Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft:

Größe: px
Ab Seite anzeigen:

Download "Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft:"

Transkript

1 Seminar Summen von Quadraten und K-Theorie Projektive Moduln Im Folgenden sei R ein assoziativer Ring mit Eins, nicht notwendigerweise kommutativ. R-Modul ist im Folgenden stets ein Rechts-R-Modul. Ein Definition und erste Eigenschaften Lemma/Definition.. Folgende Aussagen für einen R-Modul P sind äquivalent: i) P erfüllt folgende Liftungseigenschaft: P g M N 0 ii) Es existiert ein Modul Q so, dass P Q frei ist. iii) Hom R P, ): R Mod) R Mod) ist exakt. Wir nennen dann P projektiv. Notation. Sei PR) die Kategorie der endlich erzeugten projektiven R-Moduln mit R-Modulmorphismen. PR) ist eine additive Kategorie direkte Summe von projektiven Moduln ist wieder projektiv; Kokern ist i.a. nicht projektiv, siehe Z p Z Z/pZ 0). Bemerkung. Wir können P als Pseudo-)Funktor P: Rng) Cat) auffassen, indem wir R die Kategorie der endlich erzeugten projektiven R-Moduln zuordnen; ein Ringmorphismus R S liefert einen additiven Funktor PR) PS) vermöge P P R S. Beispiel. i) Freie Moduln sind projektiv. Insbesondere ist jeder k-vektorraum projektiv. ii) Wir haben folgende Beziehungen evtl. kommutativ fordern) frei projektiv flach lokaler Ring, HIR perfekt Beispiele für perfekte Ring sind artinsche Ringe. iii) Idempotente und projektive Moduln) Ein Element e R in einem Ring R heißt idempotent, falls e 2 = e. Dann ist P := er projektiv, denn R = er e)r. Haben wir andererseits eine Zerlegung R = P Q, so gibt es eindeutige) Element e P und f Q mit e + f = in R. Es sind e, f = e idempotent und ef = fe = 0. { idempotente Elemente in R : Zerlegungen R = P Q. Definition. Ein Ring R heißt lokal, wenn er genau ein maximales Rechts-)Ideal m besitzt. Lemma.2. Für einen Ring R 0 sind äquivalent: i) R ist lokal, d.h. besitzt genau ein maximales Rechtsideal. ii) R besitzt genau ein maximales Linksideal. iii) R besitzt genau ein maximales zweiseitiges Ideal m und R \ m R. iv) R \ R ist ein Ideal von R. v) a + b R a R oder b R. Beweis. siehe. [Lam, A First Course In Noncommutative Rings, Theorem 9.] --

2 Bemerkung. Ist R, m) ein lokaler Ring, so ist R/m ein Körper oder eine Divisionsalgebra. Lemma.3. Sei R ein lokaler Ring. Ist P PR), so ist P frei. Genauer gilt P = R p p = dim R/m P/mP ). Beweis. Ist u R mit u R/m), so ist u R nach Wahl eines Urbildes können wir u + m R annehmen). Sei P Q = R n. Als Vektorräume über k = R/m haben wir P/mP = k p und Q/mQ = k q für p, q N, p + q = n. Lifte Basiselement von P/mP zu Elementen {e,..., e p bzw. {e,..., e q. Dann ist {e,..., e p, e,..., e q eine Basis von P Q und somit P frei mit Basis {e,..., e p. Das Liften zu einer Basis ist möglich, da die e i bzw. e j eine lineare Abbildung R p R q P Q = R n bestimmen, die durch eine Matrix r ij ) M n R) mit r ij ) M n F ) beschrieben wird. Dann gilt aber schon r ij ) M n R) der Morphismus GL n R) GL n R/I) ist surjektiv für ein Radikalideal I, insbesondere also für m). Bemerkung. Die Aussage gilt auch ohne die Bedingung der endlichen Erzeugtheit Kaplansky). Corollar.4. Ist P PR), so gilt für Primideale p R, dass P p = Rp ) n für ein n 0 und es existiert ein s R \ p mit P [ s ] = R [ s ]) n Lokalisierung außerhalb von s ist frei). Beweis. Zunächst ist P p PR p ) Lokalisieren vertauscht mit direkten Summen). Nach Lemma.3 ist P p frei. Wegen P p = { p s p P, s R \ p finden wir einen R-Modulhomorphismus f : R n P mit f p ein Iso. Wegen cokerf) endlich erzeugt und cokerf) p = 0, wird cokerf) durch ein Element s R \ p annuliert. Für dieses s ist dann f[ s ]: R[ s ]) n P [ s ] surjektiv. Wegen P [ s ] projektiv, ist R[ s ]) n isomorph zu P [ s ] M für einen endlich erzeugten R[ s ]-Modul M mit M p = 0. Wie oben wird dann M durch ein Element t R \ p annuliert und wir erhalten f [ ] : R [ ] ) n = [ ] P. st st st Bemerkung. Insbesondere ist P q = Rq ) n für s / q, q SpecR). 2 Der Rang eines Moduls Motivation. Wir möchten uns auf die projektiven endlich erzeugten P PR) beschränken, die konstanten Rang kleiner gleich der Krull-)Dimension des Ringes R haben. Definition Rang). Sei R ein kommutativer Ring. Der Rang eines endlich erzeugten R-Moduls M an einem Primideal p R ist definiert als Hierbei ist κp) = R p /pr p. Bemerkung. rang p M) = dim κp) M R κp) ). i) Interpration durch Anzahl der Erzeuger) Wegen M p /pm p = κp) rang p M) ist rang p M) die mininmale Anzahl der Erzeuger von M p Nakayama Lemma). ii) Ist P PR) endlich erzeugt und projektiv, so ist rangp ): SpecR) N p rang p P ) eine stetige!) Funktion in den diskreten topologischen Raum N Z die D f = { p f / p sind Basis der Topologie von offenen Mengen von SpecR) für f R). -2-

3 iii) Ist M nicht projektiv, so muss rangm) keine stetige Funktion auf SpecR) beschreiben wähle R = Z und M = Z/pZ). Ebenso muss rangm) nicht stetig sein für einen unendlich erzeugten projektiven Modul Kaplansky, siehe [Weibel, The K-Theory Book, Example I.2.5]). Definition. Wir sagen, dass P konstanten Rang n hat, falls n = rang p P ) unabhängig von p SpecR) ist. Beispiel. Ist der topologische Raum SpecA) zusammenhängend, so ist rang P ) konstant. Ist z.b. R integer mit Quotientenkörper k, so hat P PR) konstanten Rang rangp ) = dim k P R F ). Hat andererseits ein projektiver Modul P konstanten Rang, so ist er endlich erzeugt siehe [Weibel, The K-Theory Book, Exercise I.2.4]. Lemma 2.. Ist R ein kommutativer Ring und f : SpecR) Z eine stetige Funktion, so können wir zerlegen mit f SpecRi ) konstant. SpecR) = SpecR ) SpecR c ) Beweis. Wegen SpecR) quasi-kompakt nimmt f nur endlich viele Werte n,..., n c Z an. Da Z mit der diskreten Topologie versehen ist, ist V i := f n i ) offen und abgeschlossen in SpecR). Ohne Einschränkung sei R reduziert, d.h. der Ring R habe keine nilpotenten Elemente; es ist SpecR)! = SpecR/nilR)). Sei nun I i das V i -definierende Ideal, also I i = I i = { p p Vi. Dann ist I i + + I c = R I i I j = 0 für i j, denn I i I j = { p p V i V j = { p p f n i ) f n j ) = 0 Mit dem chinesischen Restsatz folgt dann R = R i. Corollar 2.2. Für viele Anwendungen können wir daher annehmen, dass P PR) konstanten Rang besitzt. Beweis. Wir haben R-Modulisomorphismus P = P P c für P i = P R R i von konstantem Rang und eine Zerlegung R = R R c wie oben. Definition stabil isomorph). Zwei R-Moduln M, M heißen stabil isomorph, falls M R m = M R m für ein m 0. Theorem 2.3 Bass-Serre Cancellation Theorem). Sei R ein kommutativer noetherscher Ring mit dim Krull R) = d. Sei P ein projektiver R-Modul von konstantem Rang n > d. i) P = P 0 R n d für einen projektiven R-Modul P 0 von konstantem Rang d. ii) Ist P stabil isomorph zu P, so gilt bereits P = P. iii) Ist P M stabil isomorph zu M, so gilt bereits P M = M 3 Lokal freie Moduln Definition lokal freier R-Modul). Sei R kommutativ. Ein R-Modul M heißt lokal frei, wenn für jedes Primideal p R ein s R \ p so existiert, dass M[ s ] ein freier Modul ist. Bemerkung. Nach Corollar.4 sind endlich erzeugte projektive R-Moduln lokal frei. -3-

4 Seminar Summen von Quadraten und K-Theorie Proposition 3.. Folgende Aussagen sind äquivalent. i) M PR), d.h. M ist endlich erzeugt und projektiv. ii) M ist ein lokal freier R-Modul von endlichem Rang, d.h. rang p M) < für alle p SpecR). iii) M ist ein endlich präsentierter R-Modul und für jedes Primideal p von R ist M p ein freier R p -Modul. Beweisidee. Für Details siehe [Weibel, The K-Theory Book, 2.4]. i) ii) Wiederum Corollar.4. ii) iii) treuflacher Abstieg iii) i) Haben eine Darstellung R m R n M ɛ 0 und ɛ : Hom R M, R n ) Hom R M, M) ist surjektiv Surjektivität ist eine lokale Eigenschaft), wähle dann Urbild von id M. 4 Verkleben über offene Überdeckungen Sei R kommutativ und seien s,..., s c R so, dass s R +... s c R = R. Dann ist SpecR) Spec R[ s i ] ). Haben wir nun g ij GL n R[ s i s j ] ) mit g ii = und g ij g jk = g ik in GL n R[ s i s j s k ] ), so ist { P = x,..., x c ) R[ ] ) n gij x j ) = x i in R[ ] n für alle i, j s i s i s j ein endlich erzeugter projektiver R-Modul verwende Proposition 3.; P [ s i ] = R [ s i ] n). 5 Milnor Quadrate und Verkleben Teil 2 Sei I R ein Ideal und f : R S ein Ringmorphismus. Dann ist R = { r, s) R/I) S fr) s mod IS und das pullback-diagramm R R/I f J f S S/I wird Milnor-Quadrat genannt nach Milnor, Introduction to algebraic K-theory). Beispiel. Sei R ein kommutativer Ring und S eine endliche Erweiterung von R mit QuotR) = QuotS) z.b. ist S der ganze Abschluss von R) und I das Führerideal dieser Erweiterung, also I = { x R xs R = Ann R S/R). I ist das größte Ideal von S, das vollständig in R enthalten ist. Konstruktion. Haben wir ein Milnor-Quadrat wie oben, so können wir einen R-Modul M = M, g, M 2 ) mit M S Mod), M 2 R/I Mod) und einem S/I-Modulisomorphismus g : M 2 R/I S/I = M /IM -4-

5 wie folgt konstruieren: Wir setzen M = ker M M 2 M /IM ) m, m 2 ) = m g fm 2 ) ) und nennen M den durch Verkleben von M und M 2 entlang g erhaltenen R-Modul. Beispiel. Verkleben von S n S Mod) und R/I) n R/I Mod) entlang einer Matrix g GL n S/IS). So erhalten wir R zurück, indem wir S und R/I entlang g = verkleben. Theorem 5. Milnorscher Verklebungssatz). i) Erhalten wir P durch Verkleben von P PS) und P 2 PR/I), so ist P PR). ii) P R S = P und P/IP = P 2. iii) Wir erhalten jeden Modul P PR) auf diese Art. Beweis. iii) Sei M R Mod). Definiere dem R-Modul M R Mod) durch Verkleben von M = M R S S Mod) und M 2 = M R R/I) = M/IM R/I Mod) entlang des kanonischen Isomorphismuses M/IM) {{ R/I S/I) = M R S/I) = M R S)/IM R S) {{ =M 2 Tensorieren wir die kurze exakte Folge mit M, so erhalten wir die exakte Folge 0 R R/I) S S/I 0 =M /IM. Tor R M, S/I) M M R R/I) M R S) M {{ R S/I 0 {{ =M 2 M =M /IM und somit die exakte Folge Tor R M, S/I) M M 0. Also ist M ein Quotient von M. Ist M jedoch projektiv, so verschwindet der Tor und wir erhalten M = M. i),ii) Folgen aus [Weibel, The K-Theory Book, Exercise I.2.8]. 6 Der Eilenberg-Schwindel Warum beschränken wir uns auf PR), also endlich erzeugte projektive Moduln? unendlich erzeugter freier Modul und P Q = R n, d.h. P projektiv. Dann ist Sei R ein Ebenso ist R = R R. P R = P Q P Q P... = R Bemerkung Eigenschaften unendlich erzeugter projektiver Moduln). i) Bass) Ist der Ring R noethersch, so ist jeder unendlich erzeugte projektive R-Modul P frei, außer es gibt ein Ideal I so, dass P/IP weniger Erzeuger als P besitzt. ii) Kaplansky) Jeder unendlich erzeugte projektive Modul ist direkte Summe von äbzählbar erzeugten projektiven Moduln. iii) Kaplansky) Es existieren unendliche erzeugte projektive Moduln P, deren Rang endlich ist, die Abbildung rankp ): SpecR) N jedoch nicht stetig ist. -5-

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

Diplomarbeit: FGC-Ringe und der Satz über Geschachtelte Basen

Diplomarbeit: FGC-Ringe und der Satz über Geschachtelte Basen Diplomarbeit: FGC-Ringe und der Satz über Geschachtelte Basen Nicole Hülsmann Oktober 2003 2 Inhaltsverzeichnis Einleitung 2 Notationen 5 1 FGC-Ringe 6 1.1 Grundlagen............................ 6 1.2

Mehr

Ringe und Moduln. ausgearbeitet von. Corinna Dohle Matrikelnummer 6299128 corinna@math.upb.de

Ringe und Moduln. ausgearbeitet von. Corinna Dohle Matrikelnummer 6299128 corinna@math.upb.de Ringe und Moduln ausgearbeitet von Corinna Dohle Matrikelnummer 6299128 corinna@math.upb.de Seminar Darstellungstheorie Prof. Dr. H. Krause, PD Dr. D. Kussin Wintersemester 2007/2008 Grundlagen 1 Grundlagen

Mehr

Zusatztutorium, 25.01.2013

Zusatztutorium, 25.01.2013 Zusatztutorium, 25.01.2013 David Müßig muessig[at]mi.fu-berlin.de http://page.mi.fu-berlin.de/def/tutorium/ WiSe 12/13 1 Der Homomorphiesatz Der Homomorphiesatz scheint für viele eine Art rotes Tuch zu

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Noethersche und artinsche Ringe

Noethersche und artinsche Ringe Noethersche und artinsche Ringe Seminar Kommutative Algebra und Varietäten Prof. Dr. K. Wingberg, Dr. J. Gärtner Vortrag 6 Yassin Mousa 05.06.2014 Im Folgenden bezeichne R immer einen kommutativen Ring

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

Skript zur Vorlesung Ringe und Moduln. gehalten von Peter Maier an der TU Darmstadt im Wintersemester 2000/2001

Skript zur Vorlesung Ringe und Moduln. gehalten von Peter Maier an der TU Darmstadt im Wintersemester 2000/2001 Skript zur Vorlesung Ringe und Moduln gehalten von Peter Maier an der TU Darmstadt im Wintersemester 2000/2001 Inhaltsverzeichnis 1 Ringe und Moduln 1 1.1 Ringe und Schiefkörper.............................

Mehr

6.2 Perfekte Sicherheit

6.2 Perfekte Sicherheit 04 6.2 Perfekte Sicherheit Beweis. H(B AC) + H(A C) = H(ABC) H(AC) + H(AC) H(C) Wegen gilt Einsetzen in die Definition gibt = H(AB C). H(A BC) = H(AB C) H(B C). I(A; B C) = H(A C) H(AB C) + H(B C). Da

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

7 Vektorräume und Körperweiterungen

7 Vektorräume und Körperweiterungen $Id: vektor.tex,v 1.3 2009/05/25 15:03:47 hk Exp $ 7 Vektorräume und Körperweiterungen Wir sind gerade bei der Besprechung derjenigen Grundeigenschaften des Tensorprodukts, die mit vergleichsweise wenig

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Kommutative Algebra. Prof. Dr. Uwe Jannsen Sommersemester 2014. 0 Erinnerung: Ringe und Polynomringe 1. 1 Noethersche Ringe 5

Kommutative Algebra. Prof. Dr. Uwe Jannsen Sommersemester 2014. 0 Erinnerung: Ringe und Polynomringe 1. 1 Noethersche Ringe 5 Kommutative Algebra Prof. Dr. Uwe Jannsen Sommersemester 2014 Inhaltsverzeichnis 0 Erinnerung: Ringe und Polynomringe 1 1 Noethersche Ringe 5 2 Moduln über Ringen und exakte Sequenzen 7 3 Lokalisierungen

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

KOMMUTATIVE ALGEBRA UND GEOMETRIE. Wolfgang Soergel

KOMMUTATIVE ALGEBRA UND GEOMETRIE. Wolfgang Soergel KOMMUTATIVE ALGEBRA UND GEOMETRIE Wolfgang Soergel 7. Januar 2016 Wichtige Grundlage für dieses Kapitel ist Abschnitt [AL] 2.1 aus der Algebra über Restklassenringe und Teilringe. Nach und nach wird dann

Mehr

Vorlesung Endlichdimensionale Algebren. Dirk Kussin

Vorlesung Endlichdimensionale Algebren. Dirk Kussin Vorlesung Endlichdimensionale Algebren (Sommersemester 2013) Dirk Kussin Fakultät für Mathematik, TU Chemnitz E-mail address: dirk.kussin@mathematik.tu-chemnitz.de Inhaltsverzeichnis Kapitel 1. Grundlagen

Mehr

8. Quadratische Reste. Reziprozitätsgesetz

8. Quadratische Reste. Reziprozitätsgesetz O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung

Mehr

Representation type and Auslander-Reiten theory of Frobenius-Lusztig kernels

Representation type and Auslander-Reiten theory of Frobenius-Lusztig kernels Representation type and Auslander-Reiten theory of Frobenius-Lusztig kernels Julian Külshammer Christian-Albrechts-Universität zu Kiel 11.05.2012 Notation A (endlich-dimensionale, assoziative, unitäre)

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie Notation Die in dieser Arbeit verwendete Notation ist im Wesentlichen Standard, so wie sie beispielsweise in [As] zu nden ist. Einige Abweichungen hiervon, Klarstellungen und zusätzliche Notationen (sofern

Mehr

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010 Induktive Limiten Arpad Pinter, Tobias Wöhrer 30. Jänner 2010 1 Inhaltsverzeichnis 1 Induktiver Limes von Mengen 2 2 Induktiver Limes von Vektorräumen 4 3 Lokalkonvexe topologische Vektorräumen 7 4 Induktiver

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Geometrie der Schemata (Algebraische Geometrie II)

Geometrie der Schemata (Algebraische Geometrie II) inoffizielles Skript Geometrie der Schemata (Algebraische Geometrie II) Gehalten von Prof. Dr. F. Herrlich im Sommersemester 2012 getippt von Aleksandar Sandic 18. April 2014 Aleksandar.Sandic@student.kit.edu

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Frohe Weihnachten und ein gutes neues Jahr!

Frohe Weihnachten und ein gutes neues Jahr! Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

Invariantentheorie. Vorlesung 5. Invariantenringe zu Untergruppen

Invariantentheorie. Vorlesung 5. Invariantenringe zu Untergruppen Prof. Dr. H. Brenner Osnabrück WS 2012/2013 Invariantentheorie Vorlesung 5 Invariantenringe zu Untergruppen Proposition 5.1. Es sei R G R eine Operation einer Gruppe G auf einem kommutativen Ring durch

Mehr

Direktes Bild und Inverses Bild von D-Moduln

Direktes Bild und Inverses Bild von D-Moduln Direktes Bild und Inverses Bild von D-Moduln Konrad Voelkel 3. Juli 2009 Abstract Seien stets X, Y Top, f : X Y stetig und F Sh /X sowie G Sh /Y. Wir untersuchen nun, wie sich, mittels f, F als Garbe auf

Mehr

Algebra. Patrik Hubschmid. 8. Oktober 2013

Algebra. Patrik Hubschmid. 8. Oktober 2013 Algebra Patrik Hubschmid 8. Oktober 2013 Inhaltsverzeichnis 1 Fortführung der Gruppentheorie 7 1.1 Sylowsätze.................................... 7 3 Vorwort Dieses Skript zur Vorlesung Algebra im Wintersemester

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Algebra I. Zwischenprüfung. 19. Februar 2016

Algebra I. Zwischenprüfung. 19. Februar 2016 Name: Vorname: Studiengang: Legi-Nr.: Algebra I D-MATH, HS 2015 Prof. Richard Pink Algebra I Zwischenprüfung Wichtig: 19. Februar 2016 Die Prüfung dauert 120 Minuten. Bitte legen Sie Ihre Legi (Studierendenausweis)

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

Grundbegriffe der Modultheorie

Grundbegriffe der Modultheorie Grundbegriffe der Modultheorie Seminar Kommutative Algebra und Varietäten, Vortrag 2 Prof. Dr. K. Wingberg, Dr. J. Gärtner Dennis Petersen-Endrulat 24. April 2014 1 Moduln Im Folgenden bezeichne A stets

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

KAPITEL 0. Einführung

KAPITEL 0. Einführung Lineare Algebra KAPITEL 0 Einführung Dieses Skript zur Vorlesung Lineare Algebra an der Goethe Universität Frankfurt im Sommersemester 2011 befindet sich noch in der Entstehung und wird fortlaufend aktualisiert

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Mengensysteme, Wahrscheinlichkeitsmaße

Mengensysteme, Wahrscheinlichkeitsmaße Kapitel 1 Mengensysteme, Wahrscheinlichkeitsmaße Der Großteil der folgenden fundamentalen Begriffe sind schon aus der Vorlesung Stochastische Modellbildung bekannt: Definition 1.1 Eine Familie A von Teilmengen

Mehr

II. Ringe und Moduln für etwas Fortgeschrittene

II. Ringe und Moduln für etwas Fortgeschrittene II. Ringe und Moduln für etwas Fortgeschrittene II.1 Algebren 2.1.1 Definition/Bemerkung (Die Kategorie der R -Algebren) a) Es sei R ein Ring. Eine R -Algebra ist ein R -Modul A, der gleichzeitig ein Ring

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Kapitel III. Lineare Abbildungen

Kapitel III. Lineare Abbildungen Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,

Mehr

2.2 Nebenklassen, Normalteiler und Faktorgruppen

2.2 Nebenklassen, Normalteiler und Faktorgruppen Algebra I c Rudolf Scharlau, 2002 2012 61 2.2 Nebenklassen, Normalteiler und Faktorgruppen Bei der Konstruktion der Restklassengruppe Z/mZ hatten wir auf der Gruppe Z mit Hilfe einer Untergruppe mz eine

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

GNS-Konstruktion und normale Zustände. 1 Rückblick. 2 Beispiel für einen Typ-II 1 -Faktor

GNS-Konstruktion und normale Zustände. 1 Rückblick. 2 Beispiel für einen Typ-II 1 -Faktor GNS-Konstruktion und normale Zustände 1 Rückblick Wir betrachten von-neumann-algebren M B(H), d.h. Unteralgebren mit 1 H M, die in der schwachen Operatortopologie (und damit in jeder der anderen) abgeschlossen

Mehr

Exkurs: Polnische Räume

Exkurs: Polnische Räume Ein normaler Hausdorff-Raum mit abzählbarer Basis kann auf viele Weisen metrisiert werden; man kann insbesondere eine einmal gewonnene Metrik in vielerlei Weise abändern, ohne die von ihr erzeugte Topologie

Mehr

7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe

7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe 7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe und Homomorfismen Wir verallgemeinern den Übergang von Z zu Z/m. Sei im folgenden G eine (additiv geschriebene) abelsche Gruppe, H eine Untergruppe.

Mehr

Holomorphe Zusammenhänge und flache Strukturen auf holomorphen Vektorbündeln. Diplomarbeit von Sönke Rollenske

Holomorphe Zusammenhänge und flache Strukturen auf holomorphen Vektorbündeln. Diplomarbeit von Sönke Rollenske Holomorphe Zusammenhänge und flache Strukturen auf holomorphen Vektorbündeln Diplomarbeit von Sönke Rollenske angefertigt am Mathematischen Institut der Universität zu Köln unter Anleitung von Prof. Dr.

Mehr

ÜBER EINEN RANGBEGRIFF IN DER THEORIE

ÜBER EINEN RANGBEGRIFF IN DER THEORIE ÜBER EINEN RANGBEGRIFF IN DER THEORIE DER RINGE, SPEZIELL DER REGULÄREN RINGE VON DER EIDGENÖSSISCHEN TECHNISCHEN HOCHSCHULE IN ZÜRICH ZUR ERLANGUNG DER WÜRDE EINES DOKTORS DER MATHEMATIK GENEHMIGTE PROMOTIONSARBEIT

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

9. Anwendungen der Fundamentalgruppe

9. Anwendungen der Fundamentalgruppe 76 Andreas Gathmann 9. Anwendungen der Fundamentalgruppe Nachdem wir mit Hilfe von Überlagerungen nun in der Lage sind, Fundamentalgruppen zu berechnen, wollen wir in diesem abschließenden Kapitel noch

Mehr

Michael Artin. Algebra. Aus dem Englischen übersetzt von Annette A'Campo. Birkhäuser Verlag Basel Boston Berlin

Michael Artin. Algebra. Aus dem Englischen übersetzt von Annette A'Campo. Birkhäuser Verlag Basel Boston Berlin Michael Artin Algebra Aus dem Englischen übersetzt von Annette A'Campo Birkhäuser Verlag Basel Boston Berlin INHALTSVERZEICHNIS Vorwort Hinweise viii x Kapitel 1 MATRIZEN 1 1. Matrizenkalkül 1 2. Zeilenreduktion

Mehr

1.5 Duales Gitter und Diskriminantengruppe

1.5 Duales Gitter und Diskriminantengruppe Gitter und Codes c Rudolf Scharlau 24. April 2009 27 1.5 Duales Gitter und Diskriminantengruppe Dieser Abschnitt ist im wesentlichen algebraischer Natur: Es spielt keine Rolle, dass unsere Gitter in einem

Mehr

Kongruenzrechnung. 2 Kongruenzrechnung 7 2.1 Rechnenregeln Addition und Multiplikation... 7 2.2 Rechenregeln bzgl. verschiedener Moduln...

Kongruenzrechnung. 2 Kongruenzrechnung 7 2.1 Rechnenregeln Addition und Multiplikation... 7 2.2 Rechenregeln bzgl. verschiedener Moduln... Kongruenzrechnung Inhaltsverzeichnis 1 Einführung und Definitionen 2 1.1 Einige Beispiele aus dem Alltag..................... 2 1.2 Kongruenzrechnung im Alltag und Rechenproben........... 3 1.3 Kongruenzen

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Proseminar: Primzahlen 1. Vortrag Der erweiterte euklidische Algorithmus

Proseminar: Primzahlen 1. Vortrag Der erweiterte euklidische Algorithmus Proseminar: Primzahlen 1. Vortrag Der erweiterte euklidische Algorithmus Max Zoller 14. April 8 1 Der klassische euklidische Algorithmus Beispiel: ggt 15, 56? 15 = 1 56 + 49 56 = 1 49 + 7 49 = 7 7 + =

Mehr

Computeralgebra, WS 10/11

Computeralgebra, WS 10/11 M. Künzer Computeralgebra, WS 10/11 Lösung 5 Aufgabe 16 (1) Nach Konstruktion ist (R, +) eine abelsche ruppe, mit 0 R = 0 R 1. Seien g r g g, g s g g, g t g g R. Neutrales Element der Multiplikation. Sei

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

4 Elementare Vektorraumtheorie

4 Elementare Vektorraumtheorie 4. ELEMENTARE VEKTORRAUMTHEORIE 51 4 Elementare Vektorraumtheorie Im folgenden sei K stets ein Körper. Definition. (i) Eine homogene Gleichung in den Unbekannten ξ 1,..., ξ n ist ein Ausdruck der Gestalt

Mehr

PD Dr. R. Schätzle 9.4.2001 Dr. A. Karlsson. Funktionentheorie II SS 2001

PD Dr. R. Schätzle 9.4.2001 Dr. A. Karlsson. Funktionentheorie II SS 2001 ETH Zürich Departement der Mathematik PD Dr. R. Schätzle 9.4.2001 Dr. A. Karlsson Funktionentheorie II SS 2001 1.Übung AUFGABE 1: Zeigen Sie, daß die Riemannschen Flächen CI und D := {z CI z < 1 } mit

Mehr

Wie kann man beweisen, dass (H, ) eine Gruppe ist?

Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) Wie kann man beweisen, dass (H, )

Mehr

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Ulrich Loup 24.03.2006 Prüfungsstoff: Alegebra I, Analysis IV, Graphentheorie I Prüfer: Prof. Dr. Wilhelm Plesken Protokollant: Dipl.

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Wintersemester 0/0 Wirtschaftsinformatik Bachelor IW Informatik Bachelor IN Vorlesung Mathematik Mathematik Lösungsvorschläge zum Übungsblatt

Mehr

Topologische Räume und stetige Abbildungen Teil 2

Topologische Räume und stetige Abbildungen Teil 2 TU Dortmund Mathematik Fakultät Proseminar zur Linearen Algebra Ausarbeitung zum Thema Topologische Räume und stetige Abbildungen Teil 2 Anna Kwasniok Dozent: Prof. Dr. L. Schwachhöfer Vorstellung des

Mehr

Kapitel 12. Lineare Abbildungen und Matrizen

Kapitel 12. Lineare Abbildungen und Matrizen Kapitel 12 Lineare Abbildungen und Matrizen Lineare Abbildungen f : R n R m Wir wissen schon: Eine lineare Abbildung f : R n R m ist eindeutig durch ein n-tupel von Vektoren v 1, v 2,, v n des R m bestimmt

Mehr

Einführung in die Zahlentheorie und algebraische Strukturen

Einführung in die Zahlentheorie und algebraische Strukturen Einführung in die Zahlentheorie und algebraische Strukturen Wintersemester 2012/2013 Universität Bayreuth Michael Stoll Inhaltsverzeichnis 1. Wiederholung: Gruppen, Ringe, Körper 2 2. Teilbarkeitslehre

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

4. Übungsblatt Matrikelnr.: 6423043

4. Übungsblatt Matrikelnr.: 6423043 Lineare Algebra I 1. Name: Bleeck, Christian 4. Übungsblatt Matrikelnr.: 6423043 Abgabe: 15.11.06 12 Uhr (Kasten D1 320) Übungsgruppe: 03 Patrick Schützdeller 2. Name: Niemann, Philipp Matrikelnr.: 6388613

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Die p-adischen Zahlen

Die p-adischen Zahlen Universität Bielefeld Algebra Die p-adischen Zahlen Seminararbeit von Denny Otten FAKULTÄT FÜR MATHEMATIK Datum: 29. Oktober 2006 Betreuung: Prof. Dr. Dr. K. Tent Dipl.-Math. G. Hainke Dipl.-Math. L. Scheele

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 3. Endliche Automaten (V) 21.05.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Determinierte endliche Automaten (DEAs) Indeterminierte

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 19 Algebraisch abgeschlossene Körper Wir haben zuletzt erwähnt, dass ein lineares Polynom X a über einem Körper stets irreduzibel

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Die Cantor-Funktion. Stephan Welz

Die Cantor-Funktion. Stephan Welz Die Cantor-Funktion Stephan Welz Ausarbeitung zum Vortrag im Proseminar Überraschungen und Gegenbeispiele in der Analysis (Sommersemester 2009, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In dieser

Mehr

Elemente von S n = Aut([1, n]) heißen Permutationen. Spezielle Permutationen sind Transpositionen und Zyklen. (Vergl. Skript S

Elemente von S n = Aut([1, n]) heißen Permutationen. Spezielle Permutationen sind Transpositionen und Zyklen. (Vergl. Skript S Begriffe Faser: Es sei f : M N eine Abbildung von Mengen. Es sei n N. Die Menge f 1 ({n}) M nennt man die Faser in n. (Skript Seite 119). Parallel: Zwei Vektoren v und w heißen parallel, wenn für einen

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Diskrete Mathematik für Informatiker Markus Lohrey Universität Siegen Wintersemester 2014/2015 Lohrey (Universität Siegen) Diskrete Mathematik Wintersem. 2014/2015 1 / 344 Organisatorisches zur Vorlesung

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter

Mehr

Kombinatorische Geometrien

Kombinatorische Geometrien KAPITEL 5 Kombinatorische Geometrien Beispiele von Geometrien wurden schon als Inzidenzstrukturen (z.b. projektive Ebenen) gegeben. Wir nehmen hier einen anderen Standpunkt ein und verstehen unter einer

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Stackelberg Scheduling Strategien

Stackelberg Scheduling Strategien Stackelberg Scheduling Strategien Von Tim Roughgarden Präsentiert von Matthias Ernst Inhaltsübersicht Einleitung Vorbetrachtungen Stackelberg Strategien Ergebnisse Seminar Algorithmische Spieltheorie:

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

1 Eingebettete Untermannigfaltigkeiten des R d

1 Eingebettete Untermannigfaltigkeiten des R d $Id: unter.tex,v 1.2 2014/04/14 13:19:35 hk Exp hk $ 1 Eingebettete Untermannigfaltigkeiten des R d In diesem einleitenden Paragraphen wollen wir Untermannigfaltigkeiten des R d studieren, diese sind die

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr