Grenzflächen-Phänomene

Größe: px
Ab Seite anzeigen:

Download "Grenzflächen-Phänomene"

Transkript

1 Grenzflächen-Phänomene Oberflächenspannung Betrachtet: Grenzfläche Flüssigkeit-Gas Kräfte Fl Fl grösser als Fl Gas im Inneren der Flüssigkeit: kräftefrei an der Oberfläche: resultierende Kraft ins Innere der Flüssigkeit Arbeit W erforderlich, um Teilchen an die Oberfläche zu bringen Ein Molekül an der Oberfläche hat eine um W höhere Energie als ein Molekül im Inneren. will man die Oberfläche um A vergrößern, müssen Moleküle an die Oberfläche gebracht werden W Definition: W/ A = ε [J/m 2 ] [d.h. ε = spezifische Oberflächen-Energie W ε= ] A 225

2 Bestimmung der Oberflächenspannung durch Messung der Kraft auf einen Querbügel, der eine Flüssigkeitslamelle ausdehnt Oberfläche: A = 2 ( s) durch F s A = 2 s W = F s W = A = ε A = ε 2 s A F= ε 2 Definition: ε = σ F 2 =σ Oberflächenspannung (Zugspannung) 226

3 Merkwürdiges zu Seifenblasen Oberflächenspannung führt dazu: Oberfläche soll möglichst klein sein Größe der Oberfläche variiert mit r 2 kleinere Oberfläche größerer Druck bestimmt durch Volumenänderung Größe des Volumens variiert mit r 3 Oberfläche kleiner: Energiegewinn W σ dadurch möglich: Kompressionsarbeit W p,v Einschub: Arbeit bei Volumenänderung dw = F dx p = F/A dw = p A dx = p dv 227

4 Radius r reduziert bis W σ = W p,v W σ = ε A W p,v = p V A = 4 π r 2-4 π (r - r) 2 V = 4 π r 2 r (Innen- und Außenseite) ε 2 [4 π r 2-4 π (r - r) 2 ] = p 4 π r 2 r ε 8 2 r r = p 4 π r 2 r ( r 2 << r 2 ) p = 4 ε / r Arbeit für Kompression um p aus W σ verfügbar p r -1 steigt mit sinkendem r Messung des Überdrucks p in einer Seifenblase auf Grund der Oberflächenspannung Druck (im Gleichgewicht) im Inneren ist für die größere Blase kleiner bei Verbindung von zwei unterschiedlich großen Blasen: die kleinere Blase drückt das Gas in ihrem Inneren in die größere Blase 228

5 Das unsoziale Verhalten von Seifenblasen Zusammenfassung: Oberflächenenergie ( Fläche) r 2 Volumen, Druck, Kompressionsarbeit: r 3 Verkleinerung des Volumens: Verringerung der Oberflächenenergie, aber Arbeit (Kompression) muss geleistet werden Bilanz: Druck in der Blase 1/r kleinere Blase drückt Luft in größere allgemein gilt: Bei positiver Oberflächenenergie ε versucht jede Flüssigkeit bei vorgegebenem Volumen eine Form mit minimaler Oberfläche einzunehmen. 229

6 Kräfte an Grenzflächen analog zur Oberflächenspannung: Grenzflächenspannung σik ε ik Grenzflächenenergie = Energie, die man aufwenden muss (bzw. gewinnt), wenn die Grenzfläche der Phase i gegen die Phase k um 1 m 2 vergrößert wird. 230

7 flüssig-fest Grenzfläche Oberflächenspannung (OFS) = Kraft auf Linienelement tangential zur Oberfläche σ 1,3 = OFS an Grenze fest-gasförmig-flüssig σ 2,3 = OFS an Grenze flüssig-gasförmig σ 1,2 = OFS an Grenze fest-flüssig fest σ 1,3 σ 1,2 σ 2,3 Gas flüssig ϕ σ1,3 σ1,2 σ cos ϕ 2,3 σ 1,3 - σ 1,2 führt zu Bewegung längs der festen Oberfläche dadurch Flüssigkeitsoberfläche gekrümmt σ 2,3 wirkt tangential σ 2,3 cos ϕ führt auf F = 0 (Gleichgewicht) σ σ = σ cosϕ 1,3 1,2 2,3 cos ϕ= σ σ 1,3 1,2 σ 2,3 231

8 man unterscheidet: (ohne Schwerkraft) σ 1,3 > σ1,2 σ 1,3 <σ1,2 benetzend nicht benetzend Bsp. Wasser Glas Luft Bsp. Quecksilber Glas Luft σ1,3 σ 1,2 > σ2,3 vollständig benetzend falls nicht vollständig benetzt: Vektorsumme der auftretenden Kräfte steht senkrecht zur Flüssigkeitsoberfläche, d.h. Tangentialkomponente muss Null sein. 232

9 Zur Bildung eines Flüssigkeitstropfens auf der Oberfläche einer anderen Flüssigkeit falls σ 1,3 > σ 2,3 +σ 1,2 Tropfen wird auseinander gezogen zu einer dünnen Schicht falls σ 1,3 < σ 2,3 +σ 1,2 Tropfenbildung 233

10 Kapillarkräfte angenommen: vollständig benetzende Flüssigkeit, d.h. die ganze Innenfläche des leeren Zylinderteils ist mit Flüssigkeit ausgekleidet. Hub der Flüssigkeit um dh: de pot = m g dh Oberfläche der Flüssigkeit verringert um da = 2 π r dh, dh Oberflächenenergie verringert um de ob = σ da = σ 2 π r dh σ = σ 2,3 de = de pot - de ob = m g dh - σ 2π r dh = 0 mg = σ 2π r = ρ π r 2 h g h = 2 σ / (r g ρ) 1 r 234

11 h = 2 (σ cos ϕ) / (r g ρ) falls nicht voll benetzend bei nicht benetzender Flüssigkeit wie Quecksilber in Glas ist die Lage gerade umgekehrt Kapillardepression Lese: Die Erde als deformierbarer Körper, Demtröder S

12 Die Physik der Gase (I) Elementare Thermodynamik Individuelle Teilchen (Atome, Moleküle) E kin (T) > E pot (gegeben durch gegenseitige Wechselwirkung) keinerlei Nah- oder Fernordnung Eigenschaften bestimmt durch Mittel über Bewegung (und Stöße) vieler Teilchen Makroskopisch: wesentliche Größen sind Druck (p), Volumen (V) und Temperatur (T) sowie deren Zusammenhänge bei langsamen oder schnellen Veränderungen (z.b. p oder V) Mikroskopisch: kinetische Gastheorie 236

13 Gase: stark ( beliebig ) komprimierbar beliebig expandierbar Festkörper (und Flüssigkeiten): nicht komprimierbar außer: extreme Bedingungen, z.b. sog. van-der-waals Molekül-Kristalle bei sehr tiefen Temperaturen ( < 50 K) bei 50 GPa (= 0.5 Mio bar) um ca. 20% komprimierbar Kernfusion: radiale Schockwellen durch Explosion, Dichteerhöhung um Faktor

14 Temperatur qualitatives Maß Gasthermometer Gas in abgeschlossenem Volumen Druck z.b. wie Luftdruck außen gemessen über Flüssigkeitssäulen Erwärmung des Gases (z.b. durch Hand) Expansion, V(T) Volumen konstant gehalten: Druckerhöhung p(t) V(T) oder p(t) als (qualitatives) Maß für T T steigt/sinkt V steigt/sinkt bei p = const. oder p steigt/sinkt, bei V = const. 238

15 Druck Volumen beweglicher Kolben experimentell: Boyle-Mariottsches Gesetz bei T = const. p V = const. V = const. / p p = const. / V dv const. V = = 2 dp p p Definition: Kompressibilität : κ 1 dv = = V dp 2 m N (T = const.) κ 1 = Druck klein, κ groß p Gas lässt sich bei kleinem Druck leichter komprimieren 239

16 mit M V = ρ wird M p = ρ const. p ρ bei konstanter Temperatur ist der Druck p eines Gases proportional zur Dichte ρ Druck 1 N/m 2 = 1 Pa (Pascal) 1 hpa = 10 2 N/m 2 = 10 2 Pa 1 bar = 10 N/cm 2 = 10 5 Pa = 10 3 hpa (Hekto-Pascal) 1 mbar = 10-3 bar (= 0.75 torr) Luftdruck unter Normalbedingungen 1 atm = 1013,25 hpa (= 760 torr) 1 atm = 1,01325 bar 240

17 Einfluss der Kompressibilität Wasser: inkompressibel Dichte unabhängig vom Druck p variiert linear mit h Luft: kompressibel Dichte abhängig vom Druck p variiert exponentiell mit h 241

18 Barometrische Höhenformel (T = const.) Variation des Luftdrucks mit der Höhe Druck p (siehe Hydrostatik) auf Fläche A F A = p = M A g / A = ρ A h g / A = ρ g h Änderung dp bei h h + dh dp = - ρ g dh p V = const. = (p / ρ) M p / ρ = const. (bei T = const.) p o / ρ o = p / ρ ρ = (ρ o /p o ) p dp = - (ρ o /p o ) p g dh dp / p = - (ρ o /p o ) g dh ln p = - (ρ o /p o ) g h + C p(h = 0) = p o C = ln p o ln (p / p o ) = - (ρ o /p o ) g h ρ/ p g h p = p o e ( ) o o beachte: ρ O/pO ist temperaturabhängig 242

19 später: p V = R T p (M/ρ) = R T (V = Mol-Volumen) (M = Masse von 1 Mol) (p /ρ) = R T / M (ρ /p) = M / R T (ρ o /p o ) g h = (M g h )/ R T p = p o e - (M g h ) / R T thermische Energie potentielle Energie M / L = m R/L = k (L = Avogardo-Konstante) (m = Masse eines Teilchens) (k = Boltzmann-Konstante) p = p o e - (m g h )/ k T 243

20 Barometrische Höhenformel p = p o e ( ) ρ /p g h o o für isotherme Luftsäule Zahlenwerte: ρ o (Luft, h = 0) = 1,24 kg/m 3 (bei p o ) p o (Normaldr.) = 1013 hpa = N/m 2 p = p o e -h/8330 (h in [m]) h 1 = 8330 m Druck sinkt auf p(h 1 ) = p o /e h 2 = 5770 m Druck sinkt auf p(h 1 ) = ½ p o 244

Münze auf Wasser: Resultierende F gegen Münze: Wegrdrängen der. der Moleküle aus Oberfl. analog zu Gummihaut.

Münze auf Wasser: Resultierende F gegen Münze: Wegrdrängen der. der Moleküle aus Oberfl. analog zu Gummihaut. 5.3 Oberflächenspannung mewae/aktscr/kap5_3_oberflsp/kap5_3_s4.tex 20031214 Anziehende Molekularkräfte (ànm) zwischen Molekülen des gleichen Stoffes: Kohäsionskräfte,...verschiedene Stoffe: Adhäsionskräfte

Mehr

9.Vorlesung EP WS2009/10

9.Vorlesung EP WS2009/10 9.Vorlesung EP WS2009/10 I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität 6. Hydro- und Aerodynamik

Mehr

107 Oberflächenspannung (Bügel- und Steighöhenmethode)

107 Oberflächenspannung (Bügel- und Steighöhenmethode) 107 Oberflächenspannung (Bügel- und Steighöhenmethode) 1. Aufgaben 1.1 Bestimmen Sie die Oberflächenspannung von Wasser und von Spülmittellösungen unterschiedlicher Konzentrationen mit der Abreißmethode!

Mehr

Kapitel 2 Thermische Ausdehnung

Kapitel 2 Thermische Ausdehnung Kapitel 2 Thermische Ausdehnung Die Ausdehnung von Festkörpern, Flüssigkeiten und Gasen hängt von der Temperatur ab. Für Festkörper und Flüssigkeiten ist diese temperaturabhängige Ausdehnung zusätzlich

Mehr

3. Mechanik deformierbarer Körper Gasdruck: Gesetz von Boyle-Mariotte

3. Mechanik deformierbarer Körper Gasdruck: Gesetz von Boyle-Mariotte Gasdruck: Gesetz von Boyle-Mariotte Bei konstanter Teilchenzahl und Temperatur ist das Produkt aus Druck p und Volumen V konstant VL 13/1 30.10.2012 Brustkorb Lungenaktion 3. Mechanik deformierbarer Körper

Mehr

Temperatur. Gebräuchliche Thermometer

Temperatur. Gebräuchliche Thermometer Temperatur Wärme ist Form von mechanischer Energie Umwandlung Wärme mechanische Energie ist möglich! Thermometer Messung der absoluten Temperatur ist aufwendig Menschliche Sinnesorgane sind schlechte "Thermometer"!

Mehr

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig)

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Ideale und Reale Gase Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Wann sind reale Gase ideal? Reale Gase verhalten sich wie ideale Gase

Mehr

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten In Anwesenheit eines äußeren magnetischen Felds B entsteht in der paramagnetischen Phase eine induzierte Magnetisierung M. In der ferromagnetischen Phase führt B zu einer Verschiebung der Magnetisierung

Mehr

2.8 Grenzflächeneffekte

2.8 Grenzflächeneffekte - 86-2.8 Grenzflächeneffekte 2.8.1 Oberflächenspannung An Grenzflächen treten besondere Effekte auf, welche im Volumen nicht beobachtbar sind. Die molekulare Grundlage dafür sind Kohäsionskräfte, d.h.

Mehr

Aufbau der Materie: Oberflächenspannung von Flüssigkeiten EÖTVÖSsche Regel

Aufbau der Materie: Oberflächenspannung von Flüssigkeiten EÖTVÖSsche Regel Hochschule Physikalische Chemie Vers.Nr. 11 Emden / Leer Praktikum Sept. 2005 Aufbau der Materie: Oberflächenspannung von Flüssigkeiten EÖTVÖSsche Regel In diesem Versuch soll die Oberflächenspannung einer

Mehr

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen)

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen) 10. Wärmelehre Temperatur aus mikroskopischer Theorie: = 3/2 kt = ½ m = 0 T = 0 quantitative Messung von T nutzbares Maß? grundsätzlich Mittel über große Zahl von Teilchen thermisches

Mehr

Kräfte zwischen Teilchen (Atomen) eines Gases und deren Idealisierung

Kräfte zwischen Teilchen (Atomen) eines Gases und deren Idealisierung kinetische Gastheorie Zurückführung der makroskopischen Zusammenhänge: p(v,t) auf mikroskopische Ursachen. Atomistische Natur der Gase lange umstritten, Akzeptanz Ende 19. Jahrh., Boltzmann. Modell des

Mehr

Hydrostatik II - Grenzflächenerscheinungen

Hydrostatik II - Grenzflächenerscheinungen Physik A VL16 (15.11.2012) Hydrostatik II - Grenzflächenerscheinungen Kohäsion und Adhäsion Die Oberflächenspannung Benetzung und Kapillarwirkung 1 Kohäsion und Adhäsion Grenzflächenerscheinungen Moleküle

Mehr

5. Vorlesung Grundlagen der Produktgestaltung WS 2008/2009

5. Vorlesung Grundlagen der Produktgestaltung WS 2008/2009 5. Vorlesung Grundlagen der Produktgestaltung WS 2008/2009 Kapitel 1 Einführung 21.10. 1. Einführung 28.10. 2. Beispiel Intelligentes Herbizid, Miniprojekt Produkt-Analyse Kapitel 2 Grundlegende Prinzipien

Mehr

Energieumsatz bei Phasenübergang

Energieumsatz bei Phasenübergang Energieumsatz bei Phasenübergang wenn E Vib > E Bindung schmelzen verdampfen Q Aufbrechen von Bindungen Kondensation: Bildung von Bindungen E Bindung Q E Transl. E Bindung für System A B durch Stöße auf

Mehr

Formel X Leistungskurs Physik 2005/2006

Formel X Leistungskurs Physik 2005/2006 System: Wir betrachten ein Fluid (Bild, Gas oder Flüssigkeit), das sich in einem Zylinder befindet, der durch einen Kolben verschlossen ist. In der Thermodynamik bezeichnet man den Gegenstand der Betrachtung

Mehr

Themengebiet: Thermodynamik. mol K. mol. ] eines Stoffes bestehend aus n Mol mit der Masse m gilt. M = m n. (2)

Themengebiet: Thermodynamik. mol K. mol. ] eines Stoffes bestehend aus n Mol mit der Masse m gilt. M = m n. (2) Seite 1 Themengebiet: Thermodynamik 1 Literatur D. Meschede, Gerthsen Physik, Springer F. Kohlrausch, Praktische Physik, Band 2, Teubner R.P. Feynman, R.B. Leighton und M. Sands, Feynman-Vorlesungen über

Mehr

8.6 Thermodynamik der Grenzflächen

8.6 Thermodynamik der Grenzflächen 8.6 Thermodynamik der Grenzflächen 8.6.1 Einführung Innerhalb jeder homogenen Phase erfährt ein Molekül allseitige Anziehungskräfte durch die nächsten Nachbarn Isotropie. Diese Anziehungskräfte heben sich

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

Brahe Kepler. Bacon Descartes

Brahe Kepler. Bacon Descartes Newton s Mechanics Stellar Orbits! Brahe Kepler Gravity! Actio = Reactio F = d dt p Gallilei Galilei! Bacon Descartes Leibnitz Leibniz! 1 Statistical Mechanics Steam Engine! Energy Conservation Kinematic

Mehr

6 Mechanik deformierbarer Körper

6 Mechanik deformierbarer Körper 6-1 6 Mechanik deformierbarer Körper 6.1 Deformierbarer fester Körper Rechtsstehende Abbildung (Bild 2-85 HMS) zeigt das Spannungs-Dehnungs-Diagramm eines Federstahls, wobei die relative Dehnung ε l ε

Mehr

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1 Thermische Isolierung mit Hilfe von Vakuum 9.1.2013 Thermische Isolierung 1 Einleitung Wieso nutzt man Isolierkannen / Dewargefäße, wenn man ein Getränk über eine möglichst lange Zeit heiß (oder auch kalt)

Mehr

Einführung in die Physik I. Mechanik deformierbarer Körper 1. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Mechanik deformierbarer Körper 1. O. von der Lühe und U. Landgraf Einführung in die Physik I Mechanik deformierbarer Körer O. von der Lühe und U. Landgraf Deformationen Deformationen, die das olumen ändern Dehnung Stauchung Deformationen, die das olumen nicht ändern

Mehr

Technische Universität München Lehrstuhl I für Technische Chemie

Technische Universität München Lehrstuhl I für Technische Chemie Technische Universität München Lehrstuhl I für Technische Chemie Klausur WS 2012/2013 zur Vorlesung Grenzflächenprozesse Prof. Dr.-Ing. K.-O. Hinrichsen, Dr. T. Michel Frage 1: Es ist stets nur eine Antwort

Mehr

b) Hydrostatik, Aerostatik (Fortsetzung) Schweredruck:

b) Hydrostatik, Aerostatik (Fortsetzung) Schweredruck: b) Hydrostatik, Aerostatik (Fortsetzung) Schweredruck: = Druck einer senkrecht über einer Fläche A Stehenden Substanz (auch Flächen innerhalb der Flüssigkeit, nicht nur am Boden) Schweredruck steigt linear

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Tropfenkonturanalyse

Tropfenkonturanalyse Phasen und Grenzflächen Tropfenkonturanalyse Abstract Mit Hilfe der Tropfenkonturanalyse kann die Oberflächenspannung einer Flüssigkeit ermittelt werden. Wird die Oberflächenspannung von Tensidlösungen

Mehr

IIX. Ruhende Flüssigkeiten und Gase

IIX. Ruhende Flüssigkeiten und Gase IIX. Ruhende Flüssigkeiten und Gase In diesem Kapitel wollen wir versuchen, die Reaktion von Gasen und Flüssigkeiten auf äußere Einflüsse, insbesondere auf Druck, zu untersuchen. In Kapitel VII hatten

Mehr

Gase, Flüssigkeiten, Feststoffe

Gase, Flüssigkeiten, Feststoffe Gase, Flüssigkeiten, Feststoffe Charakteristische Eigenschaften der Aggregatzustände Gas: Flüssigkeit: Feststoff: Nimmt das Volumen und die Form seines Behälters an. Ist komprimierbar. Fliesst leicht.

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Physikalische Formelsammlung

Physikalische Formelsammlung Physikalische Formelsammlung Gleichförmige Bahnbewegung und Kreisbewegung Bewegungsgleichung für die gleichförmige lineare Bewegung: Winkelgeschwindigkeit bei der gleichmäßigen Kreisbewegung: Zusammenhang

Mehr

MOL - Bestimmung der Molaren Masse nach Dumas

MOL - Bestimmung der Molaren Masse nach Dumas MOL - Bestimmung der Molaren Masse nach Dumas Anfängerpraktikum 2, 2006 Janina Fiehl Daniel Flassig Gruppe 129 Einleitung Das Mol ist, vor allem in der Chemie, als Einheit für die Basisgröße der Stoffmenge

Mehr

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie Einführung in die Physik I Wärme Kinetische Gastheorie O. von der Lühe und U. Landgraf Kinetische Gastheorie - Gasdruck Der Druck in einem mit einem Gas gefüllten Behälter entsteht durch Impulsübertragung

Mehr

M20. Oberflächenspannung

M20. Oberflächenspannung M0 Oberflächenspannung Untersucht werden Kräfte an Ober- bzw. Grenzflächen von Flüssigkeiten und ihre Abhängigkeit von der Temperatur. 1. Theoretische Grundlagen 1.1 Oberflächenspannung, Grenzflächenspannung

Mehr

Universität Kassel, Grundpraktikum Physikalische Chemie im Studiengang Lehramt Chemie

Universität Kassel, Grundpraktikum Physikalische Chemie im Studiengang Lehramt Chemie Versuch 8 Bestimmung der kritischen Mizellbildungskonzentration mit der Blasendruckmethode Themenbereiche: Mizellbildung, kritische Mizellbildungskonzentration, Krafft-Temperatur Oberflächenspannung, Laplace-Gleichung

Mehr

Versuch M9 für Physiker Oberflächenspannung

Versuch M9 für Physiker Oberflächenspannung Versuch M9 für Physiker Oberflächenspannung I. Physikalisches Institut, Raum 103 Stand: 17. Juli 2012 generelle Bemerkungen bitte Versuchsaufbau (rechts, links) angeben bitte Versuchspartner angeben bitte

Mehr

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur Thermodynamik Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur kann voraussagen, ob eine chemische Reaktion abläuft oder nicht kann nichts über den zeitlichen

Mehr

Übungsblatt 1 (13.05.2011)

Übungsblatt 1 (13.05.2011) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 11 Übungsblatt 1 (13.5.11) 1) Wasserstrahl Der aus einem Wasserhahn senkrecht nach unten ausfließende Wasserstrahl verjüngt

Mehr

Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 9. Dezember 2009

Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 9. Dezember 2009 Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 9. Dezember 2009 Inhaltsverzeichnis 4.2 Zustandsgleichungen von Gasen und kinetische Gastheorie........

Mehr

Auf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet:

Auf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet: uf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet: http://www.physik.uni-giessen.de/dueren/ User: duerenvorlesung Password: ******

Mehr

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm Zahlenbeispiele mittlere freie Weglänge: Λ = 1 / (σ n B ) mittlere Zeit zwischen Stößen τ = Λ / < v > Gas: Stickstoff Druck: 1 bar = 10 5 Pa Dichte n = 3 10 19 cm -3 σ = 45 10-16 cm 2 σ ½ 7 10-8 cm = 7

Mehr

Physikalische Chemie: Kreisprozesse

Physikalische Chemie: Kreisprozesse Physikalische Chemie: Kreisprozesse Version vom 29. Mai 2006 Inhaltsverzeichnis 1 Diesel Kreisprozess 2 1.1 Wärmemenge Q.................................. 2 1.2 Arbeit W.....................................

Mehr

Versuch 3. Oberflächenenergie und -spannung. Die Kapillarkonstante ist für Wasser und eine zweite Flüssigkeit nach der Steighöhenmethode zu bestimmen.

Versuch 3. Oberflächenenergie und -spannung. Die Kapillarkonstante ist für Wasser und eine zweite Flüssigkeit nach der Steighöhenmethode zu bestimmen. Versuch 3 Oberflächenenergie und -spannung Aufgaben: Die Kapillarkonstante ist für Wasser und eine zweite Flüssigkeit nach der Steighöhenmethode zu bestimmen. Vorkenntnisse: Kapillarität, Oberflächenspannung

Mehr

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben?

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben? 5.1. Kinetische Gastheorie z.b: He-Gas : 3 10 Atome/cm diese wechselwirken über die elektrische Kraft: Materie besteht aus sehr vielen Atomen: gehorchen den Gesetzen der Mechanik Ziel: Verständnis der

Mehr

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion...

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion... 5 Gase...2 5.1 Das ideale Gasgesetz...2 5.2 Kinetische Gastheorie...3 5.2.1 Geschwindigkeit der Gasteilchen:...5 5.2.2 Diffusion...5 5.2.3 Zusammenstöße...6 5.2.4 Geschwindigkeitsverteilung...6 5.2.5 Partialdruck...7

Mehr

Temperatur Wärme Thermodynamik

Temperatur Wärme Thermodynamik Temperatur Wärme Thermodynamik Stoffwiederholung und Übungsaufgaben... 2 Lösungen... 33 Thermodynamik / 1 Einführung: Temperatur und Wärme Alle Körper haben eine innere Energie, denn sie sind aus komplizierten

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

Gegenstand der letzten Vorlesung

Gegenstand der letzten Vorlesung Thermodynamik - Kinetische Gastheorie (Wdh.) Gegenstand der letzten Vorlesung Einführung in die physikalische Chemie Kinetische Gastheorie (Einführung) Ideales Gas, Zustandsgleichung des idealen Gases

Mehr

11. Ideale Gasgleichung

11. Ideale Gasgleichung . Ideale Gasgleichung.Ideale Gasgleichung Definition eines idealen Gases: Gasmoleküle sind harte punktförmige eilchen, die nur elastische Stöße ausführen und kein Eigenvolumen besitzen. iele Gase zeigen

Mehr

Metallring Flüssigkeitslamelle Flüssigkeit (Wasser +/-Pril)

Metallring Flüssigkeitslamelle Flüssigkeit (Wasser +/-Pril) Name: PartnerIn in Crime: Datum : Versuch: Oberflächenspannung und innere Reibung 1105B Einleitung: Oberflächenspannung wird durch zwischenmolekulare Kräfte kurzer Reichweite hervorgerufen (Kohäsionskräfte).

Mehr

Allgemeine Chemie WS 04/05

Allgemeine Chemie WS 04/05 Allgemeine Chemie WS 04/05 Vorlesung: Dienstag 8:30-10:00, Beginn 19. 10. 2004 Grüner Hörsaal D5104 Übungen: Mittwoch 8:30-9:00, Beginn 20. 10. 2004 Grüner Hörsaal D5104 Gez. Prof. A. J. Meixner für die

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/hermodynamik Wintersemester 2007 ladimir Dyakonov #2 am 10.01.2007 Raum E143, el. 888-5875, email: dyakonov@hysik.uni-wuerzburg.de 10.2 emeraturmessung Wärmeausdehnung

Mehr

1.10. Kapillarität und hydrostatischer Druck

1.10. Kapillarität und hydrostatischer Druck 1.10 Kapillarität und hydrostatischer Druck 127 1.10. Kapillarität und hydrostatischer Druck Ziel Durch Messen der Steighöhe in dünnen Glaskapillaren soll die Oberflächenspannung verschiedener Flüssigkeiten

Mehr

Fluidmechanik Hydrostatik

Fluidmechanik Hydrostatik 2 Hydrostatik... 2 2.1 Grundlagen... 2 2.1.1 Physikalische Eigenschaften der Flüssigkeiten und Gase... 2 2.1.2 Kompressibilität von Gasen und Flüssigkeiten... 6 2.1.3 Druckeinheiten... 8 2.1.4 Hydrostatischer

Mehr

Was ist Physikalische Chemie? Die klassischen Teilgebiete der Physikalischen Chemie sind:

Was ist Physikalische Chemie? Die klassischen Teilgebiete der Physikalischen Chemie sind: Was ist Physikalische Chemie? Die klassischen eilgebiete der Physikalischen Chemie sind: 1) hermodynamik (z. B. Energetik chemischer Reaktionen, Lage von Gleichgewichten). 2) Kinetik chemischer Reaktionen

Mehr

Die Oberflächenspannung

Die Oberflächenspannung Die Oberflächenspannung Theoretische Grundlagen Kohäsionskraft Die Kohäsionskraft, ist diejenige Kraft, die zwischen den Molekülen der Flüssigkeit auftritt. Jedes Molekül übt auf die Umliegenden ein Kraft

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 010 10. 14. Mai 010 Physik für Bauingenieure Übungsblatt 4 1. Wie viele Luftmoleküle befinden sich im Hörsaal Gruppenübungen

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr

Rückblick auf vorherige Vorlesung:

Rückblick auf vorherige Vorlesung: Rückblick auf vorherige Vorlesung: Der Zustand eines Systems wird durch Zustandsgrößen beschrieben 0. Hauptsatz der Thermodynamik Stehen zwei Körper A und B sowie zwei Körper B und C im thermischen Gleichgewicht

Mehr

Physikalische Chemie 0 Klausur, 22. Oktober 2011

Physikalische Chemie 0 Klausur, 22. Oktober 2011 Physikalische Chemie 0 Klausur, 22. Oktober 2011 Bitte beantworten Sie die Fragen direkt auf dem Blatt. Auf jedem Blatt bitte Name, Matrikelnummer und Platznummer angeben. Zu jeder der 25 Fragen werden

Mehr

4. Grenzflächenspannung 1

4. Grenzflächenspannung 1 4. Grenzflächenspannung 1 4. GRENZFLÄCHENSPANNUNG 1. Aufgabe Mit Hilfe der Ringmethode soll die Grenzflächenspannung als Funktion der Konzentration einer grenzflächenaktiven Substanz gemessen werden. Für

Mehr

Kinetische Gastheorie

Kinetische Gastheorie Kinetische Gastheorie Mikroskopischer Zugang zur Wärmelehre ausgehend on Gesetzen aus der Mechanik. Ziel: Beschreibung eines Gases mit ielen wechselwirkenden Atomen. Beschreibung mit Mitteln der Mechanik:

Mehr

Verflüssigung von Gasen / Joule-Thomson-Effekt

Verflüssigung von Gasen / Joule-Thomson-Effekt Sieden und Kondensation: T p T p S S 0 1 RTSp0 1 ln p p0 Dampfdrucktopf, Autoklave zur Sterilisation absolute Luftfeuchtigkeit relative Luftfeuchtigkeit a ( g/m 3 ) a pw rel S ps rel 1 Taupunkt erflüssigung

Mehr

Funktionsweise/Eigenschaften Anwendungen/Beispiele. Tenside. Helge Rütz. 16. November 2007

Funktionsweise/Eigenschaften Anwendungen/Beispiele. Tenside. Helge Rütz. 16. November 2007 Funktionsweise/Eigenschaften Anwendungen/Beispiele 16. November 2007 Funktionsweise/Eigenschaften Anwendungen/Beispiele... sind Substanzen, die Grenzflächenspannung herabsetzen. ermöglichen Vermengung

Mehr

Lernziele zu SoL: Druck, Auftrieb

Lernziele zu SoL: Druck, Auftrieb Lernziele zu SoL: Druck, Auftrieb Theoriefragen: Diese Begriffe müssen Sie auswendig in ein bis zwei Sätzen erklären können. a) Teilchenmodell b) Wie erklärt man die Aggregatzustände im Teilchenmodell?

Mehr

Mit dem Thema Oberflächenspannung

Mit dem Thema Oberflächenspannung Institut für Physikalische Chemie Eine Hausarbeit zu der Vorlesung Physikalische Grenzflächenchemie Mit dem Thema Oberflächenspannung Verfasst von Martin Ciaston Enrico Pibiri 1 Inhaltsverzeichnis 1. Einleitung

Mehr

Gase. Der Druck in Gasen. Auftrieb in Gasen. inkl. Exkurs: Ideale Gase

Gase. Der Druck in Gasen. Auftrieb in Gasen. inkl. Exkurs: Ideale Gase Physik L17 (16.11.212) Der Druck in n inkl. Exkurs: Ideale uftrieb in n 1 Wiederholung: Der Druck in Flüssigkeiten Der Druck in Flüssigkeiten nit it zunehender Tiefe zu: Schweredruck Die oberen Wasserschichten

Mehr

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K Fundamentalgleichung für die Entropie Entropie S [S] = J/K spezifische Entropie: s = S/m molare Entropie: s m = S/n Mit dem 1. Hauptsatz für einen reversiblen Prozess und der Definition für die Entropie

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #12 10/11/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Konvektion Verbunden mit Materietransport Ursache: Temperaturabhängigkeit der Dichte In Festkörpern

Mehr

Der atmosphärische Luftdruck

Der atmosphärische Luftdruck Gasdruck Der Druck in einem eingeschlossenen Gas entsteht durch Stöße der Gasteilchen (Moleküle) untereinander und gegen die Gefäßwände. In einem Gefäß ist der Gasdruck an allen Stellen gleich groß und

Mehr

Physikalische Grundlagen der Hygrometrie

Physikalische Grundlagen der Hygrometrie Den Druck der durch die verdampfenden Teilchen entsteht, nennt man auch Dampfdru Dampfdruck einen gewissen Wert, so können keine weiteren Teilchen aus der Flüssigk Physikalische Grundlagen der Hygrometrie

Mehr

Bestimmung der Oberflächenspannung nach verschiedenen Methoden

Bestimmung der Oberflächenspannung nach verschiedenen Methoden Christian Terhorst PCL1-1: Bestimmung der Oberflächenspannung nach verschiedenen Methoden 1/18 Inhaltsverzeichnis: 1 Aufgabenstellung 1.1 Bestimmung der Oberflächenspannung nach Lecomte du Noüy 1.1 Bestimmung

Mehr

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker Technische Universität Braunschweig Institut für Geophysik und extraterrestrische Physik Prof. A. Hördt Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Mehr

Physikalisch-Chemisches Grundpraktikum

Physikalisch-Chemisches Grundpraktikum Physikalisch-Cheisches Grundpraktiku Versuch Nuer G3: Bestiung der Oberflächen- spannung it der Blasenethode Gliederung: I. Aufgabenbeschreibung II. Theoretischer Hintergrund III. Versuchsanordnung IV.

Mehr

Gase unter Druck: Die Gasgesetze

Gase unter Druck: Die Gasgesetze Gase unter Druck: Die Gasgesetze In diesem Kapitel... Den Begriff»Physikalische Chemie«definieren Den Einfluss von Druck und Temperatur auf Gase beschreiben Ideales und reales Verhalten von Gasen unterscheiden

Mehr

Der Gesamtdruck eines Gasgemisches ist gleich der Summe der Partialdrücke. p [mbar, hpa] = p N2 + p O2 + p Ar +...

Der Gesamtdruck eines Gasgemisches ist gleich der Summe der Partialdrücke. p [mbar, hpa] = p N2 + p O2 + p Ar +... Theorie FeucF euchtemessung Das Gesetz von v Dalton Luft ist ein Gemisch aus verschiedenen Gasen. Bei normalen Umgebungsbedingungen verhalten sich die Gase ideal, das heißt die Gasmoleküle stehen in keiner

Mehr

Thermische Ausdehnung

Thermische Ausdehnung Versuch: TA Fachrichtung Physik Physikalisches Grundpraktikum Aktualisiert: am 16. 09. 2009 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Thermische Ausdehnung Inhaltsverzeichnis

Mehr

wegen Massenerhaltung

wegen Massenerhaltung 3.3 Bilanzgleichungen Allgemein: Änderung der Bilanzgröße im System = Eingang Ausgang + Bildung - Verbrauch. 3.3.1 Massenbilanz Integration für konstante Massenströme: 0 wegen Massenerhaltung 3.3-1 3.3.2

Mehr

Vorlesung #7. M.Büscher, Physik für Mediziner

Vorlesung #7. M.Büscher, Physik für Mediziner Vorlesung #7 Zustandsänderungen Ideale Gase Luftfeuchtigkeit Reale Gase Phasenumwandlungen Schmelzwärme Verdampfungswärme Dampfdruck van-der-waals Gleichung Zustandsdiagramme realer Gase Allgem. Gasgleichung

Mehr

Der Dampfdruck von Wasser

Der Dampfdruck von Wasser Physikalisches Grundpraktikum Versuch 8 Der Dampfdruck von Wasser Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor:

Mehr

Zustandsformen der Materie Thermische Eigenschaften der Materie. Temperatur. skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle

Zustandsformen der Materie Thermische Eigenschaften der Materie. Temperatur. skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle Zustandsformen der Materie hermische Eigenschaften der Materie Aggregatzustände: fest flüssig suprafluide gasförmig überkritisch emperatur skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle

Mehr

2 Grundlagen 2 2.1 Oberflächenspannung... 2 2.2 Grenzflächenspannung... 4. 3 Messprinzip 5 3.1 Abreißverfahren... 5 3.2 Torsionswaage...

2 Grundlagen 2 2.1 Oberflächenspannung... 2 2.2 Grenzflächenspannung... 4. 3 Messprinzip 5 3.1 Abreißverfahren... 5 3.2 Torsionswaage... Versuch: OS Fachrichtung Physik Physikalisches Grundpraktikum Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Aktualisiert: am 16. 09. 2009 Oberflächenspannung Inhaltsverzeichnis

Mehr

Neuere Konzepte zur Behandlung des Drucks in der Sekundarstufe I

Neuere Konzepte zur Behandlung des Drucks in der Sekundarstufe I Neuere Konzepte zur Behandlung des Drucks in der Sekundarstufe I RITA WODZINSKI LMU MÜNCHEN LEHRPLAN FÜR DIE BAYERISCHE REALSCHULE (Wahlpflichtfächergruppe II und III) Stempeldruck in Flüssigkeiten gleichmäßige

Mehr

8. Wärmelehre. 8.1 Temperaturskala 1 = 2. kinetische und potentielle Energie, die ein System bei Temperaturänderung aufnimmt oder abgibt

8. Wärmelehre. 8.1 Temperaturskala 1 = 2. kinetische und potentielle Energie, die ein System bei Temperaturänderung aufnimmt oder abgibt 9 8. Wärmelehre 8. emperatursala Wärmeenergie: emperatur: inetische und potentielle Energie, die ein System bei emperaturänderung aunimmt oder abgibt Maß ür mittlere inetische Energie eines Systems (im

Mehr

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie Innere Energie: U - thermisch - latent Äußere Energien: E a - kinetisch E kin - potentiell E pot Gesamtenergie: E = U + E kin + E pot 3.1-1 3.1.2 Die

Mehr

9.Vorlesung EP WS2008/9

9.Vorlesung EP WS2008/9 9.Vorlesung EP WS2008/9 I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität 6. Hydro- und Aerodynamik

Mehr

Fachhochschule Flensburg. Institut für Physik

Fachhochschule Flensburg. Institut für Physik Name: Fachhochschule Flensburg Fachbereich Technik Institut für Physik Versuch-Nr.: W 2 Bestimmung der Verdampfungswärme von Wasser Gliederung: Seite Einleitung Versuchsaufbau (Beschreibung) Versuchsdurchführung

Mehr

Arbeit und Energie. Brückenkurs, 4. Tag

Arbeit und Energie. Brückenkurs, 4. Tag Arbeit und Energie Brückenkurs, 4. Tag Worum geht s? Tricks für einfachere Problemlösung Arbeit Skalarprodukt von Vektoren Leistung Kinetische Energie Potentielle Energie 24.09.2014 Brückenkurs Physik:

Mehr

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals:

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals: 1 Arbeit und Energie Von Arbeit sprechen wir, wenn eine Kraft ~ F auf einen Körper entlang eines Weges ~s einwirkt und dadurch der "Energieinhalt" des Körpers verändert wird. Die Arbeit ist de niert als

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

Thermodynamik. Vorlesung 1. Nicolas Thomas

Thermodynamik. Vorlesung 1. Nicolas Thomas Thermodynamik Vorlesung 1 Thermodynamik ist nur ein bisschen schwerig. Geschichtlicher Hintergrund! Im 19. Jahrhundert Zunahme an Mechanisierung durch Konstruktion von Maschinen und Motoren.! Besonders

Mehr

Energie, mechanische Arbeit und Leistung

Energie, mechanische Arbeit und Leistung Grundwissen Physik Klasse 8 erstellt am Finsterwalder-Gymnasium Rosenheim auf Basis eines Grundwissenskatalogs des Klenze-Gymnasiums München Energie, mechanische Arbeit und Leistung Mit Energie können

Mehr

Übungen zur Thermodynamik (PBT) WS 2004/05

Übungen zur Thermodynamik (PBT) WS 2004/05 1. Übungsblatt 1. Berechnen Sie ausgehend von der allgemeinen Gasgleichung pv = nrt das totale Differential dv. Welche Änderung ergibt sich hieraus in erster Näherung für das Volumen von einem Mol eines

Mehr

Physik für Mediziner und Zahmediziner

Physik für Mediziner und Zahmediziner Physik für Mediziner und Zahmediziner Vorlesung 03 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Arbeit: vorläufige Definition Definition der Arbeit (vorläufig): Wird auf

Mehr

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008 Thermodynamik Basics Dietmar Pflumm: KSR/MSE Thermodynamik Definition Die Thermodynamik... ist eine allgemeine Energielehre als Teilgebiet der Chemie befasst sie sich mit den Gesetzmässigkeiten der Umwandlungsvorgänge

Mehr

Warum ist Wasser nass???

Warum ist Wasser nass??? Warum ist Wasser nass??? Beitrag für eine WDR-Wissenssendung, Januar 2011 Prof. Dr. Manfred Koch, Institut für Geotechnologie und Geohydraulik, Uni Kassel Das Gefühl, Wasser als nass auf der Haut zu spüren,

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 14.Februar 2006, 9:00-11:00 Uhr für den Studiengang: Maschinenbau intensiv (bitte deutlich

Mehr

Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht. Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren

Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht. Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren in ruhendem Fluid können keine tangentialen Spannungen

Mehr