Vorlesung 3. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Größe: px
Ab Seite anzeigen:

Download "Vorlesung 3. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen"

Transkript

1 Vorlesung 3 Der Erwartungswert von diskreten reellwertigen Zufallsvariablen

2 0. Diskrete reellwertige Zufallsvariable

3 X sei eine Zufallsvariable, deren Zielbereich R (die Menge der reellen Zahlen) oder eine Teilmenge von R ist. X R

4 X S R Außerdem existiere eine endliche oder abzählbar unendliche Menge S R mit P(X S) = 1.

5 X S R Wir sagen dann: X ist eine diskrete reellwertige Zufallsvariable

6 1. Der Erwartungswert als gewichtetes Mittel

7 Eine einprägsame Kenngröße für die Lage der Verteilung von X ist das mit den Wahrscheinlichkeiten gewichtete Mittel der möglichen Werte von X: E[X] := a S a P(X = a). Man spricht vom Erwartungswert von X. (Wir bezeichnen ihn auch mit µ oder µ X.)

8 a Gewichte

9 Z = Das elementarste Beispiel: { 1 mit Wahrscheinlichkeit p 0 mit Wahrscheinlichkeit q = 1 p Man erinnere sich an die Situation der ersten Stunde: Rein zufällige Wahl eines Punktes aus dem Quadrat, die Teilmenge A hat den Flächenanteil p; gezählt wird, wenn der Punkt in A fällt.

10 Z = Das elementarste Beispiel: { 1 mit Wahrscheinlichkeit p 0 mit Wahrscheinlichkeit q = 1 p E[Z] = p 1+q 0 = p

11 Dieses Beispiel entspricht dem einfachen Münzwurf: Z Y Kopf 1 Zahl 0 {Y = Kopf} = {Z = 1} Man sagt auch: Z ist die Indikatorvariable des Ereignisses {Y = Kopf} Z = I {Y=Kopf}, E[Z] = P(Y = Kopf).

12 Oder in unserem Logo der ersten Stunde: Z Y 1 A S 1 A 0 {Y A} = {Z = 1} Man sagt auch: Z ist die Indikatorvariable des Ereignisses {Y A} Z = I {Y A}, E[Z] = P(Y A).

13 Für allgemeines diskretes, reellwertiges X hatten wir E[X] = a S a P{X = a} = a S aρ(a) mit ρ(a):= Verteilungsgewichte von X Wohlgemerkt: Der Erwartungswert der Zufallvariablen X hängt nur von deren Verteilung ρ ab. Synonym sprechen wir daher auch manchmal vom Erwartungswert der Verteilung ρ.

14 X eine Zufallsgröße; E[X] eine Zahl.

15 2. Ein Beispiel: Der Erwartungswert der Anzahl der Erfolge beim dreifachen Münzwurf

16 Eine faire Münze wird dreimal geworfen. X := Anzahl der geworfenen Köpfe.

17 P(X = a) Eine faire Münze wird dreimal geworfen a = Anzahl Kopf

18 E[X] =? a = Anzahl Kopf P(X = x)

19 E[X] = a P(X = a) x = Anzahl Kopf P(X = a)

20 P(X = a) E[X] = = 12 = a = Anzahl Kopf 1

21 P(X = a) Die Zahl E[X] gehört hier gar nicht zum Wertebereich von X a = Anzahl Kopf 1

22 P(X = a) und kann im buchstäblichen Sinn kein erwarteter Wert von X sein x = Anzahl Kopf 1

23 Was denn dann? a = Anzahl Kopf P(X = a)

24 P(X = a) Wie erlebt man den Erwartungswert? a = Anzahl Kopf 1

25 P(X = a) Durch wiederholtes Werfen der drei Münzen a = Anzahl Kopf 1

26 3. Der Erwartungswert als Langzeitmittel

27 P(X = a) Wiederholtes Werfen der drei Münzen a = Anzahl Kopf 1

28 Wiederholungen: X 1,X 2,...,X Xn n

29 M n := (X 1 +X X n )/n Xn n

30 Wiederholungen: X 1,X 2,...,X Xn n

31 M n := (X 1 +X X n )/n Xn n

32 Wiederholungen: X 1,X 2,...,X Xn n

33 M n := (X 1 +X X n )/n Xn n

34 M n E[X] Xn n

35 Warum? Xn n

36 M n = a #{Würfe mit Ergebis a}/n a P(X = a) Xn n

37 Dazu später mehr. Für den Moment nur als kurzer Ausblick:

38 DAS GESETZ DER GROSSEN ZAHLEN Sei X eine Zufallsgröße mit Erwartungswert E[X]. Seien X 1,X 2,... unabhängige Kopien von X. Dann gilt X X n n E[X] Zu klären 1. Was heißt unabhängig? 2. Was heißt?

39 Diese Klärung wird in der Vorlesung in wenigen Wochen erfolgen. Jetzt halten wir erst einmal fest:

40 Zwei Vorstellungen von E[X] 1. Gewichtetes Mittel der möglichen Werte: E[X] := a P(X = a) 2. Langzeitmittelwert bei unabhängigen Wiederholungen: X X n n E[X]

41 4. Die Additivität des Erwartungswertes - anschaulich und als Werkzeug

42 Die wichtigste Eigenschaft des Erwartungswerts ist die Additivität E[X+Y] = E[X]+E[Y]

43 Die Additivität des Erwartungswerts wird intuitiv sofort klar aus der Vorstellung als Langzeitmittelwert bei unabhängigen Wiederholungen : 1 n ((X 1 +Y 1 )+...+(X n +Y n )) = 1 n (X X n )+ 1 n (Y Y n ) E[X]+E[Y]

44 Ein prominenter Fall ist X = Z 1 + +Z n, wobei die Z 1,...,Z n nur die Werte 0 oder 1 annehmen. Dann gilt E[Z i ] = P(Z i = 1) und somit E[X] = P(Z 1 = 1)+ +P(Z n = 1).

45 5. Der Erwartungswert der Binomialverteilung (als Erwartungswert der Anzahl der Erfolge beim n-fachen p-münzwurf)

46 X sei Bin(n, p) verteilt. E[X] =? n k=0 k P(X = k) = n k=0 k ( ) n k p k q n k =... Es GEHT so (vgl Buch Seite ) Aber es geht auch einfacher (vgl. Buch S. 49):

47 Sei Z = (Z 1,...,Z n ) ein n-facher p-münzwurf. Dann ist (Z 1 + +Z n ) Bin(n,p)-verteilt. E[Z 1 + +Z n ] = E[Z 1 ]+ +E[Z n ] E[Z i ] = 1 p+0 q = p Fazit: Der Erwartungswert einer Bin(n,p) verteilten ZV ist np.

48 6. Der Erwartungswert der hypergeometrischen Verteilung (als Erwartungswert der Anzahl der Erfolge beim n-fachen Ziehen ohne Zurücklegen)

49 BEISPIEL Ziehen ohne Zurücklegen Eine Urne enthält r rote und b blaue Kugeln. ooooooooooooo r = b = 5 Aus der Urne werden ohne Zurücklegen n Kugeln gezogen. ooooooooo n = 9 R := Anzahl der gezogenen roten Kugeln E[R] =?

50 Verteilung von R? P(R = k) =? P(R = k) = r k b n k / r+b n Eine ZV mit diesen Verteilungsgewichten (k = 0,..., n) heißt hypergeometrisch verteilt zu den Parametern (n, r + b, r). (vg. Buch Seite 2)

51 P(R = k) = r k b n k / r+b n E(R) =? E[R] = n k=0 k r k b n k / r+b n =... Es GEHT so (vgl. Buch Seite 32) Aber es geht auch einfacher (vgl. Buch S. 50/51):

52 R = Z 1 +Z Z n Z i = 1 falls i-te gezogogene Kugel rot Z i = 0 falls i-te gezogene Kugel blau ooooooooooooo r = b = 5 P(Z i = 1) =? Man stelle sich vor, die Nummern der Züge werden als rein zufällige Permutation an die r+b Kugeln vergeben. Wie wahrscheinlich ist es, dass Nummer i auf eine rote Kugel fällt?

53 R = Z 1 +Z Z n Z i = 1 falls i-te gezogogene Kugel rot Z i = 0 falls i-te gezogene Kugel blau ooooooooooooo r = b = 5 P(Z i = 1) = r r+b Man stelle sich vor, die Nummern der Züge werden als rein zufällige Permutation an die r+b Kugeln vergeben. Wie wahrscheinlich ist es, dass Nummer i auf eine rote Kugel fällt?

54 R = Z 1 +Z Z n Z i = 1 falls i-te gezogogene Kugel rot Z i = 0 falls i-te gezogene Kugel blau ooooooooooooo r = b = 5 P(Z i = 1) = r r+b E[Z i ] = r r+b E[R] = E[Z 1 ]+E[Z 2 ]+...+E[Z n ] E[R] = n r r+b

55 7. Der Erwartungswert einer Anzahl von Runs

56 BEISPIEL Runs beim fairen Münzwurf: Z := (Z 1,Z 2,...,Z n ) n-facher fairer Münzwurf P{Z i = 1} = 2 1 P{Z i = 0} = 2 1 Run: ein Block von Nullen (Einsen), der nicht echt in einem größeren Block enthalten ist R := Anzahl Runs in Z R = R = R =

57 E[R] =? Dazu schreiben wir R als Summe von Zählern. Bei jedem Wurf zählen wir eins dazu, wenn bei diesem Wurf ein Run beginnt:

58 Y i := 1 falls bei i ein Run beginnt, Y i := 0 sonst R = Y 1 +Y Y n Y 1 1 {Y i = 1} = {(Z i 1,Z i ) = (0,1) oder (1,0)} (i > 1) P(Y i = 1) = = 1 2 (i > 1) E[Y i ] = 1 2 (i > 1) E[R] = E[Y 1 ]+E[Y 2 ]+E[Y 3 ]+...+E[Y n ] E[R] = (n 1)

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen Vorlesung 3a Der Erwartungswert von diskreten reellwertigen Zufallsvariablen 0. Diskrete reellwertige Zufallsvariable X sei eine Zufallsvariable, deren Zielbereich R (die Menge der reellen Zahlen) oder

Mehr

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen Vorlesung 3a Der Erwartungswert von diskreten reellwertigen Zufallsvariablen X sei eine diskrete reellwertige Zufallsvariable, d.h. eine ZV e mit Wertebereich R (oder einer Teilmenge davon), sodass eine

Mehr

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen Vorlesung 3a Der Erwartungswert von diskreten reellwertigen Zufallsvariablen X sei eine Zufallsvariable, deren Zielbereich R (die Menge der reellen Zahlen) (oder eine Teilmenge davon) ist. Es existiere

Mehr

Vorlesung 3b. Der Erwartungswert

Vorlesung 3b. Der Erwartungswert Vorlesung 3b Der Erwartungswert von diskreten reellwertigen Zufallsvariablen Teil 2 0. Wiederholung X sei eine diskrete reellwertige Zufallsvariable X S R E[X] := a S a P(X = a). heißt Erwartungswert von

Mehr

Vorlesung 2b. Diskrete Zufallsvariable. und ihre Verteilungen

Vorlesung 2b. Diskrete Zufallsvariable. und ihre Verteilungen Vorlesung 2b Diskrete Zufallsvariable und ihre Verteilungen 1 1. Die Grundbegriffe 2 Bisher hatten wir uns (vor allem) mit Zufallsvariablen beschäftigt, deren Wertebereich S endlich war. Die (schon in

Mehr

Vorlesung 5a. Die Varianz

Vorlesung 5a. Die Varianz Vorlesung 5a Die Varianz 1 1. Varianz und Standardabweichung: Elementare Eigenschaften (Buch S. 24) 2 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ. Die Varianz von X ist definiert

Mehr

Vorlesung 5a. Varianz und Kovarianz

Vorlesung 5a. Varianz und Kovarianz Vorlesung 5a Varianz und Kovarianz 1 1. Varianz und Standardabweichung: Elementare Eigenschaften (Buch S. 24) 2 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ. Die Varianz von X ist

Mehr

Vorlesung 4b. Die Varianz

Vorlesung 4b. Die Varianz Vorlesung 4b Die Varianz 1 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ Die Varianz von X ist definiert als Var[X] := E[(X µ) 2 ], die erwartete quadratische Abweichung der Zufallsvariablen

Mehr

Vorlesung 4b. Die Varianz

Vorlesung 4b. Die Varianz Vorlesung 4b Die Varianz 1 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ. Die Varianz von X ist definiert als Var X := E[(X µ) 2 ], die erwartete quadratische Abweichung der Zufallsvariablen

Mehr

Vorlesung 4b. Versuche, Erfolge, Wartezeiten: von Bernoulli zu Poisson

Vorlesung 4b. Versuche, Erfolge, Wartezeiten: von Bernoulli zu Poisson Vorlesung 4b Versuche, Erfolge, Wartezeiten: Die Welt des p-münzwurfs - von Bernoulli zu Poisson 1 0. Fortgesetzter p-münzwurf 2 Definition: Sei p (0,1), q := 1 p. Eine Bernoulli-Folge zum Parameter p

Mehr

Vorlesung 3b. Versuche, Erfolge, Wartezeiten: von Bernoulli zu Poisson

Vorlesung 3b. Versuche, Erfolge, Wartezeiten: von Bernoulli zu Poisson Vorlesung 3b Versuche, Erfolge, Wartezeiten: Die Welt des p-münzwurfs - von Bernoulli zu Poisson 1 Unser heutiger Rahmen: p- Münzurf alias Bernoulli-Folge 2 Jacob Bernoulli (1654-1705) 3 Sei p (0,1), q

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Vorlesung 2a. Diskret uniform verteilte Zufallsvariable

Vorlesung 2a. Diskret uniform verteilte Zufallsvariable Vorlesung 2a Diskret uniform verteilte Zufallsvariable 1 Eine Zufallsvariable X heißt diskret uniform verteilt, wenn ihr Zielbereich S endlich ist und P(X = a) = 1 #S für alle a S. Damit beschreibt X eine

Mehr

Vorlesung 11b. Bedingte Verteilung, bedingte Wahrscheinlichkeiten

Vorlesung 11b. Bedingte Verteilung, bedingte Wahrscheinlichkeiten Vorlesung 11b Bedingte Verteilung, bedingte Wahrscheinlichkeiten 1 Bisher legten wir das Hauptaugenmerk auf den Aufbau der gemeinsamen Verteilung von X 1 und X 2 aus der Verteilung ρ von X 1 und Übergangswahrscheinlichkeiten

Mehr

Vorlesung 7a. Unabhängigkeit

Vorlesung 7a. Unabhängigkeit Vorlesung 7a Unabhängigkeit 1 Wir erinnern an die Definition der Unabhängigkeit von zwei Zufallsvariablen (Buch S. 61): Zufallsvariable X 1,X 2 heißen (stochastisch) unabhängig, falls für alle Ereignisse

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

Vorlesung 9b. Bedingte Verteilung, bedingte Wahrscheinlichkeiten

Vorlesung 9b. Bedingte Verteilung, bedingte Wahrscheinlichkeiten Vorlesung 9b Bedingte Verteilung, bedingte Wahrscheinlichkeiten 1 1. Zerlegung der gemeinsamen Verteilung (Buch S. 111) 2 Bisher legten wir das Hauptaugenmerk auf den Aufbau der gemeinsamen Verteilung

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

K3 (Diskrete) Zufallsvariablen 3.1 Basis

K3 (Diskrete) Zufallsvariablen 3.1 Basis K3 (Diskrete) Zufallsvariablen 3.1 Basis Ω = {ω}, X(ω) ist eine Größe die durch ω bestimmt ist. Bei der zufälligen Auswahl von ω bekommen wir den Wert, X(ω). Definition: Ist (Ω, F, P) ein Wahrscheinlichkeitsraum

Mehr

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können.

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. 2 Zufallsvariable 2.1 Einführung Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. Eine Zufallsvariable X ordnet jedem elementaren Versuchsausgang

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 0/ 5.03.0 Dr. Sebastian Petersen Klausur: Diskrete Strukturen I Aufgabe. (8 Punkte) a) Sei X = {0, }. Geben Sie die Potenzmenge P (X) (durch Auflisten ihrer Elemente) an.

Mehr

Vorlesung 5a. Zufallsvariable mit Dichten

Vorlesung 5a. Zufallsvariable mit Dichten Vorlesung 5a 1 Vorlesung 5a Zufallsvariable mit Dichten Vorlesung 5a Zufallsvariable mit Dichten Teil 1 Uniforme Verteilung, Exponentialverteilung. Kontinuierlich uniform verteilte Zufallsvariable: 2 Kontinuierlich

Mehr

Vorlesung 8b. Zweistufige Zufallsexperimente. Teil 1

Vorlesung 8b. Zweistufige Zufallsexperimente. Teil 1 Vorlesung 8b Zweistufige Zufallsexperimente Teil 1 1 Stellen wir uns ein zufälliges Paar X = (X 1, X 2 ) vor, das auf zweistufige Weise zustande kommt: es gibt eine Regel, die besagt, wie X 2 verteilt

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

Diskrete Strukturen I

Diskrete Strukturen I Universität Kassel Fachbereich 10/1 PD Dr. Sebastian Petersen 14.09.2017 Klausur zur Vorlesung Diskrete Strukturen I Es können maximal 40 Punkte erreicht werden. Version mit Lösungsskizze Zur Notation:

Mehr

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück STOCHASTISCHE UNABHÄNGIGKEIT Annika Pohlmann Philipp Oel Wilhelm Dück 1 GLIEDERUNG 1) Bedingte Wahrscheinlichkeiten 2) Unabhängigkeit für mehr als zwei Ereignisse 3) Unabhängigkeit für Zufallsvariable

Mehr

Vorlesung 8b. Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten

Vorlesung 8b. Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten Vorlesung 8b Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten 1 Wie gehabt, denken wir uns ein zufälliges Paar X = (X 1,X 2 ) auf zweistufige Weise zustande gekommen:

Mehr

Vorlesung 5b. Zufallsvariable mit Dichten

Vorlesung 5b. Zufallsvariable mit Dichten Vorlesung 5b 1 Vorlesung 5b Zufallsvariable mit Dichten Vorlesung 5b Zufallsvariable mit Dichten Wiederholung aus Vorlesung 2b+: Kontinuierlich uniform verteilte Zufallsvariable: Sei S eine Teilmenge des

Mehr

Vorlesung 2a. Diskret uniform verteilte Zufallsvariable. (Buch S. 6-11)

Vorlesung 2a. Diskret uniform verteilte Zufallsvariable. (Buch S. 6-11) Vorlesung 2a Diskret uniform verteilte Zufallsvariable (Buch S. 6-11) 1 0. Erinnerung und Auftakt 2 Sei S eine endliche Menge. Eine Zufallsvariable X heißt diskret uniform verteilt auf S, wenn P(X = a)

Mehr

Vorlesung 7b. Unabhängigkeit bei Dichten. und die mehrdimensionale Standardnormalverteilung

Vorlesung 7b. Unabhängigkeit bei Dichten. und die mehrdimensionale Standardnormalverteilung Vorlesung 7b Unabhängigkeit bei Dichten und die mehrdimensionale Standardnormalverteilung 0. Wiederholung: Die Normalverteilung Dichtefunktion ϕ der Standardnormalverteilung ϕ(x) 0.0 0.1 0.2 0.3 0.4 4

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

KAPITEL 5. Erwartungswert

KAPITEL 5. Erwartungswert KAPITEL 5 Erwartungswert Wir betrachten einen diskreten Wahrscheinlichkeitsraum (Ω, P) und eine Zufallsvariable X : Ω R auf diesem Wahrscheinlichkeitsraum. Die Grundmenge Ω hat also nur endlich oder abzählbar

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 10/16 13.09.01 Klausur: Diskrete Strukturen I Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede Aufgabe ein neues Blatt an. Beschreiben Sie

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2016 Prof. Dr. Stefan Etschberger Hochschule Augsburg Zufallsvariablen Beschreibung von Ereignissen

Mehr

Modelle diskreter Zufallsvariablen

Modelle diskreter Zufallsvariablen Statistik 2 für SoziologInnen Modelle diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Zufallsvariable Eine Variable (Merkmal) X, deren numerische Werte als Ergebnisse eines Zufallsvorgangs aufgefasst

Mehr

Zufallsvariable: Verteilungen & Kennzahlen

Zufallsvariable: Verteilungen & Kennzahlen Mathematik II für Biologen 12. Juni 2015 Zufallsvariable Kennzahlen: Erwartungswert Kennzahlen: Varianz Kennzahlen: Erwartungstreue Verteilungsfunktion Beispiel: Exponentialverteilung Kennzahlen: Erwartungswert

Mehr

Multivariate Zufallsvariablen

Multivariate Zufallsvariablen Kapitel 7 Multivariate Zufallsvariablen 7.1 Diskrete Zufallsvariablen Bisher haben wir immer nur eine Zufallsvariable betrachtet. Bei vielen Anwendungen sind aber mehrere Zufallsvariablen von Interesse.

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 30. April 2018 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 4 Version: 24.

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 11 Diskrete Zufallsvariablen 11.1. Wahrscheinlichkeits- und diskret Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsfunktion von X Nimmt abzählbare Anzahl von Ausprägungen an (z.b. Zählvariablen)

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 3. Vorlesung - 21.10.2016 Bedingte Wahrscheinlichkeit In einer Urne sind 2 grüne und 3 blaue Kugeln. 2 Kugeln werden ohne Zürücklegen gezogen. Welches ist die Wahrscheinlichkeit, dass : a) man eine grüne

Mehr

Diskrete Strukturen WiSe 2012/13 in Trier

Diskrete Strukturen WiSe 2012/13 in Trier Diskrete Strukturen WiSe 2012/13 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 11. Januar 2013 1 Diskrete Strukturen Gesamtübersicht Organisatorisches und Einführung Mengenlehre Relationen

Mehr

1 Grundlagen Wahrscheinlichkeitsrechung

1 Grundlagen Wahrscheinlichkeitsrechung 1 Grundlagen Wahrscheinlichkeitsrechung 1.1 Grundbegriffe Alle möglichen Ereignisse eines Zufallsexperiments fassen wir in einer Ereignismenge Ω zusammen. Ereignisse sind Teilmengen von Ω. Umfasst das

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Unabhängigkeit von Ereignissen A, B unabhängig:

Mehr

67 Zufallsvariable, Erwartungswert, Varianz

67 Zufallsvariable, Erwartungswert, Varianz 67 Zufallsvariable, Erwartungswert, Varianz 67.1 Motivation Oft möchte man dem Resultat eines Zufallsexperiments eine reelle Zahl zuordnen. Der Gewinn bei einem Glücksspiel ist ein Beispiel hierfür. In

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen:

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 Diskrete Verteilungen 1 Kapitel 5: Diskrete Verteilungen A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 0.6 x 0.4 5 x (i) P x (x)

Mehr

Vorlesung 8b. Zweistufige Zufallsexperimente. Teil 2

Vorlesung 8b. Zweistufige Zufallsexperimente. Teil 2 Vorlesung 8b Zweistufige Zufallsexperimente Teil 2 1 Wie gehabt, denken wir uns ein zufälliges Paar X = (X 1,X 2 ) auf zweistufige Weise zustande gekommen: P(X 1 = a 1,X 2 = a 2 ) = P(X 1 = a 1 )P a1 (X

Mehr

Vorlesung 9b. Bedingte Verteilungen und bedingte Wahrscheinlichkeiten

Vorlesung 9b. Bedingte Verteilungen und bedingte Wahrscheinlichkeiten Vorlesung 9b Bedingte Verteilungen und bedingte Wahrscheinlichkeiten 1 Voriges Mal: Aufbau der gemeinsamen Verteilung von X 1 und X 2 aus der Verteilung ρ von X 1 und Übergangswahrscheinlichkeiten P(a

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 4. Vorlesung - 2017 Diskrete Zufallsgrößen X : Ω {x 1, x 2,..., x i,... } Wahrscheinlichkeitsverteilung von X ( ) x1 x X 2... x i... = p 1 p 2... p i... I N (Indexmenge) mit den Wahrscheinlichkeiten p

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass f Z (z) = Pr[Z = z] = x W X Pr[X + Y = z X = x] Pr[X = x] = x W X Pr[Y = z x] Pr[X = x] = x W X f X (x) f Y (z x). Den Ausdruck

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 12.02.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Vorlesung 7a. Der Zentrale Grenzwertsatz

Vorlesung 7a. Der Zentrale Grenzwertsatz Vorlesung 7a Der Zentrale Grenzwertsatz als Erlebnis und Das Schwache Gesetz der Großen Zahlen Wiederholung: Die Normalverteilung Dichtefunktion ϕ der Standardnormalverteilung ϕ(x) 0.0 0.1 0.2 0.3 0.4

Mehr

1.5 Mehrdimensionale Verteilungen

1.5 Mehrdimensionale Verteilungen Poisson eine gute Näherung, da np = 0 und 500p = 5 00 = n. Wir erhalten somit als Näherung Exakte Rechnung ergibt P(2 X 0) = k=2 0 k=2 π (k) = 0,26424. 0 ( ) 00 P(2 X 0) = 0,0 k 0,99 00 k = 0,264238. k.4.2.4

Mehr

Vorlesung 6b. Zufallsvariable mit Dichten. Teil 1 Uniforme Verteilung & Co.

Vorlesung 6b. Zufallsvariable mit Dichten. Teil 1 Uniforme Verteilung & Co. Vorlesung 6b Zufallsvariable mit Dichten Teil 1 Uniforme Verteilung & Co. 1 1. Uniforme Verteilung auf dem Einheitsintervall 2 Eine Zufallsvariable X mit Zielbereich S = [0, 1] heißt uniform verteilt auf

Mehr

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7.1 Die Laplace-Verteilung Sei X eine gleich verteilte Zufallsvariable mit den Werten in der Menge Ω X = {x i R : i = 1,...,n}, d.h. f (x i = 1

Mehr

Konversatorium -Vorbereitung für die erste Diplomprüfung - Stochas0k. -Wahrscheinlichkeitstheorie-

Konversatorium -Vorbereitung für die erste Diplomprüfung - Stochas0k. -Wahrscheinlichkeitstheorie- Konversatorium -Vorbereitung für die erste Diplomprüfung - Stochas0k -Wahrscheinlichkeitstheorie- Begriffsdefini=on Stochas=k altgriechisch stochas=kē technē, lateinisch ars conjectandi, Die Kunst des

Mehr

Zufallsvariable X. 30 e. 40 e = 33,33...% 6

Zufallsvariable X. 30 e. 40 e = 33,33...% 6 Zufallsvariable Wir führen ein Zufallsexperiment mit Ergebnisraum Ω durch. Eine Zufallsvariable X ordnet jedem möglichen Ergebnis einen Zahlenwert zu. Eine Zufallsvariable ist also eine Funktion X : Ω

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 stheorie: Grundbegriffe Prof. Dr. Achim Klenke http://www.aklenke.de 5. Vorlesung: 25.11.2011 1/33 Inhalt 1 Zufallsvariablen 2 Ereignisse 3 2/33 Zufallsvariablen Eine Zufallsvariable

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression Übungsklausur Wahrscheinlichkeit und Regression 1. Welche der folgenden Aussagen treffen auf ein Zufallsexperiment zu? a) Ein Zufallsexperiment ist ein empirisches Phänomen, das in stochastischen Modellen

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

8 Zufallsvariablen und Verteilungen. Themen: Zufallsvariablen Verteilungen Gesetz der großen Zahlen

8 Zufallsvariablen und Verteilungen. Themen: Zufallsvariablen Verteilungen Gesetz der großen Zahlen 8 Zufallsvariablen und Verteilungen Themen: Zufallsvariablen Verteilungen Gesetz der großen Zahlen 8.1 Zufallsvariablen (Ω, P) = Wahrscheinlichkeitsraum. X : Ω Ê heißt Zufallsvariable. 8.1 Zufallsvariablen

Mehr

Die Funktion f X;Y (x; y) := Pr[X = x; Y = y] heit gemeinsame Dichte der Zufallsvariablen X und Y. Aus der gemeinsamen Dichte f X;Y kann man ableiten

Die Funktion f X;Y (x; y) := Pr[X = x; Y = y] heit gemeinsame Dichte der Zufallsvariablen X und Y. Aus der gemeinsamen Dichte f X;Y kann man ableiten Die Funktion f ;Y (x; y) := Pr[ = x; Y = y] heit gemeinsame Dichte der Zufallsvariablen und Y. Aus der gemeinsamen Dichte f ;Y kann man ableiten f (x) = y2w Y f ;Y (x; y) bzw. f Y (y) = Die Funktionen

Mehr

Biostatistik, WS 2010/2011 Grundlagen aus der Wahrscheinlichkeitstheorie

Biostatistik, WS 2010/2011 Grundlagen aus der Wahrscheinlichkeitstheorie 1/73 Biostatistik, WS 2010/2011 Grundlagen aus der Wahrscheinlichkeitstheorie Matthias Birkner http://www.mathematik.uni-mainz.de/~birkner/biostatistik1011/ 3.12.2010 2/73 1 Deterministische und zufällige

Mehr

i Pr(X = i). Bsp: Sei X die Summe zweier Würfe eines Würfels. Dann gilt E[X] =

i Pr(X = i). Bsp: Sei X die Summe zweier Würfe eines Würfels. Dann gilt E[X] = Erwartungswert Definition Erwartungswert Der Erwartungswert einer diskreten ZV ist definiert als E[X] = i i Pr(X = i). E[X] ist endlich, falls i i Pr(X = i) konvergiert, sonst unendlich. Bsp: Sei X die

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Marcel Thoms Mathematik Online Herbst 211 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 10/1 13.03.2013 Klausur: Diskrete Strukturen I Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede Aufgabe ein neues Blatt an. Beschreiben Sie

Mehr

Sabrina Kallus, Eva Lotte Reinartz, André Salé

Sabrina Kallus, Eva Lotte Reinartz, André Salé Sabrina Kallus, Eva Lotte Reinartz, André Salé } Wiederholung (Zufallsvariable) } Erwartungswert Was ist das? } Erwartungswert: diskrete endliche Räume } Erwartungswert: Räume mit Dichten } Eigenschaften

Mehr

Vorlesung 9b. Bedingte Wahrscheinlichkeiten und bedingte Erwartungswerte

Vorlesung 9b. Bedingte Wahrscheinlichkeiten und bedingte Erwartungswerte Vorlesung 9b Bedingte Wahrscheinlichkeiten und bedingte Erwartungswerte 1 Definition. Seien E 1, E 2 Ereignisse. Dann ist die bedingte Wahrscheinlichkeit von E 2, gegeben E 1, definiert als P(E 2 E 1 )

Mehr

Statistik für Informatiker, SS Erwartungswert, Varianz und Kovarianz

Statistik für Informatiker, SS Erwartungswert, Varianz und Kovarianz 1/65 Statistik für Informatiker, SS 2017 1.3 Erwartungswert, Varianz und Kovarianz Matthias Birkner http://www.staff.uni-mainz.de/birkner/statinfo17/ 7.6.2017 / 14.6.2017 2/65 Der Erwartungswert ist eine

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

Vorwort Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße Erwartungswert und Varianz...

Vorwort Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße Erwartungswert und Varianz... Inhaltsverzeichnis Vorwort... 2 Zum Einstieg... 3 1 Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße... 5 1.2 Erwartungswert und Varianz... 7 2 Wahrscheinlichkeitsverteilungen

Mehr

Vorkurs Mathematik. Christoph Hindermann. Wahrscheinlichkeitstheorie

Vorkurs Mathematik. Christoph Hindermann. Wahrscheinlichkeitstheorie Kapitel 4 Christoph Hindermann Vorkurs Mathematik 1 4.0 Motivation Wenn 100 Münzen geworfen werden, wie ist dann die Wahrscheinlichkeit, dass genau 50 davon Kopf zeigen? Angenommen, es befinden sich 300

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

Diskrete Verteilungen

Diskrete Verteilungen Diskrete Verteilungen Bernoulli-Verteilung: X Bernoulli(p) Symbol für «verteilt wie» «Eperiment» mit zwei Ausgängen: «Erfolg» ( 1) oder «Misserfolg» ( ). Die Erfolgswahrscheinlichkeit sei p. Wertebereich

Mehr

Stochastik. Peter Pfaffelhuber

Stochastik. Peter Pfaffelhuber Stochastik Peter Pfaffelhuber 1 Grundlegende Bemerkungen Vorlesung orientiert sich an G. Kersting und A. Wakolbinger. Elementare Stochastik. Birkhäuser, 2008 Übungen Volker Pohl Praktikum Ernst August

Mehr

Statistik für Informatiker, SS Erwartungswert, Varianz und Kovarianz

Statistik für Informatiker, SS Erwartungswert, Varianz und Kovarianz Erwartungswert, Varianz und Kovarianz 1/65 Statistik für Informatiker, SS 2018 1.4 Erwartungswert, Varianz und Kovarianz Matthias Birkner http://www.staff.uni-mainz.de/birkner/statinfo18/ 14.5.2018 / 28.5.2018

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenho Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2 Elementare

Mehr

Die Probabilistische Methode

Die Probabilistische Methode Die Probabilistische Methode Wladimir Fridman 233827 Hauptseminar im Sommersemester 2004 Extremal Combinatorics Zusammenfassung Die Probabilistische Methode ist ein mächtiges Werkzeug zum Führen von Existenzbeweisen.

Mehr

Ü b u n g s b l a t t 7

Ü b u n g s b l a t t 7 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 21. 5. 2007 Ü b u n g s b l a t t 7 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 08.01.2009 Numerische Methoden und Algorithmen in der Physik Hartmut Stadie 1/ 32 Einführung Wahrscheinlichkeit Verteilungen

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/51 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Verteilungen, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 8. Vorlesung: 09.06.2017 2/51 Inhalt 1 Verteilungen Normalverteilung Normalapproximation

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Vertiefung NWI: 8. Vorlesung zur Wahrscheinlichkeitstheorie

Vertiefung NWI: 8. Vorlesung zur Wahrscheinlichkeitstheorie Fakultät für Mathematik Prof. Dr. Barbara Gentz SS 2013 Vertiefung NWI: 8. Vorlesung zur Wahrscheinlichkeitstheorie Mittwoch, 5.6.2013 8. Unabhängigkeit von Zufallsgrößen, Erwartungswert und Varianz 8.1

Mehr

1.3 Zufallsgrößen und Verteilungsfunktionen

1.3 Zufallsgrößen und Verteilungsfunktionen .3 Zufallsgrößen und Verteilungsfunktionen.3. Einführung Vielfach sind die Ergebnisse von Zufallsversuchen Zahlenwerte. Häufig möchte man aber auch in den Fällen, wo dies nicht so ist, Zahlenwerte zur

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Denition 57 Eine geometrisch verteilte Zufallsvariable X mit Parameter (Erfolgswahrscheinlichkeit) p 2 (0; 1] und q := 1 p hat die Dichte

Denition 57 Eine geometrisch verteilte Zufallsvariable X mit Parameter (Erfolgswahrscheinlichkeit) p 2 (0; 1] und q := 1 p hat die Dichte 5.3 Geometrische Verteilung Man betrachte ein Experiment, das so lange wiederholt wird, bis Erfolg eintritt. Gelingt ein einzelner Versuch mit Wahrscheinlichkeit p, so ist die Anzahl der Versuche bis zum

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge der Elementarereignisse

Mehr

Vorlesung 8b. Bedingte Erwartung und bedingte Varianz

Vorlesung 8b. Bedingte Erwartung und bedingte Varianz Vorlesung 8b Bedingte Erwartung und bedingte Varianz 1 1. Zerlegung eines Erwartungswertes nach der ersten Stufe (Buch S. 91) 2 Wie in der vorigen Vorlesung betrachten wir die gemeinsame Verteilung von

Mehr