse:

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen. Bsp (3-maliges Werfen einer Münze) Menge der Elementarereignisse: 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen Bsp. 1.19 (3-maliges Werfen einer Münze) Menge der Elementarereignisse: Ω {zzz, zzw,zwz,wzz,zww,wzw,wwz,www}. Dabei gilt: Ω 2 3 8 N. Wir definieren

Mehr

Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen

Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen Markus Höchstötter Lehrstuhl

Mehr

7.4 Charakteristische Funktionen

7.4 Charakteristische Funktionen 7.4 Charakteristische Funktionen Def. 25 Sei X Zufallsvariable mit Verteilungsfunktion F X und Dichte f X (falls X stetig) oder Wkt.funktion p i (falls X diskret). Die Funktion φ X (t) := Ee itx = eitx

Mehr

Wie groß ist die Wahrscheinlichkeit Pr[X > y + x X > x]? Da bei den ersten x Versuchen kein Erfolg eintrat, stellen wir uns vor, dass das

Wie groß ist die Wahrscheinlichkeit Pr[X > y + x X > x]? Da bei den ersten x Versuchen kein Erfolg eintrat, stellen wir uns vor, dass das Sei X geometrisch verteilt mit Erfolgswahrscheinlichkeit p. Dann ist Pr[X = k] die Wahrscheinlichkeit, dass wir bei einem binären Experiment mit Erfolgswahrscheinlichkeit p genau in der k-ten unabhängigen

Mehr

Diskrete Verteilungen

Diskrete Verteilungen Diskrete Verteilungen Bernoulli-Verteilung: X Bernoulli( ) Symbol für «verteilt wie» «Eperiment» mit zwei Ausgängen: «Erfolg» (X 1) oder «Misserfolg» (X ). Die Erfolgswahrscheinlichkeit sei. Wertebereich:

Mehr

Bem. 6 Die charakterische Funktion existiert.

Bem. 6 Die charakterische Funktion existiert. 4.4 Charakteristische Funktionen Def. 2.14 Sei X Zufallsvariable mit Verteilungsfunktion F X und Dichte f X (falls X stetig) oder Wkt.funktion p i (falls X diskret). Die Funktion φ X (t) := Ee itx = eitx

Mehr

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können.

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. 2 Zufallsvariable 2.1 Einführung Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. Eine Zufallsvariable X ordnet jedem elementaren Versuchsausgang

Mehr

5 Zufallsvariablen, Grundbegriffe

5 Zufallsvariablen, Grundbegriffe II. Zufallsvariablen 5 Zufallsvariablen, Grundbegriffe Def. 12 Es seien (Ω 1, E 1,P 1 ) und (Ω 2, E 2,P 2 ) Wahrscheinlichkeitsräume. Eine Abbildung X : Ω 1 Ω 2 heißt E 1 E 2 meßbar, falls für alle Ereignisse

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Unabhängigkeit Prof. Dr. Achim Klenke http://www.aklenke.de 6. Vorlesung: 02.12.2011 1/30 Inhalt 1 Wahrscheinlichkeit 2 2/30 Wahrscheinlichkeit

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen 3.1 Einführung Bsp. 19 (3-maliges Werfen einer Münze) Menge der Elementarereignisse: Ω {zzz,zzw,zwz,wzz,zww,wzw,wwz,www}. Ω 2 3 8 N Wir definieren

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 30. April 2018 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 4 Version: 24.

Mehr

Dichte der geometrischen Verteilung

Dichte der geometrischen Verteilung 0,8 Ô ¼ 0,8 Ô ¼ 0,6 0,6 0,4 0,4 0,2 0,2 0,0 1 2 3 4 5 6 7 8 9 10 0,0 1 2 3 4 5 6 7 8 9 10 0,8 Ô ¼ 0,8 Ô ¼ ¾ 0,6 0,6 0,4 0,4 0,2 0,2 0,0 0,0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 Dichte der geometrischen

Mehr

8 Die Exponentialverteilung

8 Die Exponentialverteilung 8 Die Exponentialverteilung 8.1 Einführung Modelle Zuverlässigkeitsmodelle Lebensdauermodelle Bedienungsmodelle. 277 W.Kössler, Humboldt-Universität zu Berlin Def. 26 (Exponentialverteilung) Sei X eine

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Embrechts ETH Zürich Sommer 2015 Wahrscheinlichkeit und Statistik BSc D-INFK Name: Vorname: Stud. Nr.: Das Folgende bitte nicht ausfüllen! Aufg. Summe Kontr. Pkte.-Max. 1 10 2 10 3 10 4 10

Mehr

Stochastik Wiederholung von Teil 1

Stochastik Wiederholung von Teil 1 Stochastik Wiederholung von Teil 1 Andrej Depperschmidt Sommersemester 2016 Wahrscheinlichkeitsraum Definition Das Tripple (Ω, A, P) heißt Wahrscheinlichkeitsraum, falls gilt: (i) A ist eine σ-algebra,

Mehr

Exponentialverteilung

Exponentialverteilung Exponentialverteilung Dauer von kontinuierlichen Vorgängen (Wartezeiten; Funktionszeiten technischer Geräte) Grenzübergang von der geometrischen Verteilung Pro Zeiteinheit sei die Eintrittswahrscheinlichkeit

Mehr

Zeitstetige Markov-Prozesse: Einführung und Beispiele

Zeitstetige Markov-Prozesse: Einführung und Beispiele Zeitstetige Markov-Prozesse: Einführung und Beispiele Simone Wielart 08.12.10 Inhalt Q-Matrizen und ihre Exponentiale Inhalt Q-Matrizen und ihre Exponentiale Zeitstetige stochastische Prozesse Inhalt Q-Matrizen

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Unabhängigkeit von Ereignissen A, B unabhängig:

Mehr

Statistik für Ingenieure Vorlesung 4

Statistik für Ingenieure Vorlesung 4 Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 21. November 2017 3.3 Wichtige diskrete Wahrscheinlichkeitsverteilungen 3.3.1 Diskrete

Mehr

Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}.

Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}. Binomialverteilung Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder nicht. X = Häufigkeit, mit

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de lordsofthebortz.de lordsofthebortz.de/g+

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

Stochastik und Statistik für Ingenieure Vorlesung 4

Stochastik und Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 4 30. Oktober 2012 Quantile einer stetigen Zufallsgröße Die reelle Zahl

Mehr

Satz 104 (Skalierung exponentialverteilter Variablen)

Satz 104 (Skalierung exponentialverteilter Variablen) 2.3.1 Eigenschaften der Exponentialverteilung Satz 104 (Skalierung exponentialverteilter Variablen) Sei X eine exponentialverteilte Zufallsvariable mit dem Parameter λ. Für a > 0 ist die Zufallsvariable

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen 3.1 Einführung Bsp. 19 (3-maliges Werfen einer Münze) Menge der Elementarereignisse: Ω = {zzz,zzw,zwz,wzz,zww,wzw,wwz,www}. Ω = 2 3 = 8 = N

Mehr

8.3 Zuverlässigkeitsmodelle

8.3 Zuverlässigkeitsmodelle 8.3 Zuverlässigkeitsmodelle Def. 29 (Zuverlässigkeit) Die Zuverlässigkeit eines Systems ζ ist die Wahrscheinlichkeit, dass das System zum Zeitpunkt t intakt ist: Rel(ζ) = P(X t). Annahme: Das System besteht

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2016 Prof. Dr. Stefan Etschberger Hochschule Augsburg Zufallsvariablen Beschreibung von Ereignissen

Mehr

Diskrete Strukturen II

Diskrete Strukturen II SS 2004 Diskrete Strukturen II Ernst W. Mayr Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2004ss/ds/index.html.de 18. Juni 2004 Exponentialverteilung als Grenzwert der geometrischen

Mehr

Diskrete Verteilungen

Diskrete Verteilungen KAPITEL 6 Disrete Verteilungen Nun werden wir verschiedene Beispiele von disreten Zufallsvariablen betrachten. 1. Gleichverteilung Definition 6.1. Eine Zufallsvariable X : Ω R heißt gleichverteilt (oder

Mehr

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7.1 Die Laplace-Verteilung Sei X eine gleich verteilte Zufallsvariable mit den Werten in der Menge Ω X = {x i R : i = 1,...,n}, d.h. f (x i = 1

Mehr

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec Binomialverteilung Jakob Bernoulli (1654-1705) Ars Conjectandi Klassisches Verteilungsmodell für die Berechnung der Wahrscheinlichkeit für die Häufigkeit des Eintretens von Ereignissen in bestimmten noch

Mehr

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Vorlesung Donnerstag, 10:00-11:30 Uhr M629 Freitag, 8:15-9:45 Uhr R513

Vorlesung Donnerstag, 10:00-11:30 Uhr M629 Freitag, 8:15-9:45 Uhr R513 Vorlesung Donnerstag, 10:00-11:30 Uhr M629 Freitag, 8:15-9:45 Uhr R513 Übungen Mo 18:45-20:15 M630 Alex. Fiedler/Alex. Haas Di 18:45-20:15 M631 Alex. Fiedler/Alex. Haas Mi 17:00-18:30 M631 Kathy Su/Antonia

Mehr

Grundgesamtheit, Merkmale, Stichprobe. Eigenschaften der Stichprobe. Klasseneinteilung, Histogramm. Arithmetisches Mittel, empirische Varianz

Grundgesamtheit, Merkmale, Stichprobe. Eigenschaften der Stichprobe. Klasseneinteilung, Histogramm. Arithmetisches Mittel, empirische Varianz - 1 - Grundgesamtheit, Merkmale, Stichprobe Dimension, Umfang Skalierung Eigenschaften der Stichprobe kennzeichnende Größen Eigenschaften der Stichprobe kennzeichnende Größen Punktediagramm, Regressionsgerade,

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

TU DORTMUND Sommersemester 2018

TU DORTMUND Sommersemester 2018 Fakultät Statistik. April 08 Blatt Aufgabe.: Wir betrachten das Zufallsexperiment gleichzeitiges Werfen zweier nicht unterscheidbarer Würfel. Sei A das Ereignis, dass die Augensumme beider Würfel ungerade

Mehr

10 Transformation von Zufallsvariablen

10 Transformation von Zufallsvariablen 10 Transformation von Zufallsvariablen Sei X : Ω R eine Zufallsvariable mit Verteilungsfunktion F X (x) = P(X < x). Wir betrachten eine Funktion g: R R und sei Zufallsvariable Y : Ω R mit Y = g(x). Y :

Mehr

12 Ungleichungen. Wir beginnen mit einer einfachen Ungleichung über die Varianz. Satz 35 Es sei X eine zufällige Variable.

12 Ungleichungen. Wir beginnen mit einer einfachen Ungleichung über die Varianz. Satz 35 Es sei X eine zufällige Variable. 12 Ungleichungen Wir beginnen mit einer einfachen Ungleichung über die Varianz. Satz 35 Es sei X eine zufällige Variable. Dann gilt: min c R E(X c)2 = Var X. Beweis: Für alle reellen Zahlen c R gilt: E(X

Mehr

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten Kapitel 2 Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten 2.1 Stochastische Unabhängigkeit von Ereignissen Gegeben sei ein W-Raum (Ω, C, P. Der Begriff der stochastischen Unabhängigkeit von

Mehr

1.5.4 Quantile und Modi. Bem [Quantil, Modus]

1.5.4 Quantile und Modi. Bem [Quantil, Modus] 1.5.4 Quantile und Modi 1.5 Erwartungswert und Varianz Bem. 1.73. [Quantil, Modus] und Vertei- Analog zu Statistik I kann man auch Quantile und Modi definieren. Gegeben sei eine Zufallsvariable X mit Wahrscheinlichkeitsverteilung

Mehr

Zufallsvariablen rekapituliert

Zufallsvariablen rekapituliert Zufallsvariablen rekapituliert Wolfgang Konen TH Köln, Campus Gummersbach April 2016 Wolfgang Konen (TH Köln) Zufallsvariablen April 2016 1 / 11 1 Einleitung 2 Zufallsvariablen 3 Linearität und Varianz

Mehr

Vorlesung 9b. Bedingte Verteilung, bedingte Wahrscheinlichkeiten

Vorlesung 9b. Bedingte Verteilung, bedingte Wahrscheinlichkeiten Vorlesung 9b Bedingte Verteilung, bedingte Wahrscheinlichkeiten 1 1. Zerlegung der gemeinsamen Verteilung (Buch S. 111) 2 Bisher legten wir das Hauptaugenmerk auf den Aufbau der gemeinsamen Verteilung

Mehr

Zufallsvariablen rekapituliert

Zufallsvariablen rekapituliert Zufallsvariablen rekapituliert Wolfgang Konen TH Köln, Campus Gummersbach April 2016 Mai 2017 Wolfgang Konen (TH Köln) Zufallsvariablen April 2016 Mai 2017 1 / 12 1 Einleitung 2 Zufallsvariablen 3 Linearität

Mehr

Denition 57 Eine geometrisch verteilte Zufallsvariable X mit Parameter (Erfolgswahrscheinlichkeit) p 2 (0; 1] und q := 1 p hat die Dichte

Denition 57 Eine geometrisch verteilte Zufallsvariable X mit Parameter (Erfolgswahrscheinlichkeit) p 2 (0; 1] und q := 1 p hat die Dichte 5.3 Geometrische Verteilung Man betrachte ein Experiment, das so lange wiederholt wird, bis Erfolg eintritt. Gelingt ein einzelner Versuch mit Wahrscheinlichkeit p, so ist die Anzahl der Versuche bis zum

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

1 1 e x2 =2 d x 1. e (x2 +y 2 )=2 d x d y : Wir gehen nun zu Polarkoordinaten uber und setzen x := r cos und y := r sin.

1 1 e x2 =2 d x 1. e (x2 +y 2 )=2 d x d y : Wir gehen nun zu Polarkoordinaten uber und setzen x := r cos und y := r sin. Lemma 92 Beweis: Wir berechnen zunachst I 2 : I 2 = Z 1 I := e x2 =2 d x p = 2: 1 Z 1 1 Z 1 Z 1 = 1 1 Z 1 e x2 =2 d x 1 e (x2 +y 2 )=2 d x d y : e y2 =2 d y Wir gehen nun zu Polarkoordinaten uber und setzen

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/52 Biostatistik, Sommer 2017 Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 02.06.2017 2/52 Inhalt 1 Wahrscheinlichkeit Bayes sche Formel 2 Diskrete Stetige 3/52 Wahrscheinlichkeit Bayes

Mehr

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück STOCHASTISCHE UNABHÄNGIGKEIT Annika Pohlmann Philipp Oel Wilhelm Dück 1 GLIEDERUNG 1) Bedingte Wahrscheinlichkeiten 2) Unabhängigkeit für mehr als zwei Ereignisse 3) Unabhängigkeit für Zufallsvariable

Mehr

DWT 3.3 Warteprobleme mit der Exponentialverteilung 275/467 Ernst W. Mayr

DWT 3.3 Warteprobleme mit der Exponentialverteilung 275/467 Ernst W. Mayr Poisson-Prozess Wir hatten bei der Diskussion der geometrischen und der Poisson-Verteilung festgestellt: Wenn der zeitliche Abstand der Treffer geometrisch verteilt ist, so ist ihre Anzahl in einer festen

Mehr

Dichte der geometrischen Verteilung

Dichte der geometrischen Verteilung 0,8 Ô ¼ 0,8 Ô ¼ 0,6 0,6 0,4 0,4 0,2 0,2 0,0 1 2 3 4 5 6 7 8 9 10 0,0 1 2 3 4 5 6 7 8 9 10 0,8 Ô ¼ 0,8 Ô ¼ ¾ 0,6 0,6 0,4 0,4 0,2 0,2 0,0 1 2 3 4 5 6 7 8 9 10 0,0 1 2 3 4 5 6 7 8 9 10 Dichte der geometrischen

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 29. Oktober 2007 1. Statistik 1.1 Wahrscheinlichkeit Pragmatisch: p(e) = n(e) N für N sehr groß Kombination von Wahrscheinlichkeiten p(a oder B) =

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 17. November 2010 1 Gesetze Das Gesetz der seltenen Ereignisse Das schwache Gesetz der großen Zahl 2 Verteilungsfunktionen

Mehr

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ),

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ), 2.5 Parameter einer Verteilung 2.5. Erwartungswert X eine Zufallsvariable, g : R R stetig. Der Erwartungswert E[g(X)] von g(x) ist definiert durch: E[g(X)] := k g(x k )w(x = x k ), falls X diskret ist

Mehr

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung Heute Die Binomialverteilung Poissonverteilung Approximation der Binomialverteilung durch die Normalverteilung Arbeiten mit Wahrscheinlichkeitsverteilungen Die Binomialverteilung Man werfe eine Münze n

Mehr

Zufallsvariable: Verteilungen & Kennzahlen

Zufallsvariable: Verteilungen & Kennzahlen Mathematik II für Biologen 12. Juni 2015 Zufallsvariable Kennzahlen: Erwartungswert Kennzahlen: Varianz Kennzahlen: Erwartungstreue Verteilungsfunktion Beispiel: Exponentialverteilung Kennzahlen: Erwartungswert

Mehr

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass f Z (z) = Pr[Z = z] = x W X Pr[X + Y = z X = x] Pr[X = x] = x W X Pr[Y = z x] Pr[X = x] = x W X f X (x) f Y (z x). Den Ausdruck

Mehr

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit Übung 2 24..23 Ü b u n g 2 Aufgabe Die Poissonverteilung P(λ) hat die Wahrscheinlichkeitsfunktion p(x) = λx e λ (x ) x! Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 8. Vorlesung - 2017 Bemerkung: Sei X = (X 1,..., X n ) Zufallsvektor. Der n dimensionale Vektor ( ) E(X ) = E(X 1 ),..., E(X n ) ist der Erwartungswert des Zufallsvektors X. Beispiel: Seien X, Y N (0,

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 8. Vorlesung Pseudozufallszahlen sind, wie der Name schon sagt, keine echten Zufallszahlen, sondern werden durch Generatoren erzeugt. Als Pseudozufallszahlen bezeichnet man Zahlenfolgen die durch einen

Mehr

Satz 105 (Gedächtnislosigkeit) Beweis: Sei X exponentialverteilt mit Parameter λ. Dann gilt Pr[X > x + y X > y] = Pr[X > y] Pr[X > x + y] = Pr[X > y]

Satz 105 (Gedächtnislosigkeit) Beweis: Sei X exponentialverteilt mit Parameter λ. Dann gilt Pr[X > x + y X > y] = Pr[X > y] Pr[X > x + y] = Pr[X > y] Gedächtnislosigkeit Satz 105 (Gedächtnislosigkeit) Eine (positive) kontinuierliche Zufallsvariable X mit Wertebereich R + ist genau dann exponentialverteilt, wenn für alle x, y > 0 gilt, dass Pr[X > x

Mehr

1 Stochastische Konvergenz 2

1 Stochastische Konvergenz 2 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Bsp. 120 Ein-Prozessorsystem mit mehreren E/A-Einheiten.

Bsp. 120 Ein-Prozessorsystem mit mehreren E/A-Einheiten. Bsp. 20 Ein-Prozessorsystem mit mehreren E/A-Einheiten. Ein Programm. das sich in der CPU befindet, geht mit Wkt. q i in die I/O-Einheit i über, oder endet (mit Wkt. q 0 ) und macht Platz für ein neues

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

(8 + 2 Punkte) = = 0.75

(8 + 2 Punkte) = = 0.75 Aufgabe 1 (8 + 2 Punkte) Von 20 Teilnehmern einer Bergwanderung geben 8 Personen an Knieschmerzen zu haben. 6 Teilnehmer leiden an Sonnenbrand. 8 Teilnehmer blieben unversehrt. a) Wie groß ist die Wahrscheinlichkeit,

Mehr

f(x) = P (X = x) = 0, sonst heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X P o(λ). Es gilt x x! 1 Wahrscheinlichkeitsrechnung 212

f(x) = P (X = x) = 0, sonst heißt Poisson-verteilt mit Parameter (oder Rate) λ > 0, kurz X P o(λ). Es gilt x x! 1 Wahrscheinlichkeitsrechnung 212 1.6.2 Poisson Verteilung Eine weitere wichtige diskrete Verteilung ist die Poisson-Verteilung. Sie modelliert die Anzahl (eher seltener) Ereignisse in einem Zeitintervall (Unfälle, Todesfälle; Sozialkontakte,

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Lösungen Wahrscheinlichkeitstheorie

Lösungen Wahrscheinlichkeitstheorie Lösungen Wahrscheinlichkeitstheorie Serie 6 Aufgabe 1 (stochastische Unabhängigkeit). Für die Ereignisse A, B und C sind folgende Wahrscheinlichkeiten bekannt: P (A) = 0, 2; P (B) = 0, 6; P (A \ B) = 0,

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Klausur,,Algorithmische Mathematik II

Klausur,,Algorithmische Mathematik II Institut für angewandte Mathematik Sommersemester 017 Andreas Eberle, Matthias Erbar / Behrend Heeren Klausur,,Algorithmische Mathematik II Musterlösung 1 (Unabhängige Zufallsvariablen) a) Wir bezeichnen

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 16: Woche vom Übungsaufgaben 9. Übung SS 16: Woche vom 5. 6. 10. 6. 2016 Stochastik III: Totale Wkt., S.v.Bayes, Diskrete ZG Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

13 Grenzwertsätze Das Gesetz der großen Zahlen

13 Grenzwertsätze Das Gesetz der großen Zahlen 13 Grenzwertsätze 13.1 Das Gesetz der großen Zahlen Der Erwartungswert einer zufälligen Variablen X ist in der Praxis meist nicht bekannt. Um ihn zu bestimmen, sammelt man Beobachtungen X 1,X 2,...,X n

Mehr

Vorlesung 4b. Versuche, Erfolge, Wartezeiten: von Bernoulli zu Poisson

Vorlesung 4b. Versuche, Erfolge, Wartezeiten: von Bernoulli zu Poisson Vorlesung 4b Versuche, Erfolge, Wartezeiten: Die Welt des p-münzwurfs - von Bernoulli zu Poisson 1 0. Fortgesetzter p-münzwurf 2 Definition: Sei p (0,1), q := 1 p. Eine Bernoulli-Folge zum Parameter p

Mehr

16.3 Rekurrente und transiente Zustände

16.3 Rekurrente und transiente Zustände 16.3 Rekurrente und transiente Zustände Für alle n N bezeichnen wir mit f i (n) = P(X n = i,x n 1 i,...,x 1 i,x 0 = i) die Wahrscheinlichkeit, daß nach n Schritten erstmalig wieder der Zustand i erreicht

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

5 Binomial- und Poissonverteilung

5 Binomial- und Poissonverteilung 45 5 Binomial- und Poissonverteilung In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen d.h. Verteilungen von diskreten Zufallsvariablen): die Binomial- und die Poissonverteilung. 5.1

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.

Mehr

Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments

Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig

Mehr