Verschlüsselung. Chiffrat. Eve

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Verschlüsselung. Chiffrat. Eve"

Transkript

1 Das RSA Verfahren

2 Verschlüsselung m Chiffrat m k k Eve?

3 Verschlüsselung m Chiffrat m k k Eve? Aber wie verteilt man die Schlüssel?

4 Die Mafia-Methode Sender Empfänger Der Sender verwendet keine Verschlüsselung Eve Der Empfänger kann sein eigenes Störsignal abziehen. Eve erlauscht nur Rauschen Kryptographie ohne Schlüssel

5 Die Mafia-Methode Sender Empfänger Der Sender verwendet keine Verschlüsselung Eve Der Empfänger kann sein eigenes Störsignal abziehen. Eve kann die Signale unterscheiden Heute unsicher, aber sie motivierte eine faszinierende Lösung...

6 Public-Key-Kryptographie Asymmetrisch wie ein Briefkasten: RSA Verschlüsselung c = m e mod N Entschlüsselung m = c d mod N Public Key: (e,n) Secret Key: d

7 Grundlagen Eine Gruppe ist eine Menge G zusammen mit einer Verknüpfung, die assoziativ ist und g G zu jedem g G gibt es ein g -1 mit g -1 g = 1. Zu jeder Untergruppe U G gibt es eine Nebenklassenzerlegung: G = U gu hu... x 1... y g gx gy... h hx hy also gilt U teilt G

8 Grundlagen also gilt U teilt G x 3 x4... x 2 x 1... Ein Element x erzeugt eine Untergruppe U und x U = 1. Wegen U teilt G ist x G = 1 und für jedes m = 1 mod G gilt x m = x. Kleiner Satz von Fermat

9 Grundlagen Für N = p. q bildet die Menge der Zahlen < N, die teilerfremd zu N sind, zusammen mit der Multiplikation eine Gruppe mit (p-1)(q-1) Elementen: Z * NZ Assoziativität: x x mod N ist ein Homomorphismus. Inverse Gruppenenlemente: für x mit ggt(x,n) = 1 existieren s,t mit s. x + t. N = 1, denn der ggt läßt sich linearkombinieren (ELBA). modulo N ist t. N gleich Null und s. x = 1 mod N. Also s = x -1 mod N.

10 Die RSA-Funktion N = pq sei Produkt von zwei Primzahlen und e mit ggt(e, (p-1)(q-1)) = 1. Dann gilt: Z * x x e mod N ist eine Permutation auf NZ Angenommen es gäbe zwei e-te Wurzeln y,z von x so wäre (y/z) e = 1 und es gäbe eine Untergruppe, deren Ordnung e teilt. Aber die Ordnung einer Untergruppe teilt immer die Gruppenordnung (p-1)(q-1).

11 Die RSA-Funktion N = pq sei Produkt von zwei Primzahlen und e mit ggt(e, (p-1)(q-1)) = 1. Dann gilt: Z * x x e mod N ist eine Permutation auf NZ Angenommen es gäbe zwei e-te Wurzeln y,z von x so wäre (y/z) e = 1 und es gäbe eine Untergruppe, e deren Ordnung e teilt. Aber die Ordnung RSA-Annahme: x x mod N ist ohne zusätzliche Information und für einer Untergruppe teilt immer die zufällige Gruppenordnung Eingaben schwierig (p-1)(q-1) zu. invertieren. Ob dies genauso schwierig ist wie das Faktorisieren von N ist ein offenes Problem.

12 Die Falltür (Das Hintertürchen) Mit der Faktorisierung von N = pq, kennt man die Gruppenordnung (p-1)(q-1). Es gilt ggt(e, (p-1)(q-1)) = 1 und es gibt eine Linearkombination des ggt. Es gibt also d,c mit d. e+c. (p-1)(q-1) = 1. Diese findet man mit ELBA. Modulo (p-1)(q-1) ist c. (p-1)(q-1) gleich Null und: d. e = 1 mod (p-1)(q-1). Gemäß dem kleinen Fermat gilt: x ed = x mod N

13 Die Falltür (Das Hintertürchen) Mit der Faktorisierung von N = pq, kennt man die Gruppenordnung (p-1)(q-1). Es gilt ggt(e, (p-1)(q-1)) = 1 und es gibt eine Linearkombination des ggt. Es gibt also d,c mit d. e+c. (p-1)(q-1) = 1. Diese findet man mit ELBA. Modulo (p-1)(q-1) ist c. (p-1)(q-1) gleich Null und: d. e = 1 mod (p-1)(q-1). Gemäß dem kleinen Fermat gilt: x ed = x mod N x x e Öffentlicher Schlüssel (e,n). Verschlüsseln: mod N Privater Schlüssel d. Entschlüsseln: (x e ) d = x ed = x mod N

14 Die Falltür (Das Hintertürchen) Mit der Faktorisierung von N = pq, kennt man die Gruppenordnung (p-1)(q-1). Es gilt ggt(e, (p-1)(q-1)) = 1 und es gibt eine Linearkombination des ggt. Es gibt also d,c mit d. e+c. (p-1)(q-1) = 1. Diese findet man mit ELBA. Modulo (p-1)(q-1) ist c. (p-1)(q-1) gleich Null und: d. e = 1 mod (p-1)(q-1). Gemäß dem kleinen Fermat gilt: x ed = x mod N e Öffentlicher Schlüssel (e,n). Verschlüsseln: mod N Privater Schlüssel d. Wirklich sicher? x x Entschlüsseln: (x e ) d = x ed = x mod N

15 Aktive Angreifer Alice c = m e mod N Bob c = 2 e c mod N der Auktionator entschlüsselt c = 2 e c = 2 e m e zu 2m. Bob gewinnt.

16 Aktive Angreifer Alice Bob c = 2 e c mod N c = m e mod N Lehrbuch RSA ist nicht sicher! der Auktionator entschlüsselt c = 2 e c = 2 e m e zu 2m. Bob gewinnt.

17 IND-CCA2 Sicherheit Entschlüsselungs- Orakel öffentlicher Schlüssel e A Challenge 1, Challenge 2 Enc e (Challenge i ) zufällig gewählt Entschlüsselungs- Orakel! A öffentlicher Schlüssel e Entscheidung A kann die Challenges nicht besser unterscheiden als durch Raten.

18 RSA-ES-OAEP [BR94] Nachricht m Zufallsstring r hash hash m+h(r) h(m+h(r))+r

19 RSA-ES-OAEP [BR94] Nachricht m Zufallsstring r hash hash m+h(r) h(m+h(r))+r Chiffrat = (m+h(r) h(m+h(r))+r) e

20 RSA-ES-OAEP ist beweisbar sicher Mit idealisierten Hashfunktionen (Random Oracle Model) gilt: Ein Angreifer, der das IND-CCA-Spiel gewinnt, kann dazu benutzt werden die RSA-Funktion zu invertieren. Beweisidee: Es ist nicht effizient möglich gültige Chiffrate zu erzeugen, ohne den Klartext zu kennen. Also liefert das Entschlüsselungsorakel im IND-CCA-Spiel nur oder eine Nachricht, die man schon kennt. Zu zeigen bleibt nur noch die Sicherheit bei passiven Angreifern.

21 RSA-ES-OAEP ist beweisbar sicher Mit idealisierten Hashfunktionen (Random Oracle Model) gilt: Ein Angreifer, der das IND-CCA-Spiel gewinnt, kann dazu benutzt werden die RSA-Funktion zu invertieren. Beweisbare Sicherheit ist praxisrelevant: PKCS #1 v.2.1 verwendet in SSL/TLS ASC X9.44, amerikanischer Bankenstandard IEEE P1363, SET, Standard für sicheres Bezahlen (Visa, MasterCard)

22 ELBA(x,y) s = 1, t= 0 solange b>0 solange a>= b a:= a-b, t:= t-1 vertausche (a,b) vertausche (s,t) a wird ggt, b wird 0 und es gilt immer: sx+ty = a

Computeralgebra in der Lehre am Beispiel Kryptografie

Computeralgebra in der Lehre am Beispiel Kryptografie Kryptografie Grundlagen RSA KASH Computeralgebra in der Lehre am Beispiel Kryptografie Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA KASH Überblick Kryptografie mit

Mehr

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie IT-Sicherheit: Kryptographie Asymmetrische Kryptographie Fragen zur Übung 5 C oder Java? Ja (gerne auch Python); Tips waren allerdings nur für C Wie ist das mit der nonce? Genau! (Die Erkennung und geeignete

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

10. Public-Key Kryptographie

10. Public-Key Kryptographie Stefan Lucks 10. PK-Krypto 274 orlesung Kryptographie (SS06) 10. Public-Key Kryptographie Analyse der Sicherheit von PK Kryptosystemen: Angreifer kennt öffentlichen Schlüssel Chosen Plaintext Angriffe

Mehr

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der

Mehr

Modul Diskrete Mathematik WiSe 2011/12

Modul Diskrete Mathematik WiSe 2011/12 1 Modul Diskrete Mathematik WiSe 2011/12 Ergänzungsskript zum Kapitel 4.2. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung

Mehr

Übung GSS Blatt 6. SVS Sicherheit in Verteilten Systemen

Übung GSS Blatt 6. SVS Sicherheit in Verteilten Systemen Übung GSS Blatt 6 SVS Sicherheit in Verteilten Systemen 1 Einladung zum SVS-Sommerfest SVS-Sommerfest am 12.07.16 ab 17 Uhr Ihr seid eingeladen! :-) Es gibt Thüringer Bratwürste im Brötchen oder Grillkäse

Mehr

11. Das RSA Verfahren und andere Verfahren

11. Das RSA Verfahren und andere Verfahren Chr.Nelius: Kryptographie (SS 2011) 31 11. Das RSA Verfahren und andere Verfahren Eine konkrete Realisierung eines Public Key Kryptosystems ist das sog. RSA Verfahren, das im Jahre 1978 von den drei Wissenschaftlern

Mehr

Das RSA Kryptosystem

Das RSA Kryptosystem Kryptografie Grundlagen RSA Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA mit geheimem mit öffentlichem Schlüssel Realisierung Kryptografie mit geheimem Schlüssel Alice

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 15.05.2017 1 / 25 Überblick 1 Hashfunktionen Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel: RSA

Mehr

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009 Das RSA-Verfahren Armin Litzel Proseminar Kryptographische Protokolle SS 2009 1 Einleitung RSA steht für die drei Namen Ronald L. Rivest, Adi Shamir und Leonard Adleman und bezeichnet ein von diesen Personen

Mehr

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Technische Universität München Zentrum Mathematik PD Dr. hristian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Aufgabe 5.1: In einer Implementierung

Mehr

Erste Vorlesung Kryptographie

Erste Vorlesung Kryptographie Erste Vorlesung Kryptographie Andre Chatzistamatiou October 14, 2013 Anwendungen der Kryptographie: geheime Datenübertragung Authentifizierung (für uns = Authentisierung) Daten Authentifizierung/Integritätsprüfung

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 12.05.2014 1 / 26 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:

Mehr

Aufgabe der Kryptografie

Aufgabe der Kryptografie Aufgabe der Kryptografie Eve möchte die Unterhaltung mithören und/oder ausgetauschte Informationen ändern. Alice & Bob kommunzieren über einen unsicheren Kanal. Alice & Bob nutzen Verschlüsselung und digitale

Mehr

Einleitung Shor s Algorithmus Anhang. Thomas Neder. 19. Mai 2009

Einleitung Shor s Algorithmus Anhang. Thomas Neder. 19. Mai 2009 19. Mai 2009 Einleitung Problemstellung Beispiel: RSA Teiler von Zahlen und Periode von Funktionen Klassischer Teil Quantenmechanischer Teil Quantenfouriertransformation Algorithmus zur Suche nach Perioden

Mehr

3: Zahlentheorie / Primzahlen

3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen,

Mehr

Entwicklung der Asymmetrischen Kryptographie und deren Einsatz

Entwicklung der Asymmetrischen Kryptographie und deren Einsatz Entwicklung der Asymmetrischen Kryptographie und deren Einsatz Peter Kraml, 5a hlw Facharbeit Mathematik Schuljahr 2013/14 Caesar-Verschlüsselung Beispiel Verschiebung der Buchstaben im Alphabet sehr leicht

Mehr

SSL/TLS Sicherheit Warum es sich lohnt, sich mit Ciphersuites zu beschäftigen

SSL/TLS Sicherheit Warum es sich lohnt, sich mit Ciphersuites zu beschäftigen SSL/TLS Sicherheit Warum es sich lohnt, sich mit Ciphersuites zu beschäftigen Immo FaUl Wehrenberg immo@ctdo.de Chaostreff Dortmund 16. Juli 2009 Immo FaUl Wehrenberg immo@ctdo.de (CTDO) SSL/TLS Sicherheit

Mehr

Das RSA-Verfahren. Proseminar Kryptographische Protokolle SS Armin Litzel

Das RSA-Verfahren. Proseminar Kryptographische Protokolle SS Armin Litzel in der Praxis Proseminar Kryptographische Protokolle SS 2009 5.5.2009 in der Praxis Gliederung 1 Grundlegendes über RSA 2 in der Praxis Allgemeine Vorgehensweise zur Verschlüsselung Signieren mit RSA 3

Mehr

Authentikation und digitale Signatur

Authentikation und digitale Signatur TU Graz 23. Jänner 2009 Überblick: Begriffe Authentikation Digitale Signatur Überblick: Begriffe Authentikation Digitale Signatur Überblick: Begriffe Authentikation Digitale Signatur Begriffe Alice und

Mehr

Sicherheit von ElGamal

Sicherheit von ElGamal Sicherheit von ElGamal Satz CPA-Sicherheit ElGamal ElGamal Π ist CPA-sicher unter der DDH-Annahme. Beweis: Sei A ein Angreifer auf ElGamal Π mit Erfolgsws ɛ(n) := Ws[PubK cpa A,Π (n) = 1]. Wir konstruieren

Mehr

12 Kryptologie. ... immer wichtiger. Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW...

12 Kryptologie. ... immer wichtiger. Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW... 12 Kryptologie... immer wichtiger Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW... Kryptologie = Kryptographie + Kryptoanalyse 12.1 Grundlagen 12-2 es gibt keine einfachen Verfahren,

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 06.05.2013 1 / 25 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:

Mehr

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 1 Primzahltest 1.1 Motivation Primzahlen spielen bei zahlreichen Algorithmen, die Methoden aus der Zahlen-Theorie verwenden, eine zentrale Rolle. Hierzu

Mehr

3 Public-Key-Kryptosysteme

3 Public-Key-Kryptosysteme Stand: 05.11.2013 Vorlesung Grundlagen und Methoden der Kryptographie Dietzfelbinger 3 Public-Key-Kryptosysteme 3.1 Verschlüsselung von Nachrichten Wir betrachten ganz einfache Kommunikationsszenarien.

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 4.4 Semantische Sicherheit 1. Sicherheit partieller Informationen 2. Das Verfahren von Rabin 3. Sicherheit durch Randomisierung Semantische Sicherheit Mehr als nur

Mehr

Datensicherheit durch Kryptographie

Datensicherheit durch Kryptographie Datensicherheit durch Kryptographie Dr. Michael Hortmann Fachbereich Mathematik, Universität Bremen T-Systems Michael.Hortmann@gmx.de 1 Kryptographie: Klassisch: Wissenschaft und Praxis der Datenverschlüsselung

Mehr

Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit Grundlagen: Asymmetrische Verschlüsslung, Digitale Signatur

Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit Grundlagen: Asymmetrische Verschlüsslung, Digitale Signatur Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit Grundlagen: Asymmetrische Verschlüsslung, Digitale Signatur Rudi Pfister Rudi.Pfister@informatik.stud.uni-erlangen.de Public-Key-Verfahren

Mehr

IT-Sicherheit Kapitel 3 Public Key Kryptographie

IT-Sicherheit Kapitel 3 Public Key Kryptographie IT-Sicherheit Kapitel 3 Public Key Kryptographie Dr. Christian Rathgeb Sommersemester 2013 1 Einführung In der symmetrischen Kryptographie verwenden Sender und Empfänger den selben Schlüssel die Teilnehmer

Mehr

CPA-Sicherheit ist ungenügend

CPA-Sicherheit ist ungenügend CPA-Sicherheit ist ungenügend Definition CCA CCA (=Chosen Ciphertext Attack) ist ein Angriff, bei dem der Angreifer sich Chiffretext seiner Wahl entschlüsseln lassen kann. Beispiele in denen CPA nicht

Mehr

Public-Key Verschlüsselung

Public-Key Verschlüsselung Public-Key Verschlüsselung Björn Thomsen 17. April 2006 Inhaltsverzeichnis 1 Einleitung 2 2 Wie funktioniert es 2 3 Vergleich mit symmetrischen Verfahren 3 4 Beispiel: RSA 4 4.1 Schlüsselerzeugung...............................

Mehr

$Id: ring.tex,v /05/03 15:13:26 hk Exp $

$Id: ring.tex,v /05/03 15:13:26 hk Exp $ $Id: ring.tex,v 1.13 2012/05/03 15:13:26 hk Exp $ 3 Ringe 3.1 Der Ring Z m In der letzten Sitzung hatten wir die sogenannten Ringe eingeführt, dies waren Mengen A versehen mit einer Addition + und einer

Mehr

Linux User Group Tübingen

Linux User Group Tübingen theoretische Grundlagen und praktische Anwendung mit GNU Privacy Guard und KDE Übersicht Authentizität öffentlicher GNU Privacy Guard unter KDE graphische Userinterfaces:, Die dahinter

Mehr

Public Key Kryptographie

Public Key Kryptographie 3. Juni 2006 1 Algorithmen für Langzahlen 1 RSA 1 Das Rabin-Kryptosystem 1 Diskrete Logarithmen Grundlagen der PK Kryptographie Bisher: Ein Schlüssel für Sender und Empfänger ( Secret-Key oder symmetrische

Mehr

Übungen zu. Grundlagen der Kryptologie SS 2008. Hochschule Konstanz. Dr.-Ing. Harald Vater. Giesecke & Devrient GmbH Prinzregentenstraße 159

Übungen zu. Grundlagen der Kryptologie SS 2008. Hochschule Konstanz. Dr.-Ing. Harald Vater. Giesecke & Devrient GmbH Prinzregentenstraße 159 Übungen zu Grundlagen der Kryptologie SS 2008 Hochschule Konstanz Dr.-Ing. Harald Vater Giesecke & Devrient GmbH Prinzregentenstraße 159 D-81677 München Tel.: +49 89 4119-1989 E-Mail: hvater@htwg-konstanz.de

Mehr

10. Kryptographie. Was ist Kryptographie?

10. Kryptographie. Was ist Kryptographie? Chr.Nelius: Zahlentheorie (SoSe 2015) 39 10. Kryptographie Was ist Kryptographie? Die Kryptographie handelt von der Verschlüsselung (Chiffrierung) von Nachrichten zum Zwecke der Geheimhaltung und von dem

Mehr

Asymmetrische. Verschlüsselungsverfahren. erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau

Asymmetrische. Verschlüsselungsverfahren. erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau Asymmetrische Verschlü erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau Gliederung 1) Prinzip der asymmetrischen Verschlü 2) Vergleich mit den symmetrischen Verschlü (Vor- und Nachteile)

Mehr

Kryptographie Reine Mathematik in den Geheimdiensten

Kryptographie Reine Mathematik in den Geheimdiensten Kryptographie Reine Mathematik in den Geheimdiensten Priska Jahnke 10. Juli 2006 Kryptographie Reine Mathematik in den Geheimdiensten Kryptographie (Kryptologie) = Lehre von den Geheimschriften Kaufleute,

Mehr

6.2 Asymmetrische Verschlüsselung

6.2 Asymmetrische Verschlüsselung 6.2 Asymmetrische Verschlüsselung (asymmetric encryption, public-key encryption) Prinzip (Diffie, Hellman, Merkle 1976-78): Statt eines Schlüssels K gibt es ein Schlüsselpaar K E, K D zum Verschlüsseln

Mehr

Diffie-Hellman, ElGamal und DSS. Vortrag von David Gümbel am 28.05.2002

Diffie-Hellman, ElGamal und DSS. Vortrag von David Gümbel am 28.05.2002 Diffie-Hellman, ElGamal und DSS Vortrag von David Gümbel am 28.05.2002 Übersicht Prinzipielle Probleme der sicheren Nachrichtenübermittlung 'Diskreter Logarithmus'-Problem Diffie-Hellman ElGamal DSS /

Mehr

Kryptographie - eine mathematische Einführung

Kryptographie - eine mathematische Einführung Kryptographie - eine mathematische Einführung Rosa Freund 28. Dezember 2004 Überblick Grundlegende Fragestellungen Symmetrische Verschlüsselung: Blockchiffren, Hashfunktionen

Mehr

4 Kryptologie. Übersicht

4 Kryptologie. Übersicht 4 Kryptologie Übersicht 4.1 Der erweiterte euklidische Algorithmus................................ 38 4.2 Rechnen mit Restklassen modulo p................................... 39 4.3 Der kleine Satz von

Mehr

3 Das RSA-Kryptosystem

3 Das RSA-Kryptosystem Stand: 15.12.2014 Vorlesung Grundlagen und Methoden der Kryptographie Dietzfelbinger 3 Das RSA-Kryptosystem RSA: Erfunden von Ronald L. Rivest, Adi Shamir und Leonard Adleman, 1977. (Ein ähnliches Verfahren

Mehr

ElGamal Verschlüsselungsverfahren (1984)

ElGamal Verschlüsselungsverfahren (1984) ElGamal Verschlüsselungsverfahren (1984) Definition ElGamal Verschlüsselungsverfahren Sei n ein Sicherheitsparameter. 1 Gen : (q, g) G(1 n ), wobei g eine Gruppe G der Ordnung q generiert. Wähle x R Z

Mehr

Public-Key-Kryptosystem

Public-Key-Kryptosystem Public-Key-Kryptosystem Zolbayasakh Tsoggerel 29. Dezember 2008 Inhaltsverzeichnis 1 Wiederholung einiger Begriffe 2 2 Einführung 2 3 Public-Key-Verfahren 3 4 Unterschiede zwischen symmetrischen und asymmetrischen

Mehr

Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code)

Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code) Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code) Multiplikative Chiffren monoalphabetische Substitutions-Chiffren:

Mehr

Homomorphe Verschlüsselung

Homomorphe Verschlüsselung Homomorphe Verschlüsselung Sophie Friedrich, Nicholas Höllermeier, Martin Schwaighofer 11. Juni 2012 Inhaltsverzeichnis Einleitung Motivation Mathematische Definitionen Wiederholung Gruppe Ring Gruppenhomomorphisums

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Public-Key Kryptographie mit dem RSA Schema. Torsten Büchner

Public-Key Kryptographie mit dem RSA Schema. Torsten Büchner Public-Key Kryptographie mit dem RSA Schema Torsten Büchner 7.12.2004 1.Einleitung 1. symmetrische-, asymmetrische Verschlüsselung 2. RSA als asymmetrisches Verfahren 2.Definition von Begriffen 1. Einwegfunktionen

Mehr

Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne

Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne Verfahren: DES (Feistel-Chiffre) mehrfache Wiederholung

Mehr

Sicherheit von hybrider Verschlüsselung

Sicherheit von hybrider Verschlüsselung Sicherheit von hybrider Verschlüsselung Satz Sicherheit hybrider Verschlüsselung Sei Π ein CPA-sicheres PK-Verschlüsselungsverfahren und Π ein KPA-sicheres SK-Verschlüsselungsverfahren. Dann ist das hybride

Mehr

Methoden der Kryptographie

Methoden der Kryptographie Methoden der Kryptographie!!Geheime Schlüssel sind die sgrundlage Folien und Inhalte aus II - Der Algorithmus ist bekannt 6. Die - Computer Networking: A Top außer bei security by obscurity Down Approach

Mehr

RSA Verfahren. Ghazwan Al Hayek Hochschule für Technik Stuttgart. 2. November 2008

RSA Verfahren. Ghazwan Al Hayek Hochschule für Technik Stuttgart. 2. November 2008 RSA Verfahren Ghazwan Al Hayek Hochschule für Technik Stuttgart 2. November 2008 1 Inhaltsverzeichnis 1. Einleitung 1.1. Übersicht 1.2. Private-Key-Verfahren 1.3. Public-Key-Verfahren 1.4. Vor/ Nachteile

Mehr

Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren

Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren Herwig Stütz 2007-11-23 1 Inhaltsverzeichnis 1 Einführung 2 2 Das RSA-Verfahren 2 2.1 Schlüsselerzeugung.................................

Mehr

Mathematik und Logik

Mathematik und Logik Mathematik und Logik 6. Übungsaufgaben 2006-01-24, Lösung 1. Berechnen Sie für das Konto 204938716 bei der Bank mit der Bankleitzahl 54000 den IBAN. Das Verfahren ist z.b. auf http:// de.wikipedia.org/wiki/international_bank_account_number

Mehr

Zur Sicherheit von RSA

Zur Sicherheit von RSA Zur Sicherheit von RSA Sebastian Petersen 19. Dezember 2011 RSA Schlüsselerzeugung Der Empfänger (E) wählt große Primzahlen p und q. E berechnet N := pq und ϕ := (p 1)(q 1). E wählt e teilerfremd zu ϕ.

Mehr

Hybride Verschlüsselungsverfahren

Hybride Verschlüsselungsverfahren Hybride Verschlüsselungsverfahren Ziel: Flexibilität von asym. Verfahren und Effizienz von sym. Verfahren. Szenario: Sei Π = (Gen, Enc, Dec) ein PK-Verschlüsselungsverfahren und Π = (Gen, Enc, Dec ) ein

Mehr

Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur

Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit Thema: Asymmetrische Verschlüsselung, Digitale Signatur Vortragender: Rudi Pfister Überblick: Asymmetrische Verschlüsselungsverfahren - Prinzip

Mehr

Das RSA-Kryptosystem

Das RSA-Kryptosystem www.mathematik-netz.de Copyright, Page 1 of 12 Das RSA-Kryptosystem Um dieses Dokument verstehen zu können benötigt der Leser nur grundlegende Kenntnisse der Algebra und ein gewisses mathematisches Verständnis.

Mehr

Asymmetrische Verschlüsselungsverfahren

Asymmetrische Verschlüsselungsverfahren Asymmetrische Verschlüsselungsverfahren Vorlesung 4 Alexander Koch (Vertretung) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT 2015-11-12 Universität desalexander Landes Baden-Württemberg

Mehr

Grundlagen der Kryptographie

Grundlagen der Kryptographie Grundlagen der Kryptographie Seminar zur Diskreten Mathematik SS2005 André Latour a.latour@fz-juelich.de 1 Inhalt Kryptographische Begriffe Primzahlen Sätze von Euler und Fermat RSA 2 Was ist Kryptographie?

Mehr

Probabilistische Primzahlensuche. Marco Berger

Probabilistische Primzahlensuche. Marco Berger Probabilistische Primzahlensuche Marco Berger April 2015 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einleitung 4 1.1 Definition Primzahl................................ 4 1.2 Primzahltest...................................

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 13.05.2013 1 / 16 Überblick 1 Asymmetrische Verschlüsselung Erinnerung Andere Verfahren Demonstration Zusammenfassung 2 Symmetrische Authentifikation von Nachrichten

Mehr

Anwendungen der Linearen Algebra: Kryptologie

Anwendungen der Linearen Algebra: Kryptologie Anwendungen der Linearen Algebra: Kryptologie Philip Herrmann Universität Hamburg 5.12.2012 Philip Herrmann (Universität Hamburg) AnwLA: Kryptologie 1 / 28 No one has yet discovered any warlike purpose

Mehr

Proseminar: Electronic Commerce und Digitale Unterschriften Public-Key-Kryptographie

Proseminar: Electronic Commerce und Digitale Unterschriften Public-Key-Kryptographie Proseminar: Electronic Commerce und Digitale Unterschriften Public-Key-Kryptographie Ziele der Kryptographie 1. Vertraulichkeit (Wie kann man Nachrichten vor Fremden geheim halten?) 2. Integrität (Wie

Mehr

Nachrichten- Verschlüsselung Mit S/MIME

Nachrichten- Verschlüsselung Mit S/MIME Nachrichten- Verschlüsselung Mit S/MIME Höma, watt is S/MIME?! S/MIME ist eine Methode zum signieren und verschlüsseln von Nachrichten, ähnlich wie das in der Öffentlichkeit vielleicht bekanntere PGP oder

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 5 Kryptosysteme auf der Basis diskreter Logarithmen 1. Diffie Hellman Schlüsselaustausch 2. El Gamal Systeme 3. Angriffe auf Diskrete Logarithmen 4. Elliptische Kurven

Mehr

1. Klassische Kryptographie: Caesar-Verschlüsselung

1. Klassische Kryptographie: Caesar-Verschlüsselung 1. Klassische Kryptographie: Caesar-Verschlüsselung Das Bestreben, Botschaften für andere unlesbar zu versenden, hat zur Entwicklung einer Wissenschaft rund um die Verschlüsselung von Nachrichten geführt,

Mehr

Workshop Experimente zur Kryptographie

Workshop Experimente zur Kryptographie Fakultät Informatik, Institut Systemarchitektur, Professur Datenschutz und Datensicherheit Workshop Experimente zur Kryptographie Sebastian Clauß Dresden, 23.03.2011 Alltägliche Anwendungen von Kryptographie

Mehr

Einführung in die Kryptographie. 20.6.2011, www.privacyfoundation.ch

Einführung in die Kryptographie. 20.6.2011, www.privacyfoundation.ch Einführung in die Kryptographie 20.6.2011, www.privacyfoundation.ch Kryptographie Name kryptós: verborgen, geheim gráphein: schreiben Verschlüsselung Text so umwandeln, dass man ihn nur noch entziffern/lesen

Mehr

Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik

Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Zwecke der Krytographie Techniken Symmetrische Verschlüsselung( One-time Pad,

Mehr

Einführung in Computer Microsystems

Einführung in Computer Microsystems Einführung in Computer Microsystems Kapitel 9 Entwurf eines eingebetteten Systems für Anwendungen in der IT-Sicherheit Prof. Dr.-Ing. Sorin A. Huss Fachbereich Informatik Integrierte Schaltungen und Systeme

Mehr

4 RSA und PGP. Die Mathematik von RSA an einem Beispiel

4 RSA und PGP. Die Mathematik von RSA an einem Beispiel 4 RSA und PGP Im Juni 1991 wurde das Programm PGP (für pretty good privacy ) von Phil Zimmermann ins Internet gestellt. Es ermöglichte jedermann, e-mails derart gut zu verschlüsseln, dass nicht einmal

Mehr

Verschlüsselung. Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern. 12.10.2011 Fabian Simon Bfit09

Verschlüsselung. Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern. 12.10.2011 Fabian Simon Bfit09 Verschlüsselung Fabian Simon BBS Südliche Weinstraße Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern 12.10.2011 Fabian Simon Bfit09 Inhaltsverzeichnis 1 Warum verschlüsselt man?...3

Mehr

Mathematische Grundlagen der Kryptografie (1321) SoSe 06

Mathematische Grundlagen der Kryptografie (1321) SoSe 06 Mathematische Grundlagen der Kryptografie (1321) SoSe 06 Klausur am 19.08.2006: Lösungsvorschläge zu den Aufgaben zu Aufgabe I.1 (a) Das numerische Äquivalent zu KLAUSUR ist die Folge [10, 11, 0, 20, 18,

Mehr

Kapitel 3 Elementare Zahletheorie

Kapitel 3 Elementare Zahletheorie Kapitel 3 Elementare Zahletheorie 89 Kapitel 3.1 Ganze Zahlen, Gruppen und Ringe 90 Die ganzen Zahlen Menge der ganzen Zahlen Z={..., 3, 2, 1,0,1,2,3,...} Es gibt zwei Operationen Addition: Z Z Z, (a,b)

Mehr

Asymmetrische Verschlüsselungsverfahren

Asymmetrische Verschlüsselungsverfahren Asymmetrische Verschlüsselungsverfahren Vorlesung 4 Alexander Koch (Vertretung) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2016-11-10 Alexander Koch Asymmetrische Verschlüsselungsverfahren

Mehr

Vorlesung Diskrete Strukturen Gruppe und Ring

Vorlesung Diskrete Strukturen Gruppe und Ring Vorlesung Diskrete Strukturen Gruppe und Ring Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung in

Mehr

Informatik für Ökonomen II HS 09

Informatik für Ökonomen II HS 09 Informatik für Ökonomen II HS 09 Übung 5 Ausgabe: 03. Dezember 2009 Abgabe: 10. Dezember 2009 Die Lösungen zu den Aufgabe sind direkt auf das Blatt zu schreiben. Bitte verwenden Sie keinen Bleistift und

Mehr

Übungen zur Vorlesung Systemsicherheit

Übungen zur Vorlesung Systemsicherheit Übungen zur Vorlesung Systemsicherheit Asymmetrische Kryptographie Tilo Müller, Reinhard Tartler, Michael Gernoth Lehrstuhl Informatik 1 + 4 24. November 2010 c (Lehrstuhl Informatik 1 + 4) Übungen zur

Mehr

RSA-Verfahren Schnelle Ver- / Entschlüsselung Zusammenhang mit dem Faktorisierungsproblem. RSA-Verfahren. Herwig Stütz

RSA-Verfahren Schnelle Ver- / Entschlüsselung Zusammenhang mit dem Faktorisierungsproblem. RSA-Verfahren. Herwig Stütz 2007-11-23 Überblick 1 2 Schnelle modulare Exponentiation Chinesischer Restsatz 3 Allgemeines Public-Key Methode Rivest, Shamir und Adleman 1977 Sicherheit des Verfahrens beruht auf Schwierigkeit der Primfaktorenzerlegung

Mehr

Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung)

Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung) Was bisher geschah Sicherheitsziele: Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung) von Information beim Speichern und

Mehr

8. Von den Grundbausteinen zu sicheren Systemen

8. Von den Grundbausteinen zu sicheren Systemen Stefan Lucks 8. Grundb. sich. Syst. 211 orlesung Kryptographie (SS06) 8. Von den Grundbausteinen zu sicheren Systemen Vorlesung bisher: Bausteine für Kryptosysteme. Dieses Kapitel: Naiver Einsatz der Bausteine

Mehr

Kurze Einführung in kryptographische Grundlagen.

Kurze Einführung in kryptographische Grundlagen. Kurze Einführung in kryptographische Grundlagen. Was ist eigentlich AES,RSA,DH,ELG,DSA,DSS,ECB,CBC Benjamin.Kellermann@gmx.de GPG-Fingerprint: D19E 04A8 8895 020A 8DF6 0092 3501 1A32 491A 3D9C git clone

Mehr

Sicherheit von PDF-Dateien

Sicherheit von PDF-Dateien Sicherheit von PDF-Dateien 1 Berechtigungen/Nutzungsbeschränkungen zum Drucken Kopieren und Ändern von Inhalt bzw. des Dokumentes Auswählen von Text/Grafik Hinzufügen/Ändern von Anmerkungen und Formularfeldern

Mehr

11. Das RSA Verfahren

11. Das RSA Verfahren Chr.Nelius: Zahlentheorie (SoSe 2017) 53 11. Das RSA Verfahren Bei einer asymmetrischen Verschlüsselung lässt sich der Schlüssel zum Entschlüsseln nicht aus dem Schlüssel zum Verschlüsseln bestimmen und

Mehr

und Digitale Signatur

und Digitale Signatur E-Mail Sicherheit und Digitale Signatur 13/11/04 / Seite 1 Inhaltsverzeichnis Vorstellung Motivation und Lösungsansätze Sicherheitsdemonstration Asymetrische Verschlüsselung Verschlüsselung in der Praxis

Mehr

1 Kryptosysteme 1 KRYPTOSYSTEME. Definition 1.1 Eine Kryptosystem (P(A), C(B), K, E, D) besteht aus

1 Kryptosysteme 1 KRYPTOSYSTEME. Definition 1.1 Eine Kryptosystem (P(A), C(B), K, E, D) besteht aus 1 RYPTOSYSTEME 1 ryptosysteme Definition 1.1 Eine ryptosystem (P(A), C(B),, E, D) besteht aus einer Menge P von lartexten (plaintext) über einem lartextalphabet A, einer Menge C von Geheimtexten (ciphertext)

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 26.05.2014 1 / 32 Überblick 1 Hinweis 2 Asymmetrische Authentifikation von Nachrichten Erinnerung RSA als Signaturschema ElGamal-Signaturen Hash-Then-Sign

Mehr

Elliptische Kurven in der Kryptographie

Elliptische Kurven in der Kryptographie Elliptische Kurven in der Kryptographie Projekttage Mathematik 2002 Universität Würzburg Mathematisches Institut Elliptische Kurven in der Kryptographie p.1/9 Übersicht Kryptographie Elliptische Kurven

Mehr

Grundlegende Protokolle

Grundlegende Protokolle Grundlegende Protokolle k.lindstrot@fz-juelich.de Grundlegende Protokolle S.1/60 Inhaltsverzeichnis Einleitung Passwortverfahren Wechselcodeverfahren Challange-and-Response Diffie-Hellman-Schlüsselvereinbarung

Mehr

Kryptographie: Verteidigung gegen die dunklen Künste in der digitalen Welt

Kryptographie: Verteidigung gegen die dunklen Künste in der digitalen Welt Kryptographie: Verteidigung gegen die dunklen Künste in der digitalen Welt Prof. Dr. Rüdiger Weis Beuth Hochschule für Technik Berlin Tag der Mathematik 2015 Flächendeckendes Abhören Regierungen scheitern

Mehr

12 Kryptologie. hier: Geheimhaltung, Authentifizierung, Integriät (Echtheit).

12 Kryptologie. hier: Geheimhaltung, Authentifizierung, Integriät (Echtheit). 12 Kryptologie Mit der zunehmenden Vernetzung, insbesondere seit das Internet immer mehr Verbreitung findet, sind Methoden zum Verschlüsseln von Daten immer wichtiger geworden. Kryptologie fand ihren Anfang

Mehr

Grundlagen der Verschlüsselung und Authentifizierung (2)

Grundlagen der Verschlüsselung und Authentifizierung (2) Grundlagen der Verschlüsselung und Authentifizierung (2) Ausarbeitung im Seminar Konzepte von Betriebssystem-Komponenten Benjamin Klink 21. Juli 2010 Inhaltsverzeichnis 1 Einleitung 1 2 Asymmetrische Verschlüsselung

Mehr

Kryptographische Verfahren auf Basis des Diskreten Logarithmus

Kryptographische Verfahren auf Basis des Diskreten Logarithmus Kryptographische Verfahren auf Basis des Diskreten Logarithmus -Vorlesung Public-Key-Kryptographie SS2010- Sascha Grau ITI, TU Ilmenau, Germany Seite 1 / 18 Unser Fahrplan heute 1 Der Diskrete Logarithmus

Mehr

Paul-Klee-Gymnasium. Facharbeit aus der Mathematik. Thema: Asymmetrische Verschlüsselungsverfahren. am Beispiel des RSA-Kryptosystems

Paul-Klee-Gymnasium. Facharbeit aus der Mathematik. Thema: Asymmetrische Verschlüsselungsverfahren. am Beispiel des RSA-Kryptosystems Paul-Klee-Gymnasium Facharbeit aus der Mathematik Thema: Asymmetrische Verschlüsselungsverfahren am Beispiel des RSA-Kryptosystems Verfasser : Martin Andreas Thoma Kursleiter : Claudia Wenninger Abgegeben

Mehr

Digitale Signaturen. RSA-FDH & das Random Oracle Model Björn Kaidel (mit Folien von Gunnar Hartung)

Digitale Signaturen. RSA-FDH & das Random Oracle Model Björn Kaidel (mit Folien von Gunnar Hartung) Digitale Signaturen RSA-FDH & das Random Oracle Model Björn Kaidel (mit Folien von Gunnar Hartung) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2017-12-01 B. Kaidel Digitale Signaturen:

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 23.05.2016 1 / 32 Überblick 1 Symmetrische Authentifikation von Nachrichten Ziel Konstruktionen MACs

Mehr