Klassenarbeit 5 Klasse 10c Mathematik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik"

Transkript

1 Klssenrbeit 5 Klsse 0c Mtemtik Lösung Version Cindy t 3000 geerbt. ) Den Betrg will sie so nlegen, dss sie in 20 Jren doppelt so viel Geld t. Berecne, zu welcem Zinsstz sie ds Geld nlegen muss. Ds Kpitl im Jr x erält mn, indem mn ds Strtkpitl n-ml mit dem Steigungsfktor (+p) multipliziert, wobei p ngibt, wie viel Prozent Zinsen mn bekommt: K x = K 0 p x K 20 =2 3000=3000 p 20 2= p 20 p= 20 2 p= ,035 Cindy muss für ds Geld 3,5% Zinsen erlten. b) Berecne, nc wie viel Jren sic ds Geld bei einem Zinsstz von 3% vervierfct t. Jedes Jr vermert sic ds Geld um ds,03-fce. K x =4 K 0 =K 0,03 x 4=,03 x x=log,03 4= lg 4 lg,03 46, Ds Kpitl t sic nc etw 47 Jren vervierfct. 2 Zur Fußbll-Europ-Meisterscft gibt es wieder einml versciedene Bilder-Smmellben. Firm verkuft ein Smmellbum für 3,90 und nimmt für ein Bild 25 Cent. Bei Firm 2 kostet ds Album nur 3,90, dfür muss mn ber für jedes Bild 27 Cent bezlen. Insgesmt bruct mn für ein vollständig usgefülltes Album jeweils 52 Bilder. Welces Angebot ist günstiger, wenn mn dvon usget, dss mn nur genu 52 Bilder kufen muss? ) Bescreibe, wie mn mit der Tbellenklkultion die Lösung finden knn. Gib n, ws in welce Splte, ws in welce Zeile kommt und gib die Formeln n, die merfc kopiert werden. Splte A: Anzl der Bildcen (b A3 bwärts) Splte B: Preis für Album Splte C: Preis für Album 2 Zeile : Überscriften Zeile 2: in B2: 3,90 in C2: 3,90 Zeile 3: in A3: in B3: =B2+0,25 in C3: =C2+0,27 Zeile 4: in A4: =A3+ Die Zellen A4, B3 und C3 werden nc unten kopiert b) Berecne die Bilderzl, für die beide Angebote gleic viel kosten. Für Album muss mn den Grundpreis 3,90 und 0,25 x für x Bilder bezlen, für Album 2 sind es 3,90 und 0,27 x für x Bilder: A x =0,25 x 3,90 A 2 x =0,27 x 3,90 A x =A 2 x 0,25 x 3,9=0,27 x 3,9 0=0,02 x x= 0 0,02 =500 Für 500 Bilder muss mn bei beiden Angeboten gleic viel bezlen. Ds knn mn uc m entsprecenden Ausscnitt in der Tbelle erkennen Klssenrbeit 5 Klsse 0c Mtemtik - Lösung Seite /5

2 3 Ein Souvenirändler bietet Pyrmiden in versciedenen Größen n. Die Pyrmiden ben eine recteckige Grundfläce. Die kleinste Pyrmide t eine Grundfläce mit den Seiten =3cm und b=2cm. Die Höe der Pyrmide beträgt =5cm. Bei llen Pyrmiden, gleic welcer Größe, ist ds Längen-Verältnis entsprecender Seiten konstnt. Bei den verscieden großen Pyrmiden wäcst die Höe zur näcst größeren Pyrmide jeweils um cm n. ) Gib n und begründe, welce Art Wcstum der Grundfläcen bei den immer größer werdenden Pyrmiden vorliegt. Bei der Höe liegt lineres Wcstum vor (bei jedem Vergrößerungsscritt wird eine Konstnte ddiert). Auf Grund der Strlensätze wcsen dnn uc die Seiten der Grundfläce liner. D sic der Fläceninlt der Grundfläce us Breite ml Tiefe berecnet, wäcst die Grundfläce qudrtisc n. b) Berecne, um wieviel Zentimeter die Höe wcsen muss, dmit die Grundfläce 0-ml so groß ist wie die Grundfläce der kleinsten Pyrmide. Wäcst die Höe um ds x-fce n, so wäcst die Grundfläce um ds x 2 -fce. D x 2 =0 gilt lso x= 0 3,6. Die Höe muss lso 0 5cm 5,8 cm betrgen, lso um 5,8cm 5cm=0,8 cm bzw. cm wegen der Scrittweite cm ngewcsen sein. c) Berecne, um wieviel Zentimeter die Höe wcsen muss, dmit ds Volumen 0-ml so groß ist wie ds Volumen der kleinsten Pyrmide. Ds Volumen wäcst kubisc (wegen Breite ml Tiefe ml Höe ) mit der Höe, lso gilt ier x 3 =0 x= 3 0 2,5. Die Höe muss 3 0 5cm 0,8cm betrgen, lso um 0,8cm 5cm=5,8cm bzw. 6 cm wegen der Scrittweite cm ngewcsen sein. 4 Es wr einml ein Königreic, in dem der König m Jresende von llen Untertnen 0% ires Vermögens ls Steuer benspructe. Der Untertn Hägr sprte über viele Jre inweg immer genu 000 Tler pro Jr. Wie t sic wol die Größe seines Vermögens entwickelt? Bescreibe durc Angbe wictiger Formeln, wie mn mit der Tbellenklkultion die Entwicklung des Vermögens ermitteln knn und berecne, wie oc ds Vermögen nc vielen Jren sein wird. Im. Jr sprt Hägr 000 Tler und muss dnn m Jresende 0% dvon bgeben, lso 00 Tler. Zu Beginn des 2. Jres besitzt Hägr lso 900 Tler. Am Jresende werden von diesen 900 Tlern und den neu gesprten 000 Tlern wieder 0% bgezogen. Drus folgt für die Tbelle (nur eine von mereren denkbren Lösungen): Zeile : Überscriften Splte A: Anzl der Jre, beginnend mit Jr 0 (in A2: 0 ; in A3: =A2+ ; usw.) Splte B: Vermögen zu Beginn des Jres (in B2: 0 ; in B3: =(B2+000)*0,9;usw.) Ab Zeile 39 ändert sic der Wert des Vermögens in Splte B nict mer. Nc vielen Jren wird lso ds Vermögen 9000 Tler betrgen. Recnung dzu: Ds neue Vermögen (links) ergibt sic us dem lten Vermögen plus 000 Tler minus 0% Steuer (rects): V neu V lt 000 0, V lt 000 =0,9 V lt 000 Ds Vermögen ändert sic nict mer, wenn zwiscen dem V neu uf der linken Seite und dem V lt uf der recten Seite nict mer unterscieden werden knn. Also setzen wir V neu = V lt = V und recnen: V =0,9 V 000 V =0,9 V 900 0, V =900 V =9000 Auc ier ergeben sic 9000 Tler ls Grenzwert für ds Vermögen Klssenrbeit 5 Klsse 0c Mtemtik - Lösung Seite 2/5

3 5 Zeige, dss folgende Tbelle zu einem qudrtiscen Wcstum geören knn und bestimme ncvollziebr den noc felenden Zlenwert für n=7. n f(n) ?=72. Differenzenfolge: Differenzenfolge: D die 2. Differenzenfolge für die ngegebenen Werte konstnt ist, knn ein qudrtisces Wcstum vorliegen. Die Werte werden nun solnge nc rects in ergänzt (rote Zlen), bis der Wert f(7) berecnet werden knn. Es ergibt sic f(7)=72. 6 In der Stdt gb es ein Optiker-Gescäft, bei dem sic n der Decke des Vorbus eine Kreissceibe mit einem druf ngebrcten Lserpointer mit konstnter Gescwindigkeit drete. Ddurc wurde n die Wnd des Gescäftes ein roter Punkt projiziert, der sic nc unten in immer scneller bewegte. ) Geen wir dvon us, dss zunäcst der Strl genu wgrect verläuft und dbei den Strtpunkt uf der Wnd mrkiert. Berecne, um wie viel sic der rote Punkt vom Strtpunkt us nc unten bewegt t, wenn die Sceibe sic um 0, um 20 und um 30 gedret t. Die Mitte der Sceibe ist von der Wnd,5m entfernt. α Im rectwinkligen Dreieck (siee Abbildung rects) gilt die Bezieung tn =. Mit den gegebenen Werten folgt drus: = tn =,5m tn =0 0 =0,26m ; =20 20 =0,55m ; =30 30 =0,87m b) Überlege und gib n, ob es sic bei der Zunme des Weges um ein lineres, ein qudrtisces oder ein exponentielles Wcstum ndeln knn und begründe die von Dir gegebene Antwort. Anmerkung: Zunme des Weges knn verstnden werden. ls Wegstrecke, die bei der Zunme des Winkels um 0 zurückgelegt wird oder 2. ls Zunme der Gesmtstrecke von der Decke des Vorbus bis zum ktuellen Ort des Lserpunktes. Hier wird entsprecend Aufgbenteil ) mit Interprettion 2 gerecnet. Interprettion ist ber uc gültig und gibt nloge Ergebnisse. Zu den Untersucungen knn mn noc den Messwert =0 0 =0 m inzunemen. Für lineres Wcstum müssten sic die berecneten -Werte der Reie nc um einen konstnten Wert untersceiden. Es ergeben sic die Differenzen 0,26-0 = 0,26 ; 0,55-0,26 = 0,29 ; 0,87-0,55 = 0,32. Die Ergebnisse sind nict gleic. Es liegt lso kein lineres Wcstum vor. Für qudrtisces Wcstum müsste die 2. Differenzenfolge konstnt sein. Die Differenzen der oben berecneten Ergebnisse liefern diese 2. Differenzenfolge: 0,29-0,26 = 0,03 ; 0,32-0,29 = 0,03. Im Rmen der Genuigkeit ergeben sic ttsäclic (llerdings bei nur 2 Werten) gleice Werte. Dss llerdings doc kein qudrtisces Wcstum vorliegen knn, siet mn, wenn mn versuct, den Weg zwiscen 80 und 90 zu berecnen. 90 existiert nict, weil der Lserstrl dnn prllel zur Wnd verläuft und diese nict erreict. Der Weg zwiscen 80 und 90 müsste unendlic lng sein und dmit ergäbe die 2. Differenzenfolge grntiert nict den Wert 0,03. Auc exponentielles Wcstum liegt nict vor, d sonst der Quotient zweier ufeinnder folgender Werte immer konstnt wäre: 0 get nict Divisiondurc 0 20 ; = 0, ,26 2,2 ; 30 = 0, ,55, Klssenrbeit 5 Klsse 0c Mtemtik - Lösung Seite 3/5

4 7 Bei der nebensteend bgebildeten Dreiecksblume sind lle Dreiecke gleicseitig und ds Dreieck in der Mitte t die Seitenlänge. Wie us der Zeicnung zu erkennen ist, wird beim Übergng zum näcst kleineren Dreieck die Seitenlänge lbiert. ) Berecne, wie groß der Fläceninlt sämtlicer Dreiecke zusmmen ist. Dret mn die äußeren Dreiecks-Sclngen jeweils um 60 um die Ecken des großen zentrlen Dreiecks, so füllen sie den Innenrum des großen Dreiecks vollständig und überlppungsfrei us. Für die gesmte Fläce ergibt sic lso ds Doppelte der Fläce des großen Dreiecks. Fläceninlt eines gleicseitigen Dreiecks: Nc Pytgors gilt = = 2 3 Drus folgt: /2 Es sollte j ber berecnet werden... : D beim Übergng zu einem kleineren Dreieck die Seitenlänge lbiert wird, wird die Dreiecksfläce jeweils nur noc 4 der größeren Fläce betrgen. A = 2 = 2 2 3= Mit = beträgt der gesmte Fläceninlt A gesmt =2 A =2 3 3= 4 2 0,87 Die zweitgrößten Dreiecke ben wegen = 2 den Fläceninlt A= 3 6 A Sclnge = Eine ngeängte Dreiecks-Sclnge t dmit den Fläceninlt = = 3 6 = = 4 0,44. Die Gesmtfläce setzt sic us dem großen Dreieck und 3 Dreiecks-Sclngen zusmmen: 4 3 A gesmt =A groß 3 A Sclnge = = = 3 2 0,87 Benutzt wurde die Formel für die geometrisce Reie s= q (Formelsmmlung Seite 32) b) (nur für Zustzpunkte): Berecne den Umfng der gesmten Figur (lso nur die Längen der ußen liegenden Streckenbscnitte berücksictigen!). Bei llen Dreiecken liegen 3 lbe Seitenlängen n der Außenseite. Ds bedeutet für ds zentrle Dreieck eine Strecke der Länge 3 2 = 3 2, für ds näcst kleinere Dreieck die Länge 3 4 = 3 4 usw Klssenrbeit 5 Klsse 0c Mtemtik - Lösung Seite 4/5

5 Für eine Dreiecks-Sclnge ergibt sic lso die Gesmtlänge = = 3 4 = 3 4 2= Der Gesmtumfng setzt sic zusmmen us U gesmt =U groß 3 U Sclnge = = = 2 2 =6 Der Gesmtumfng ist lso doppelt so groß wie der Umfng des zentrlen Dreiecks. viel erfolg bei der letzten rbeit in der sek.i ] Klssenrbeit 5 Klsse 0c Mtemtik - Lösung Seite 5/5

Arbeit - Energie - Reibung

Arbeit - Energie - Reibung Arbeit - nergie - eibung Die ncfolgenden Aufgben und Definitionen sind ein erster instieg in dieses Tem. Hier wird unterscieden zwiscen den Begriffen Arbeit und nergie. Verwendete ormelzeicen sind in der

Mehr

Mathe lernen mit Paul

Mathe lernen mit Paul Mte lernen mit Pul Die kleine Formelsmmlung Mit Gutscein für 2 kostenlose Unterrictsstunden 2 Mte lernen mit Pul Inlt Algebr Mße und Gewicte 4 Grundrecenrten 5 Brucrecnung 6 Potenzen und Wurzeln 7 Prozentrecnung

Mehr

Mathematik in eigenen Worten

Mathematik in eigenen Worten Sieglinde Wsmier Mtemtik in eigenen Worten Lernumgeungen für die Sekundrstufe I Klett und Blmer Verlg Mtemtik in eigenen Worten Scülerinnen und Scüler screien ire Lern- und Denkwege uf : Sieglinde Wsmier

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

Mathematik - Arbeitsblätter

Mathematik - Arbeitsblätter Ic knn... Ic knn Mte... Ic knn Mte lernen Mtemtik - Areitslätter 3 M Wiederolung 3 6 7 8 38 Reelle Zlen 3 6 Stzgruppe des Ptgors 3 6 7 8 9 Terme 3 6 6 Gleicungen und Ungleicungen 3 6 7 8 9 7 Körpererecnungen

Mehr

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11.

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11. Teil Gleicungen mit Unbekannten mit Textaufgaben und 3 Gleicungen mit Unbekannten Datei Nr. 80 Stand. April 0 Lineare Gleicungssysteme INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 80 Gleicungssysteme Vorwort

Mehr

Ausbildungsberuf KonstruktionsmechanikerIn

Ausbildungsberuf KonstruktionsmechanikerIn KM 07U Projekt Einfce Pyrmide mit qudrtiscer Grundfläce Ausbildungsberuf KonstruktionsmecnikerIn Einstzgebiet/e: Metllbu Sciffbu Scweißen Projekt Gerde Pyrmide mit qudrtiscer Grundfläce Anm.: Blecstärke

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Auszug aus den Tabellen und Formeln der DIN EN ISO 6946

Auszug aus den Tabellen und Formeln der DIN EN ISO 6946 Institut ür Bupysik und Mterilwissensct Univ.-Pro. Dr. Mx J. Seite von 9 nc Kosler, W.: Mnuskript zur E DIN 408-3:998-0, NA Buwesen (NABu) im DIN - Deutsces Institut ür Normung vom 28.0.998 Hinweise: DIN

Mehr

In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme.

In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme. Großüung cwerke cwerke d Ssteme von gerden Stäen, die geenkig (und reiungsfrei) in sog. Knoten(punkten) miteinnder verunden d und nur durc Einzekräfte in den Knotenpunkten estet werden. In cwerken git

Mehr

6. Die Exponentialfunktionen (und Logarithmen).

6. Die Exponentialfunktionen (und Logarithmen). 6- Funktionen 6 Die Eponentialfunktionen (und Logaritmen) Eine ganz wictige Klasse von Funktionen f : R R bilden die Eponentialfunktionen f() = c ep( ) = c e, ier sind, c feste reelle Zalen (um Trivialfälle

Mehr

2.8. Aufgaben zum Satz des Pythagoras

2.8. Aufgaben zum Satz des Pythagoras Aufgbe 1 Vervollständige die folgende Tbelle:.8. Aufgben zum Stz des Pythgors Kthete 6 1 4 1 13 17 15 Kthete b 8 1 7 8 11 Hypotenuse c 13 9 19 17 Aufgbe Berechne jeweils die Länge der dritten Seite: Aufgbe

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 007 im Fch Mthemtik 30. Mi 007 Arbeitsbeginn: 10.00 Uhr Berbeitungszeit: 10 Minuten Zugelssene

Mehr

ANALYSIS Differenzialrechnung Kapitel 1 5

ANALYSIS Differenzialrechnung Kapitel 1 5 TELEKOLLEG MULTIMEDIAL ANALYSIS Differenzialrecnung Kapitel 5 Ferdinand Weber BRmedia Service GmbH Inaltsverzeicnis Jedes Kapitel beginnt mit der Seitenzal.. Das Tangentenproblem. Steigung einer Geraden

Mehr

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich!

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich! Versuchsplnung 22 CRGRAPH www.crgrph.de Grundlgen Die Aufgbe ist es Versuche so zu kombinieren, dss die Zusmmenhänge einer Funktion oder eines Prozesses bestmöglich durch eine spätere Auswertung wiedergegeben

Mehr

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30 15 Mtrizenrechnung 15 Mtrizenrechnung 15.1 Mtrix ls Zhlenschem Eine Internetfirm verkuft über einen eigenen Shop Digitlkmers. Es wird jeweils nur ds Topmodel der Firmen Cnon, Nikon und Sony ngeboten. Verkuft

Mehr

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen Seminr Quntum Computtion - Finite Qunten-Automten und Qunten-Turingmschinen Sebstin Scholz sscholz@informtik.tu-cottbus.de Dezember 3. Einleitung Aus der klssischen Berechenbrkeitstheorie sind die odelle

Mehr

Was haben Beschleunigungs-Apps mit der Quadratur des Kreises zu tun?

Was haben Beschleunigungs-Apps mit der Quadratur des Kreises zu tun? Was aben Bescleunigungs-Apps mit der Quadratur des Kreises zu tun? Teilnemer: Jonatan Geuter Leonard Hackel Paul Hagemann Maximilian Kuc Amber Lucas Tobias Tieme Tobias Tiesse Niko Wolf Gruppenleiter:

Mehr

Übungsheft Mittlerer Schulabschluss Mathematik

Übungsheft Mittlerer Schulabschluss Mathematik Ministerium für Bildung und Kultur des Lndes Schleswig-Holstein Zentrle Abschlussrbeit 011 Übungsheft Mittlerer Schulbschluss Mthemtik Korrekturnweisung Impressum Herusgeber Ministerium für Bildung und

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

Verbrauchswerte. 1. Umgang mit Verbrauchswerten

Verbrauchswerte. 1. Umgang mit Verbrauchswerten Verbruchswerte Dieses Unterkpitel ist speziell dem Them Energienlyse eines bestehenden Gebäudes nhnd von Verbruchswerten (Brennstoffverbräuche, Wrmwsserverbruch) gewidmet. BEISPIEL MFH: Ds Beispiel des

Mehr

Der Einfluss von Kostenabweichungen auf das Nash-Gleichgewicht in einem nicht-kooperativen Disponenten-Controller-Spiel. Günter Fandel und Jan Trockel

Der Einfluss von Kostenabweichungen auf das Nash-Gleichgewicht in einem nicht-kooperativen Disponenten-Controller-Spiel. Günter Fandel und Jan Trockel Der Einfluss von Kostenbweicungen uf ds Ns-Gleicgewict in einem nict-koopertiven Disponenten-Controller-Spiel Günter Fndel und Jn Trockel Diskussionsbeitrg Nr. 428 September 28 Diskussionsbeiträge der

Mehr

Formeln zu Mathematik für die Fachhochschulreife

Formeln zu Mathematik für die Fachhochschulreife Fomeln zu Mtemtik fü die Fcocsculeife Beeitet von B. Gimm und B. Sciemnn 3. Auflge VERLAG EUROPA-LEHRMITTEL Nouney, Vollme GmH & Co. KG Düsselege Stße 3 4781 Hn-Guiten Euop-N.: 8519 Autoen: Bend Gimm Bend

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

x usw., wie oben unter 1.) behauptet.]

x usw., wie oben unter 1.) behauptet.] [Anmerkung zur Berechnung im Beispiel: Ersetzen wir die Zhlen der AzM durch die Koeffizienten, 2, 2 und 22, so lässt sich die Rechnung sowohl für ) ls uch b) gnz nlog durchführen, und es ergibt sich z.

Mehr

Schriftliche Überprüfung Mathematik. Gymnasien, Klasse 10

Schriftliche Überprüfung Mathematik. Gymnasien, Klasse 10 Schriftliche Überprüfung Mthemtik, Klsse 0 Schuljhr 009/00 6. Februr 00 Unterlgen für die Lehrerinnen und Lehrer Diese Unterlgen enthlten: I II III Allgemeine Hinweise zur Arbeit Aufgben Erwrtungshorizonte,

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Formelsammlung. Fachangestellte für Bäderbetriebe Meister für Bäderbetriebe. Inhalt

Formelsammlung. Fachangestellte für Bäderbetriebe Meister für Bäderbetriebe. Inhalt Forelsalung Facangestellte für Bäderbetriebe Meister für Bäderbetriebe Erstellt von Dipl.-Ing. (FH) Wolfgang Hetteric, BVS it Ergänzungen von Dipl.-Ing. (FH) Peter Vltavsky, BS Lindau Inalt llgeeine Mecanik...

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Grundwissen Mathematik 7I

Grundwissen Mathematik 7I Winkel m Kreis Grundwissen themtik 7I Rndwinkelstz Der Winkel heißt ittelpunktswinkel über der Sehne []. Die Winkel n sind die Rndwinkel über der Sehne []. lle Rndwinkel über einer Sehne eines Kreises

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften Vorkurs Mthemtik Fchhochschule Frnkfurt, Fchereich Fchhochschule Frnkfurt m Min Fchereich Informtik und Ingenieurwissenschften Vorkurs Mthemtik Sie finden lle Mterilien sowie ergänzende Informtionen unter

Mehr

Mechanik 1.Gleichförmige Bewegung 1

Mechanik 1.Gleichförmige Bewegung 1 Mecanik 1.Gleicförige Bewegung 1 1. Geradlinige, gleicförige Bewegung (Bewegung it kontanter Gecwindigkeit) Zeit: 1 Unterricttunde 45 Minuten 2700 Sekunden 1 Sculjar entält etwa 34 Doppeltunden 68 Unterricttunden

Mehr

3 Wiederholung des Bruchrechnens

3 Wiederholung des Bruchrechnens 3 Wiederholung des Bruchrechnens Ein Bruch entsteht, wenn ein Gnzes in mehrere gleiche Teile zerlegt wird. Jeder Bruch besteht us dem Zähler, der Zhl über dem Bruchstrich, und dem Nenner, der Zhl unter

Mehr

750 + 142,50 = 892,50 Nettopreis Umsatzsteuer Bruttopreis

750 + 142,50 = 892,50 Nettopreis Umsatzsteuer Bruttopreis 2.7 Verminderter und vermehrter Grundwert 41 Beispiel: Bruttobetrg, Nettobetrg, Umstzsteuer Profirdfhrer Klus kuft sih ein Mountinbike. Ds Fhrrd kostet einshließlih 19 % Umstzsteuer 892,50. Ds Finnzmt

Mehr

Übung zur Vorlesung Einführung in die Betriebswirtschaftliche Steuerlehre

Übung zur Vorlesung Einführung in die Betriebswirtschaftliche Steuerlehre Mercator Scool of Management Prof. Dr. Volker Breitecker, StB Dr. Marco Tönnes, StB SS 2007 Übung zur Vorlesung Einfürung in die Betriebswirtscaftlice Steuerlere Grundlagen: 1. Zur Erzielung von Einnamen

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer!

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer! hben Freunde Deine Zähne sind wie deine sportmnnschft und du bist der Triner! Und jeder Triner weiß, wie wichtig jeder einzelne Spieler ist eine wichtige und schöne Aufgbe! Drum sei nett zu deinen Zähnen

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Mtrizen und Determinnten Im bschnitt Vektorlgebr Rechenregeln für Vektoren Multipliktion - Sklrprodukt, Vektorprodukt, Mehrfchprodukte wurde in einem Vorgriff bereits eine interessnte mthemtische Konstruktion

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: heusler@biologie.uni-muenchen.e Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

Präfixcodes und der Huffman Algorithmus

Präfixcodes und der Huffman Algorithmus Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben

Mehr

Nenne verschiedene Energieformen. Nenne zu einem Beispiel aus deiner Umgebung, welche Energieformen ineinander umgewandelt werden.

Nenne verschiedene Energieformen. Nenne zu einem Beispiel aus deiner Umgebung, welche Energieformen ineinander umgewandelt werden. Grundwissenskatalog zu Pysik 8.Jargangsstufe, Seite von 5 Carl-Friedric Gauß Gymnasium Scwandorf Stand: Sept. 0 Wissen Können Beispiele, Ergänzungen Energie Energie kann in versciedenen Formen vorkommen.

Mehr

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10)

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10) Musterlösung zu Aufgbe 1 (Klssenstufe 9/10) Aufgbe. Drei Freunde spielen mehrere Runden eines Spiels, bei dem sie je nch Rundenpltzierung in jeder Runde einen festen, gnzzhligen Betrg x, y oder z usgezhlt

Mehr

DAS JUGENDKONTO, das NICHT NUR AUF

DAS JUGENDKONTO, das NICHT NUR AUF DAS JUGENDKONTO, ds NICHT NUR AUF dein GELD AUFPASST. Hndy oder Lptop 1 Jhr grtis Versichern!* Mitten im Leben. *) Näheres im Folder FÜR ALLE VON 14-19, DIE MITTEN IM LEBEN STEHEN! Mit 14 Lebensjhren mcht

Mehr

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss Einser-Flächen HEINZ KLAUS STRICK Online-Ergänzung MNU 66/7 (15.10.01) Seiten 1 5, ISSN 005-5866, Verlg Klus Seeberger, Neuss 1 HEINZ KLAUS STRICK Einser-Flächen Die bgebildeten Figuren hben eines gemeinsm:

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

SBS Schweißbolzen-Systeme

SBS Schweißbolzen-Systeme SBS Scweißbozen-Systeme Mit wictigen Informtionen zur Anwendung und Tecnik SBS Scweißbozen-Systme OBO. Dmit rbeiten Profis. Sortiment Quität Die Vieft der Scweißbozen ist ds, ws die Prxis bruct. Von en

Mehr

Prüfungsteil Schriftliche Kommunikation (SK)

Prüfungsteil Schriftliche Kommunikation (SK) SK Üerlik und Anforderungen Üerlik und Anforderungen Prüfungsteil Shriftlihe Kommuniktion (SK) Üerlik und Anforderungen Worum geht es? In diesem Prüfungsteil sollst du einen Beitrg zu einem estimmten Them

Mehr

Leitfaden für die Berechnung des Netzentgeltes bei der Rhein-Ruhr Verteilnetz GmbH

Leitfaden für die Berechnung des Netzentgeltes bei der Rhein-Ruhr Verteilnetz GmbH Leitfden für die Berechnung des Netzentgeltes bei der Rhein-Ruhr Verteilnetz GmbH Stnd: 20.01.2012 Gültig b: 01.01.2012 Inhltsverzeichnis 1 Benötigte Dten... 3 2 Netzentgelte... 4 2.1 Entgelt für Entnhme

Mehr

FernUniversität Gesamthochschule in Hagen

FernUniversität Gesamthochschule in Hagen FernUniversität Gesmthochschule in Hgen FACHBEREICH MATHEMATIK LEHRGEBIET KOMPLEXE ANALYSIS Prof. Dr. Andrei Dum Proseminr 9 - Anlysis Numerische Integrtion Ulrich Telle Mtrikel-Nr. 474 Köln, den 7. Dezember

Mehr

Elektrischer Widerstand und Strom-Spannungs-Kennlinien

Elektrischer Widerstand und Strom-Spannungs-Kennlinien Versuch 6 Elektrischer Widerstnd und Strom-Spnnungs-Kennlinien Versuchsziel: Durch biochemische ektionen ufgebute Potentildifferenzen (Spnnungen) bewirken elektrische Ströme im Orgnismus, die n einer Vielzhl

Mehr

MATHEMATIK GRUNDWISSEN KLASSE 5

MATHEMATIK GRUNDWISSEN KLASSE 5 MATHEMATIK GRUNDWISSEN KLASSE 5 Them NATÜRLICHE ZAHLEN Zählen und Ordnen Ntürliche Zhlen werden zum Zählen und Ordnen verwendet Stefn ist beim 100m-Luf ls 2. ins Ziel gekommen. Große Zhlen und Zehnerpotenzen

Mehr

ADSORPTIONS-ISOTHERME

ADSORPTIONS-ISOTHERME Institut für Physiklishe Chemie Prktikum Teil und B 8. DSORPTIONS-ISOTHERME Stnd 30/0/008 DSORPTIONS-ISOTHERME. Versuhspltz Komponenten: - Büretten - Pipetten - Shütteltish - Wge - Filtriergestell - Behergläser.

Mehr

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium Schützen Sie diejenigen, die Ihnen m Herzen liegen Risikopremium Verntwortung heißt, weiter zu denken Die richtige Berufswhl, die Gründung einer eigenen Fmilie, die eigenen vier Wände, der Schritt in die

Mehr

Mathematik Thema Vielecke

Mathematik Thema Vielecke Them Vielecke Im Jnur 2006 Florin Vetter, Klsse 8, Riegelhof Relschule Seite 1 von 15 INHALTSVERZEICHNES 1. EINLEITUNG 3 2. ARTEN VON VIELECKEN 4 2.1. DREIECK 4 2.2. VIERECK 4 2.2.1. RECHTECK 4 2.2.2.

Mehr

DAS Einzige Konto, Mitten im Leben. monsterhetz.at. *) Näheres im Folder

DAS Einzige Konto, Mitten im Leben. monsterhetz.at. *) Näheres im Folder DAS Einzige Konto, ds uch uf dein HANDY ODER DEINEN LAPTOP AUFPASST. Versichert Hndy oder Lptop 1 Jhr grtis!* Mitten im Leben. monsterhetz.t *) Näheres im Folder FÜR ALLE VON 14-19, DIE MITTEN IM LEBEN

Mehr

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik Ministerium für Bildung, Jugend und Sport Prüfungen am Ende der Jargangsstufe 10 Scriftlice Prüfung Sculjar: 2008/2009 Sculform: Matematik Allgemeine Arbeitsinweise Die Prüfungszeit beträgt 160 Minuten.

Mehr

Uponor ISI Box. schnell und sicher installieren! NEU

Uponor ISI Box. schnell und sicher installieren! NEU Uponor ISI Box scnell und sicer instllieren! NEU Die Uponor ISI Box die einfce und scnelle Instlltionslösung im Trockenu. Vorkonfektioniert und nsclussfertig efinden sic lle Komponenten sicer und geprüft

Mehr

Taylorreihen - Uneigentlische Integrale

Taylorreihen - Uneigentlische Integrale Anlysis II für M, LG und Ph, WS 2006/07, Übung 2, Lösungsskizze Gruppenübung Tylorreihen - Uneigentlische Integrle G 5 Berechnen Sie die Tylorreihe mit der Entwicklungsmitte 0 von f (x) = log(x + ), f

Mehr

Limit Texas Hold em. Meine persönlichen Erfahrungen

Limit Texas Hold em. Meine persönlichen Erfahrungen Limit Texs Hold em Meine persönlichen Erfhrungen Dominic Dietiker c Drft dte 21. September 2010 Inhltsverzeichnis 1. Spielnleitung...................................... 1 1.1 Der Spielverluf....................................

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

Spannung galvanischer Zellen (Zellspannungen)

Spannung galvanischer Zellen (Zellspannungen) Spnnung glvnisher Zellen (Zellspnnungen) Ziel des Versuhes Kennenlernen der Abhängigkeit der Zellspnnung von den Konzentrtionen der potenzilbestimmenden Ionen (Nernst-Gleihung). Anwendung der Zellspnnungsmessung

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Referat im Fach Mathematik

Referat im Fach Mathematik Refet im Fc Mtemtik Tem: Beecnung von Rottionsköpen mit klssiscen Metoden und mit Integlecnung m Beispiel von Kegel, Kugel und Rottionsellipsoid. Vefsse: Ruen Flle Inltsvezeicnis. Ws sind Rottionsköpe?

Mehr

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht Großübung u Kräften, omenten, Äuivlen und Gleichgewicht Der Körper Ein mterielles Teilgebiet des Universums beeichnet mn ls Körper. Im llgemeinen sind Körper deformierbr. Sonderfll strrer Körper (odellvorstellung)

Mehr

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG)

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG) Sript für die Oerstufe und ds Aitur Bden-Württemerg erufl. Gymnsium (AG, BTG, EG, SG, WG) Mtrizenrechnung, wirtschftliche Anwendungen (Leontief, Mterilverflechtung) und Linere Optimierung Dipl.-Mth. Alexnder

Mehr

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme Bruchterme und gebrochen rtionle Funktionen Der Quotient zweier Terme Es ist ist 3 : 4 3 und. 4 : 3 4 3 4 Dehnt mn die Bruchschreibweise uf Terme us, dnn erhält mn sog. Bruchteme. ² ( + ) : (3 + 4) + 3

Mehr

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium Schützen Sie diejenigen, die Ihnen m Herzen liegen Risikopremium 521310620_1001.indd 1 03.12.09 14:50 Verntwortung heißt, weiter zu denken Die richtige Berufswhl, die Gründung einer eigenen Fmilie, die

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse Elemente der Anlysis II: Zusmmenfssung der wichtigsten Definitionen und Ergebnisse J. Wengenroth Dies ist die einzige zugelssene Formelsmmlung, die bei der Klusur benutzt werden drf. Es dürfen Unterstreichungen

Mehr

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik Boole'sche Algebr Binäre Funktionen, Boole'sche Algebren, Schltlgebr Inhltsübersicht Verknüpfungen der mthemtischen Logik Boole sche Algebren Grundelemente der Schltlgebr Regeln der Schltlgebr Normlformen

Mehr

Kreis und Kreisteile. - Aufgaben Teil 2 -

Kreis und Kreisteile. - Aufgaben Teil 2 - - Aufgben Teil - Am Ende der Aufgbensmmlung finden Sie eine Formelübersicht 61. Bestimme den Inhlt 6. Bestimme den Inhlt Abhängigkeit von r. Abhängigkeit von. 63. Berechne r in Abhängigkeit von 64. Berechne

Mehr

Personal und Finanzen der öffentlich bestimmten Fonds, Einrichtungen, Betriebe und Unternehmen (FEU) in privater Rechtsform im Jahr 2003

Personal und Finanzen der öffentlich bestimmten Fonds, Einrichtungen, Betriebe und Unternehmen (FEU) in privater Rechtsform im Jahr 2003 Personl und Finnzen der öffentlich estimmten Fonds, Einrichtungen, Betriee und Unternehmen (FEU) in privter Rechtsform im Jhr 003 Dipl.-Volkswirt Peter Emmerich A Mitte der 980er-Jhre ist eine Zunhme von

Mehr

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist . Ohm = LED leuchtet wenn chlter gedrückt ist 2. Ohm = NICH ( = NO ) LED leuchtet wenn chlter nicht gedrückt ist = ist die Negtion von? Gibt es so einen kleinen chlter (Mikrotster)? 2. Ohm = UND LED leuchtet

Mehr

Unterrichts- und Prüfungsplanung M306 Modulverantwortlicher: Beat Kündig Modulpartner: R. Rubin

Unterrichts- und Prüfungsplanung M306 Modulverantwortlicher: Beat Kündig Modulpartner: R. Rubin Dokument Dtum (Version) Gültig für 200 / 0 Seite von 7 Unterrichts- und Prüfungsplnung M306 Modulverntwortlicher: Bet Kündig Modulprtner: R. Rubin Lernschritt-Nr. Hndlungsziele Zielsetzung unter Berücksichtigung

Mehr

Übungsblatt 1 zum Propädeutikum

Übungsblatt 1 zum Propädeutikum Üungsltt zum Propädeutium. Gegeen seien die Mengen A = {,,,}, B = {,,} und C = {,,,}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geen Sie diese in ufzählender Form n.. Geen Sie lle Teilmengen

Mehr

Themenbereich: Kongruenzsätze Seite 1 von 6

Themenbereich: Kongruenzsätze Seite 1 von 6 Themenereich: Kongruenzsätze Seite 1 von 6 Lernziele: - Kenntnis der genuen Formulierung der Kongruenzsätze - Kenntnis der edeutung der Kongruenzsätze - Fähigkeit, die Kongruenzssätze gezielt zur egründung

Mehr

Transportvorgänge im Vakuum, ± kein thermodynamisches Gleichgewicht d.h. Druck-, Temperatur- und/oder Konzentrationsgradienten.

Transportvorgänge im Vakuum, ± kein thermodynamisches Gleichgewicht d.h. Druck-, Temperatur- und/oder Konzentrationsgradienten. Folie 1 Trnsortvorgänge im Vkuum Trnsortvorgänge im Vkuum, ± kein thermodynmisches Gleichgewicht d.h. Druck-, Temertur- und/oder Konzentrtionsgrdienten 1. Diffusion Diffusionsstrom entsrechend dem Diffusionsgesetz:

Mehr

Abiturprüfung 2007. Mathematik, Leistungskurs 0,02

Abiturprüfung 2007. Mathematik, Leistungskurs 0,02 M LK HT Seite von Nme: Abiturprüfung 007 Mthemti, Leistungsurs Aufgbenstellung: Gegeben ist die Funtion f mit Ein Teil des Grphen von f ist für 0,0 t ft () = t e, t IR. 0 t 5 m Ende der Aufgbe uf Seite

Mehr

Versuchsumdruck. Schaltungsvarianten des Operationsverstärkers

Versuchsumdruck. Schaltungsvarianten des Operationsverstärkers Hchschule STDIENGANG Wirtschftsingenieurwesen Bltt n 6 Aschffenburg Prf. Dr.-Ing.. Bchtler, Armin Huth Versuch 2 Versin. m 23.3.2 Versuchsumdruck Schltungsrinten des Opertinserstärkers Inhlt Verwendete

Mehr

Aufgabe 1: Die Pyramiden von Gizeh

Aufgabe 1: Die Pyramiden von Gizeh Aufge : Die Pyrmiden von ize Nc der so gennnten Früzeit (850-600 v. Cr.) setzte gleic ls erster kultureller Höepunkt der Bu der großen Pyrmiden, welces rmäler der ltägyptiscen Könige (Pronen) sind, ein.

Mehr

Numerische Simulation in der Luft- und Raumfahrttechnik

Numerische Simulation in der Luft- und Raumfahrttechnik Numerisce Simulation in der Luft- und Raumfarttecnik Dr. Felix Jägle, Prof. Dr. Claus-Dieter Munz (IAG) Universität Stuttgart Pfaffenwaldring, 70569 Stuttgart Email: felix.jaegle@iag.uni-stuttgart.de Inalt

Mehr

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO)

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO) Fchhochschule Düsseldorf SS 2007 Teilfchprüfung Mthemtik Studiengng: Wirtschft Neue Diplomprüfungsordnung (NPO) Prüfungsdtum: 29..2007 Prüfer: Prof. Dr. Horst Peters / Dipl. Volkswirt Lothr Schmeink Prüfungsform:

Mehr

Differentialgleichungen Gewöhnliche Differentialgleichungen

Differentialgleichungen Gewöhnliche Differentialgleichungen Differentilgleichungen Gewöhnliche Differentilgleichungen ( n) + + +... ++ Eplizite Form: (Gleichung lässt sich nch höchster Ableitung uflösen Implizite Form: + 0 Lösung: Durch eine Funktion Lösungsweg:

Mehr

Übungsblatt Gleichungssysteme Klasse 8

Übungsblatt Gleichungssysteme Klasse 8 Üungsltt Gleichungsssteme Klsse 8 Auge : Berechne die Lösungen des Gleichungspres: I II 7 Kontrolliere durch Einseten. Auge : Löse dem Additionsverhren: I 7-6 II 9 Auge : Gegeen ist olgendes linere Gleichungssstem

Mehr

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3 Übungen zur Vorlesung Physiklische Chemie I Lösungsvorschlg zu Bltt 3 Prof. Dr. Norbert Hmpp 1. Aufgbe ) Die gegebene Verteilung besteht nur us diskreten Werten! Die durchgezogene Linie würde nur bei einer

Mehr

Netzentgelte der WESTNETZ GmbH (Strom)

Netzentgelte der WESTNETZ GmbH (Strom) Netzentgelte der WESTNETZ GmbH (Strom) gültig b: 01.01.2015 Stnd: 08.06.2015 2 Inhltsverzeichnis 1 Bestndteile des Netzentgelts... 4 2 Preisblätter... 4 3 Leitfden für die Ermittlung des Netzentgeltes...

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

STATUS DES WINDENERGIEAUSBAUS

STATUS DES WINDENERGIEAUSBAUS 1. Hlbjhr STATUS DES WINDENERGIEAUSBAUS AN LAND Im Auftrg von: Deutsche WindGurd GmbH - Oldenburger Strße 65-26316 Vrel 4451/9515 - info@windgurd.de - www.windgurd.de Jährlich zu- / bgebute Leistung [MW]

Mehr

Netzentgelte der WESTNETZ GmbH (Strom)

Netzentgelte der WESTNETZ GmbH (Strom) Netzentgelte der WESTNETZ GmbH (Strom) gültig b: 01.01.2016 Stnd: 28.01.2016 -2- Inhltsverzeichnis 1 Bestndteile des Netzentgelts... 4 2 Preisblätter... 4 3 Leitfden für die Ermittlung des Netzentgeltes...

Mehr

Ausbildung zum Passagement-Consultant

Ausbildung zum Passagement-Consultant M & MAICONSULTING Mngementbertung Akdemie M MAICONSULTING Mngementbertung & Akdemie MAICONSULTING GmbH & Co. KG Hndschuhsheimer Lndstrße 60 D-69121 Heidelberg Telefon +49 (0) 6221 65024-70 Telefx +49 (0)

Mehr

Nutzung der Abwärme aus Erneuerbare-Energie-Anlagen

Nutzung der Abwärme aus Erneuerbare-Energie-Anlagen 5 2014 Sonderdruck us BWK 5-2014 Wichtige Kennzhlen und effiziente Plnung für die dezentrle Wärmewende Nutzung der Abwärme us Erneuerbre-Energie-Anlgen Wichtige Kennzhlen und effiziente Plnung für die

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Musterlösung zur Musterprüfung 2 in Mathematik

Musterlösung zur Musterprüfung 2 in Mathematik Musterlösung zur Musterprüfung in Mthemtik Diese Musterlösung enthält usführliche Lösungen zu llen Aufgben der Musterprüfung in Mthemtik sowie Hinweise zum Selbstlernen. Literturhinweise ) Bosch: Brückenkurs

Mehr

Mathematik schriftlich

Mathematik schriftlich WS KV Chur Abschlussprüfungen 00 für die Berufsmtur kufmännische Richtung Mthemtik schriftlich LÖSUNGEN Kndidtennummer Nme Vornme Dtum der Prüfung Bewertung mögliche erteilte Punkte Punkte. Aufgbe 0. Aufgbe

Mehr

Karlsruhe - Mannheim - Aachen

Karlsruhe - Mannheim - Aachen Deutsche Finnzdtenbnk - DFDB Krlsruhe - Mnnheim - Achen - Krlsruhe - Die Bereinigung von Aktienkursen - Ein kurzer Uberblick uber Konzept und prktische Umsetzung - Andres Suer Version 10, August 1991 Projektleitung:

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr