Kapitel 12. Lagrange-Funktion. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28. f (x, y) g(x, y) = c. f (x, y) = x y 2

Größe: px
Ab Seite anzeigen:

Download "Kapitel 12. Lagrange-Funktion. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28. f (x, y) g(x, y) = c. f (x, y) = x y 2"

Transkript

1 Kapitel 12 Lagrange-Funktion Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28 Optimierung unter Nebenbedingungen Aufgabe: Berechne die Extrema der Funktion unter der Nebenbedingung f (x, y) g(x, y) = c Beispiel: Wir suchen die lokalen Extrema der Funktion unter der Nebenbedingung f (x, y) = x y 2 g(x, y) = x + y = 3 Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 2 / 28 Graphische Lösung Im Falle von zwei Variablen können wir das Problem graphisch lösen. 1. Zeichne die Nebenbedingung g(x, y) = c in die xy-ebene ein. (Kurve in der Ebene) 2. Zeichne geeignete Niveaulinien der zu optimierenden Funktion f (x, y) ein. 3. Untersuche an Hand der Zeichnung welche Niveaulinien den zulässigen Bereich schneiden und bestimme die ungefähre Lage der Extrema. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 3 / 28

2 Beispiel Graphische Lösung g Minimum in (2, 1) 1 f f = λ g 2 x + y = 3 Extrema von f (x, y) = x y 2 gegeben g(x, y) = x + y = 3 Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 4 / 28 Lagrange-Ansatz Sei x ein Extremum von f (x, y) gegeben g(x, y) = c. Dann müssen f (x ) und g(x ) proportional sein: f (x ) = λ g(x ) wobei λ eine geeignete Proportionalitätskonstante ist. f x (x ) = λ g x (x ) f y (x ) = λ g y (x ) g(x ) = c Umformen ergibt g f x f x (x ) λ g x (x ) = 0 f y (x ) λ g y (x ) = 0 c g(x ) = 0 Linke Seite ist Gradient von L(x, y; λ) = f (x, y) + λ (c g(x, y)) Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 5 / 28 Lagrange-Funktion Wir erzeugen uns aus f, g und einer Hilfsvariablen λ eine neue Funktion, die Lagrange-Funktion: L(x, y; λ) = f (x, y) + λ (c g(x, y)) Die Hilfsvariable λ heißt Lagrange-Multiplikator. Lokale Extrema von f gegeben g(x, y) = c sind kritische Punkte der Lagrangefunktion L: L x = f x λ g x = 0 L y = f y λ g y = 0 L λ = c g(x, y) = 0 Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 6 / 28

3 Beispiel Lagrangefunktion Wir suchen die lokalen Extrema der f (x, y) = x 2 + 2y 2 gegeben g(x, y) = x + y = 3 Lagrangefunktion: L(x, y, λ) = (x 2 + 2y 2 ) + λ(3 (x + y)) Kritische Punkte: L x = 2x λ = 0 L y = 4y λ = 0 L λ = 3 x y = 0 einziger kritischer Punkt: (x 0 ; λ 0 ) = (2, 1; 4) Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 7 / 28 Geränderte Hesse-Matrix Die Matrix 0 g x g y H(x; λ) = g x L xx L xy g y L yx L yy heißt geränderte Hesse-Matrix. Hinreichende Bedingung für lokales Extremum: Sei (x 0 ; λ 0 ) ein kritischer Punkt von L. H(x 0 ; λ 0 ) > 0 x 0 ist lokales Maximum H(x 0 ; λ 0 ) < 0 x 0 ist lokales Minimum H(x 0 ; λ 0 ) = 0 keine Aussage möglich Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 8 / 28 Beispiel Geränderte Hesse-Matrix Wir suchen die lokalen Extrema der f (x, y) = x 2 + 2y 2 gegeben g(x, y) = x + y = 3 Lagrangefunktion: L(x, y, λ) = (x 2 + 2y 2 ) + λ(3 x y) Kritischer Punkt: (x 0 ; λ 0 ) = (2, 1; 4) Determinante der geränderten Hesse-Matrix: 0 g x g y H(x 0 ; λ 0 ) = g x L xx L xy = = 6 < 0 g y L yx L yy x 0 = (2, 1) ist ein lokales Minimum. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 9 / 28

4 Viele Variablen und Gleichungen Berechne die Extrema der Funktion f (x 1,..., x n ) unter den Nebenbedingungen g 1 (x 1,..., x n ) = c 1. (k < n) g k (x 1,..., x k ) = c k Optimierungsproblem: min / max f (x) gegeben g(x) = c. Lagrange-Funktion L(x; λ 1,..., λ k ) = f (x) + k i=1 λ i (c i g i (x)) Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 10 / 28 Vorgangsweise Kritische Punkte 1. Stelle Lagrange-Funktion L auf: L(x 1,..., x n ; λ 1,..., λ k ) = f (x 1,..., x n ) + k i=1 λ i (c i g i (x 1,..., x n )) 2. Berechne die ersten partiellen Ableitungen von L. 3. Setze alle ersten partiellen Ableitungen gleich Null und lösen das so entstandene Gleichungssystem mit n + k Unbekannten in n + k Gleichungen. 4. Die ersten n Komponenten (x 1,..., x n ) sind die Koordinaten der gesuchten kritischen Punkte. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 11 / 28 Beispiel Kritische Punkte Wir suchen die kritischen Punkte von f (x 1, x 2, x 3 ) = (x 1 1) 2 + (x 2 2) x 2 3 unter den Nebenbedingungen x x 2 = 2 und x 2 x 3 = 3 Lagrange-Funktion: L(x 1, x 2, x 3 ; λ 1, λ 2 ) = ((x 1 1) 2 + (x 2 2) x 2 3 ) + λ 1 (2 x 1 2 x 2 ) + λ 2 (3 x 2 + x 3 ) Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 12 / 28

5 Beispiel Kritische Punkte Partielle Ableitungen (Gradient): L x1 = 2 (x 1 1) λ 1 = 0 L x2 = 2 (x 2 2) 2 λ 1 λ 2 = 0 L x3 = 4 x 3 + λ 2 = 0 L λ1 = 2 x 1 2 x 2 = 0 L λ2 = 3 x 2 + x 3 = 0 Die kritischen Punkte von L erhalten wir durch Nullsetzen der ersten partiellen Ableitungen: (lineares Gleichungssystem) x 1 = 6 7, x 2 = 10 7, x 3 = 11 7 ; λ 1 = 26 7, λ 2 = Der einzige kritische Punkt von f unter dieser Nebenbedingungen ist somit x 0 = ( 6 7, 10 7, 11 7 ). Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 13 / 28 Geränderte Hesse-Matrix g g x x n g H(x; λ) = k g x 1... k x n g 1 g x 1... k x 1 L x1 x 1... L x1 x n g 1 g x n... k x n L xn x 1... L xn x n Sei B r (x; λ) der (k + r)-te führende Hauptminor von H(x; λ). Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 14 / 28 Hinreichende Bedingung Sei (x 0 ; λ 0 ) ein kritischer Punkt von L. ( 1) k B r (x 0 ; λ 0 ) > 0 für alle r = k + 1,..., n x 0 ist lokales Minimum ( 1) r B r (x 0 ; λ 0 ) > 0 für alle r = k + 1,..., n x 0 ist lokales Maximum (n ist die Anzahl der Variablen x i und k ist die Anzahl der Nebenbedingungen.) Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 15 / 28

6 Beispiel Hinreichende Bedingung Suchen Extrema von f (x 1, x 2, x 3 ) = (x 1 1) 2 + (x 2 2) x 2 3 unter den Nebenbedingungen x x 2 = 2 und x 2 x 3 = 3 Lagrange-Funktion: L(x 1, x 2, x 3 ; λ 1, λ 2 ) = ((x 1 1) 2 + (x 2 2) x 2 3 ) + λ 1 (2 x 1 2 x 2 ) + λ 2 (3 x 2 + x 3 ) Kritischer Punkt von L: x 1 = 6 7, x 2 = 10 7, x 3 = 11 7 ; λ 1 = 26 7, λ 2 = Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 16 / 28 Beispiel Hinreichende Bedingung Geränderte Hesse-Matrix: H(x; λ) = Variablen, 2 Nebenbedingungen: n = 3, k = 2 r = 3 B 3 = H(x; λ) = 14 ( 1) k B r = ( 1) 2 B 3 = 14 > 0 Bedingung erfüllt ( 1) r B r = ( 1) 3 B 3 = 14 < 0 nicht erfüllt Der kritische Punkt x 0 = ( 6 7, 10 7, 11 7 ) ist ein lokales Minimum. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 17 / 28 Globale Extrema Sei (x, λ ) ein kritischer Punkt der Lagrange-Funktion L des Optimierungsproblems min / max f (x) gegeben g(x) = c Falls L(x, λ ) konkav (konvex) in x ist, dann ist x ein globales Maximum (globales Minimum) von f (x) gegeben g(x) = c. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 18 / 28

7 Beispiel Globale Extrema (x, y ; λ ) = (2, 1; 4) ist ein kritischer Punkt der Lagrange-Funktion des Optimierungsproblems min / max f (x, y) = x 2 + 2y 2 gegeben g(x, y) = x + y = 3 Lagrangefunktion: L(x, y, λ ) = (x 2 + 2y 2 ) + 4 (3 (x + y)) Hesse-Matrix: ( ) 2 0 H L (x, y) = 0 4 L ist konvex in (x, y). (x, y ) = (2, 1) ist ein globales Minimum. H 1 = 2 > 0 H 2 = 8 > 0 Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 19 / 28 Beispiel Globale Extrema (x ; λ ) = ( 6 7, 10 7, 11 7 ; 26 7, 44 7 ) ist ein kritischer Punkt der Lagrange-Funktion des Optimierungsproblems min / max f (x 1, x 2, x 3 ) = (x 1 1) 2 + (x 2 2) x3 2 gegeben g 1 (x 1, x 2, x 3 ) = x x 2 = 2 Lagrangefunktion: g 2 (x 1, x 2, x 3 ) = x 2 x 3 = 3 L(x; λ ) = ((x 1 1) 2 + (x 2 2) x 2 3 ) 26 7 (2 x 1 2 x 2 ) (3 x 2 + x 3 ) Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 20 / 28 Beispiel Globale Extrema Hesse-Matrix: H L (x, y) = H 1 = 2 > 0 H 2 = 4 > 0 H 3 = 16 > 0 L ist konvex in x. x = ( 6 7, 10 7, 11 7 ) ist ein globales Minimum. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 21 / 28

8 Interpretation des Lagrange-Multiplikators Die Lage des Extremums x des Optimierungsproblems min / max f (x) gegeben g(x) = c hängt von c ab, x = x (c), und somit auch der Extremalwert von f : Wie ändert sich f (c) mit c? f (c) = f (x (c)) f (c) = λ j (c) Der Lagrange-Multiplikator λ j gibt also an, wie sich der Extremalwert ändert, wenn die Konstante c j der Nebenbedingung g j (x) = c j verändert wird. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 22 / 28 Herleitung Im Optimum stimmen L und f überein. Daher ist f (c) = L(x (c), λ(c)) [ Kettenregel ] = = n i=1 L xi (x (c), λ(c)) } {{ } = 0 da kritischer Punkt L(x, c) = ( = λ j (c) f (x) + (x (c),λ (c)) k i=1 x i (c) + ) λ i (c i g i (x)) L(x, c) (x (c),λ (c)) (x (c),λ (c)) Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 23 / 28 Beispiel Lagrange-Multiplikator (x, y ) = (2, 1) ist ein Minimum des Optimierungsproblems min / max f (x, y) = x 2 + 2y 2 gegeben g(x, y) = x + y = c = 3 mit λ = 4. Wie ändert sich der Minimalwert f von f, wenn sich c ändert? d f dc = λ = 4 Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 24 / 28

9 Umhüllungssatz (Envelope-Theorem) Wie ändert sich das Extremum f des Optimierungsproblems min / max f (x, p) gegeben g(x, p) = c wenn sich der Parameter (die exogene Variable) p ändert? f (p) p j = L(x, p) p j (x (p),λ (p)) Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 25 / 28 Beispiel Roys Identität Maximiere Nutzenfunktion max U(x) gegeben p t x = m Maximaler Nutzen hängt von Preisen p und Einkommen m ab: U = U (p, m) [ indirekte Nutzenfunktion ] Lagrange-Funktion L(x, λ) = U(x) + λ (m p t x) und somit U p j = L p j = λ x j und x j = U / p j U / m U m = L m = λ [ Marshallsche Nachfragefunktion ] Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 26 / 28 Beispiel Shephards Lemma Minimiere Ausgaben min p t x = m gegeben U(x) = ū (Minimale) Ausgabenfunktion hängt von p und ū ab: e = e(p, ū) Lagrange-Funktion L(x, λ) = p t x + λ (ū U(x)) e = L = x j [ Hicks sche Nachfragefunktion ] p j p j Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 27 / 28

10 Zusammenfassung Optimierung unter Nebenbedingungen Graphische Lösung Lagrange-Funktion und Lagrange-Multiplikator Extremum und kritischer Punkt Geränderte Hesse-Matrix Globale Extrema Interpretation des Lagrange-Multiplikators Umhüllungssatz Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 28 / 28

Kuhn-Tucker Bedingung

Kuhn-Tucker Bedingung Kapitel 13 Kuhn-Tucker Bedingung Josef Leydold Mathematik für VW WS 017/18 13 Kuhn-Tucker Bedingung 1 / Optimierung unter Nebenbedingungen Aufgabe: Berechne das Maximum der Funktion f (x, y) g(x, y) c,

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h.

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h. Konvexe Menge Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, dh Kapitel Extrema konvex: h x + h y D für alle h [0, ], und x,

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Hinreichende Bedingung für lokale Extrema Voraussetzungen Satz D R n konvex und offen Funktion f : D R zweimal stetig partiell differenzierbar

Mehr

Lagrange-Multiplikatoren

Lagrange-Multiplikatoren Lagrange-Multiplikatoren Ist x eine lokale Extremstelle der skalaren Funktion f unter den Nebenbedingungen g i (x) = 0, dann existieren Lagrange-Multiplikatoren λ i, so dass grad f (x ) = λ i grad g i

Mehr

Extrema von Funktionen mit Nebenbedingung

Extrema von Funktionen mit Nebenbedingung Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen mit Nebenbedingung Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Gliederung 1 : Einführung 2 Differenzieren 2 3 Deskriptive 4 Wahrscheinlichkeitstheorie

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode

6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode 6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode In diesem Kapitel orientieren wir uns stark an den Büchern: 1. Knut Sydsæter, Peter Hammond, Mathematik für Wirtschaftswissenschaftler,

Mehr

Mikroökonomik Prof. Dr. Stefan Klonner SoSe Übungsblatt 1

Mikroökonomik Prof. Dr. Stefan Klonner SoSe Übungsblatt 1 1 Funktionen Definition 1 (Funktion). Übungsblatt 1 Eine Funktion f(x) einer reellen Variable x mit Definitionsbereich D ist eine Regel, die jeder Zahl x in D eine reelle Zahl f(x) eindeutig zuordnet.

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

1 Einstimmung 2. 2 Die Reduktionsmethode 5. 3 Die Methode der Lagrange-Multiplikatoren 6. 4 *Ergänzungen und Verallgemeinerungen* 10

1 Einstimmung 2. 2 Die Reduktionsmethode 5. 3 Die Methode der Lagrange-Multiplikatoren 6. 4 *Ergänzungen und Verallgemeinerungen* 10 Universität Basel 9 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Extremwertprobleme mit Nebenbedingung Inhaltsverzeichnis 1 Einstimmung 2 2 Die Reduktionsmethode

Mehr

Übung 5, Analytische Optimierung

Übung 5, Analytische Optimierung Übung 5, 5.7.2011 Analytische Optimierung Aufgabe 5.1 Bei der Herstellung von Konserven werden für Boden und Deckel bzw. für den Konservenmantel verschiedene Materialien verwendet, die g 1 = bzw. g 2 =

Mehr

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8. Übungsblatt. ). 12x 3 Die Hessematrix von f ist gegeben durch H f (x, y) =

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8. Übungsblatt. ). 12x 3 Die Hessematrix von f ist gegeben durch H f (x, y) = Karlsruher Institut für Technologie (KIT Institut für Analysis Priv-Doz Dr P C Kunstmann Dipl-Math D Roth SS 0 7060 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8 Übungsblatt

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

Extrema mit Nebenbedingungen

Extrema mit Nebenbedingungen Extrema mit Nebenbedingungen Gesucht ist das Extremum der Funktion f(x,y) = 5 x y unter der Nebenbedingung g(x,y) = x+y =. 5 y x In diesem einfachen Fall kann die Nebenbedingung nach einer Variablen aufgelöst

Mehr

Kuhn-Tucker-Bedingung

Kuhn-Tucker-Bedingung Kuhn-Tucker-Bedingung Ist x ein lokales Minimum einer skalaren Funktion f unter den Nebenbedingungen g i (x) 0 und sind die Gradienten der aktiven Gleichungen g i (x ) = 0, i I, linear unabhängig, dann

Mehr

Kuhn-Tucker-Bedingung

Kuhn-Tucker-Bedingung Kuhn-Tucker-Bedingung Ist x ein lokales Minimum einer skalaren Funktion f unter den Nebenbedingungen g i (x) 0 und sind die Gradienten der aktiven Gleichungen g i (x ) = 0, i I, linear unabhängig, dann

Mehr

1 Envelope Theorem ohne Nebenbedingungen

1 Envelope Theorem ohne Nebenbedingungen Envelope Theorem ohne Nebenbedingungen Man betrachte das Maimierungsproblem V (α) = ma f (α,) Bedingung für ein Maimum ist f = 0 und die Lösung ist ein (α) Die Ableitung der Wertefunktion nach α i ist

Mehr

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x.

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x. Technische Universität München WS 009/0 Fakultät für Mathematik Prof. Dr. J. Edenhofer Dipl.-Ing. W. Schultz Übung Lösungsvorschlag Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I Aufgabe

Mehr

Mathematik für Wirtschaftswissenschaftler Kapitel 4-6. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler Kapitel 4-6. Universität Trier Wintersemester 2013 / 2014 Mathematik für Kapitel 4-6 Universität Trier Wintersemester 2013 / 2014 Kapitel 4 1. Extremwerte 2. Lokale Optimalpunkte 3. Wendepunkte 2 Kapitel 4.1 EXTREMWERTE 3 Extrempunkte und Extremwerte 4 Strikte

Mehr

Klausur Mathematik II

Klausur Mathematik II Technische Universität Dresden. Juli 8 Institut für Numerische Mathematik Prof. Dr. G. Matthies, Dr. M. Herrich Klausur Mathematik II Modul Dierentialgleichungen und Dierentialrechnung für Funktionen mehrerer

Mehr

Musterlösung zu Blatt 1

Musterlösung zu Blatt 1 Musterlösung zu Blatt Analysis III für Lehramt Gymnasium Wintersemester 0/4 Überprüfe zunächst die notwendige Bedingung Dfx y z = 0 für die Existenz lokaler Extrema Mit x fx y z = 8x und y fx y z = + z

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Differentialrechnung für Funktionen mehrerer

Mehr

14.4 Warum die Methode der Lagrange-Multiplikatoren funktioniert

14.4 Warum die Methode der Lagrange-Multiplikatoren funktioniert 14 Optimierung unter Nebenbedingungen 14.4 Warum die Methode der Lagrange-Multiplikatoren funktioniert [1] Lösen sie die folgenden Probleme, indem Sie diese auf ein univariates Problem zurückführen. Zeigen

Mehr

10 Extremwertaufgaben, dreidimensional

10 Extremwertaufgaben, dreidimensional Dr. Dirk Windelberg Leibniz Universität Hannover Mathematik für Ingenieure Mathematik http://www.windelberg.de/agq 10 Extremwertaufgaben, dreidimensional 3D: Notwendige Bedingung für das Auftreten eines

Mehr

Höhere Mathematik II für BWIW, BNC, BAI, BGIP, GTB, Ma Hausaufgaben zum Übungsblatt 5 - Lösung

Höhere Mathematik II für BWIW, BNC, BAI, BGIP, GTB, Ma Hausaufgaben zum Übungsblatt 5 - Lösung TU Bergakademie Freiberg Sommersemester Dr. Gunter Semmler Dr. Anja Kohl Höhere Mathematik II für BWIW, BNC, BAI, BGIP, GTB, Ma Hausaufgaben zum Übungsblatt 5 - Lösung Differentialrechnung für Funktionen

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle

Mehr

2 Extrema unter Nebenbedingungen

2 Extrema unter Nebenbedingungen $Id: lagrange.tex,v 1.6 2012/11/06 14:26:21 hk Exp hk $ 2 Extrema unter Nebenbedingungen 2.1 Restringierte Optimierungsaufgaben Nachdem wir jetzt die bereits bekannten Techniken zur Bestimmung der lokalen

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 03 6.06.03 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Inverse und implizite Funktionen

Inverse und implizite Funktionen Kapitel 8 Inverse und implizite Funktionen Josef Leydold Mathematik für VW WS 2017/18 8 Inverse und implizite Funktionen 1 / 21 Inverse Funktion Sei f : D f R n W f R m, x y f(x). Eine Funktion f 1 : W

Mehr

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

Wirtschaftsmathematik II

Wirtschaftsmathematik II WMS: Wirtschaftsmathematik 2 :: WS 2009/10 Wirtschaftsmathematik II Reinhard Ullrich http://homepage.univie.ac.at/reinhard.ullrich Basierend auf Folien von Dr. Ivana Ljubic October 11, 2009 1 Funktionen

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12 Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3

Mehr

Kapitel 2. Mathematik für Mikroökonomie

Kapitel 2. Mathematik für Mikroökonomie Kapitel Mathematik für Mikroökonomie 1 Mathematik der Optimierung Ökonomische Theorien basieren auf der Annahme, dass die Agenten versuchen, den optimalen Wert einer Funktion zu wählen. Konsumenten maximieren

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Kapitel 7. Differentialrechnung. Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56

Kapitel 7. Differentialrechnung. Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56 Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f x = f (x 0 + x) f (x 0 ) x = f (x)

Mehr

Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen. Graphentheorie

Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen. Graphentheorie Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen Graphentheorie Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen Def.: eine Funktion n f :D mit D,x (x,...x

Mehr

7.11. Extrema unter Nebenbedingungen

7.11. Extrema unter Nebenbedingungen 7.11. Extrema unter Nebenbedingungen Randextrema Wir haben schon bemerkt, daß die üblichen Tests mit Hilfe von (eventuell höheren) Ableitungen nur Kriterien für (lokale) Extrema im Inneren des Definitionsgebietes

Mehr

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 Markus Sinnl 1 markus.sinnl@univie.ac.at http://homepage.univie.ac.at/markus.sinnl basierend auf Folien von Dr. Ivana Ljubic, Mag. Christian Spreitzer und Mag.

Mehr

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z R Es sei f : R n D R eine einmal stetig differenzierbare Funktion, für die in einer Umgebung eines Punkte a = a 1, a,, a n D gilt: fa 1, a,, a n = 0, f xn a 1, a,, a n 0 Dann gibt es eines Umgebung U des

Mehr

Kapitel 15. Kontrolltheorie. Josef Leydold Mathematik für VW WS 2017/18 15 Kontrolltheorie 1 / 19. T (1 s(t)) f (k(t)) dt

Kapitel 15. Kontrolltheorie. Josef Leydold Mathematik für VW WS 2017/18 15 Kontrolltheorie 1 / 19. T (1 s(t)) f (k(t)) dt Kapitel 15 Kontrolltheorie Josef Leydold Mathematik für VW WS 217/18 15 Kontrolltheorie 1 / 19 Wirtschaftswachstum Aufgabe: Maximiere Konsum im Zeitraum [, T]: max s(t) 1 (1 s(t)) f (k(t)) dt f (k)...

Mehr

Optimierung unter Nebenbedingungen

Optimierung unter Nebenbedingungen Optimierung unter Nebenbedingungen Kapitel 7: Optimierung unter Nebenbedingungen Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 1. Juli 2009 1 / 18 7.1 Bemerkung

Mehr

(3D-)Extrema unter Nebenbedingungen. Problemstellung (lokale Optimierung)

(3D-)Extrema unter Nebenbedingungen. Problemstellung (lokale Optimierung) (3D-)Extrema unter Nebenbedingungen Wir beschränken uns wieder (meistens) auf Funktionen von zwei Variablen x, y. Bei drei oder mehr Variablen x 1,..., x n sind die gleichen Techniken analog anwendbar,

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim

Mehr

Mathematische Grundlagen für Wirtschaftswissenschaftler Leseprobe - Abschnitt 6.5 (das agraökonomische Schaf )

Mathematische Grundlagen für Wirtschaftswissenschaftler Leseprobe - Abschnitt 6.5 (das agraökonomische Schaf ) Mathematische Grundlagen für Wirtschaftswissenschaftler Leseprobe - Abschnitt 65 (das agraökonomische Schaf ) Sascha Kurz Jörg Rambau 25 November 2009 2 66 Die Karush-Kuhn-Tucker-Methode Die Erkenntnisse

Mehr

Klausurrepetitorium ABWL

Klausurrepetitorium ABWL Klausurrepetitorium ABWL Planungs- und Südwestfälische Industrie- und Handelskammer 9. August 5 Dr. Friedhelm Kulmann, Sandra Rudolph 9.8.5 Gliederung. Nichtlineare Optimierungsprobleme.. Quadratisches

Mehr

Inverse und implizite Funktionen

Inverse und implizite Funktionen Kapitel 8 Inverse und implizite Funktionen Josef Leydold Mathematik für VW WS 2017/18 8 Inverse und implizite Funktionen 1 / 21 Inverse Funktion Sei f : D f R n W f R m, x y = f(x). Eine Funktion f 1 :

Mehr

10 Extremwerte mit Nebenbedingungen

10 Extremwerte mit Nebenbedingungen 10 Extremwerte mit Nebenbedingungen 49 10 Extremwerte mit Nebenbedingungen Wir betrachten nun Extremwertaufgaben, bei denen nach dem Extremwert einer fx 1,, x n gesucht wird, aber die Menge der zulässigen

Mehr

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen 1. Bestimmen Sie für die folgenden Funktionen zunächst die kritischen Stellen und entscheiden

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1. Anwendungen des Satzes über implizite Funktionen 2. Stationäre Punkte implizit definierter Funktionen 3. Reguläre Punkte 4. Singuläre Punkte Ausblick auf die heutige

Mehr

TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017

TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017 TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik Prof. Dr. K. Eppler Institut für Numerische Mathematik Dr. M. Herrich SS 207 Aufgabe Gegeben sei die Funktion f : R 2 R mit Übungen

Mehr

16. FUNKTIONEN VON MEHREREN VARIABLEN

16. FUNKTIONEN VON MEHREREN VARIABLEN 16. FUNKTIONEN VON MEHREREN VARIABLEN 1 Reelle Funktionen auf dem R 2 Wir betrachten Funktionen f(x 1, x 2 ) von zwei reellen Variablen x 1, x 2, z.b. f(x 1, x 2 ) = x 2 1 + x2 2, g(x 1, x 2 ) = x 2 1

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.4 Anwendungen (Teil 2): Extremwerte

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.4 Anwendungen (Teil 2): Extremwerte Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.4 Anwendungen (Teil 2): Extremwerte www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr.

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen Mathematik für Physiker III WS 2012/2013 Freitag 211 $Id: implizittexv 18 2012/11/01 20:18:36 hk Exp $ $Id: lagrangetexv 13 2012/11/01 1:24:3 hk Exp hk $ 1 Umkehrfunktionen und implizite Funktionen 13

Mehr

Aufgabensammlung zum UK Mathematische Optimierung

Aufgabensammlung zum UK Mathematische Optimierung Aufgabensammlung zum UK Mathematische Optimierung Mehrdimensionale Analysis Stetigkeit. Man bestimme den natürlichen Definitionsbereich D f der folgenden Funktionen f: a) f(x, y) = ln(x y ) b) f(x, y)

Mehr

1 Übungsaufgaben zu Kapitel 1

1 Übungsaufgaben zu Kapitel 1 Übungsaufgaben zu Kapitel. Übungsaufgaben zu Abschnitt... Aufgabe. Untersuchen Sie die nachstehend definierten Folgen ( a k ) k und ( b k ) k auf Konvergenz und bestimmen Sie ggf. den jeweiligen Grenzwert:

Mehr

Teil 6. Differentialrechnung mehrerer Veränderlicher

Teil 6. Differentialrechnung mehrerer Veränderlicher Teil 6 Differentialrechnung mehrerer Veränderlicher 95 96 6.1 Topologie von Mengen Umgebung ε-umgebung eines Punktes x R n : B ε (x) = {y : y x < ε} Umgebung U von x: Menge, die eine ε-umgebung von x enthält

Mehr

Musterlösungen Aufgabenblatt 2

Musterlösungen Aufgabenblatt 2 Jonas Kindervater Ferienkurs - Höhere Mathematik III für Physiker Musterlösungen Aufgabenblatt Dienstag 17. Februar 009 Aufgabe 1 (Implizite Funktionen) f(x, y) = x 1 xy 1 y4 = 0 Man bestimme die lokale

Mehr

Exkurs: Dualität zwischen Nutzenmaximierung und Ausgabenminimierung

Exkurs: Dualität zwischen Nutzenmaximierung und Ausgabenminimierung Exkurs: Dualität zwischen Nutzenmaximierung und Ausgabenminimierung Tone Arnold Universität des Saarlandes 29 November 2007 29 November 2007 1 / 14 Nutzenmaximierung Beispiel: u(x 1, x 2 ) = x 05 1 x 05

Mehr

Mehrdimensionale Differentialrechnung Übersicht

Mehrdimensionale Differentialrechnung Übersicht Mehrdimensionale Differentialrechnung Übersicht Partielle und Totale Differenzierbarkeit Man kann sich mehrdimensionale Funktionen am Besten für den Fall f : R 2 M R vorstellen Dann lässt sich der Graph

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Inhaltsverzeichnis 8 Funktionen mehrerer Variabler 8. Einführende Definitionen und Bemerkungen....................... 8. Graphische Darstellungsmöglichkeiten.......................... 8. Grenzwert und

Mehr

z 2 + 2z + 10 = 0 = 2 ± 36 2 Aufgabe 2 (Lineares Gleichungssystem) Sei die reelle 3 4 Matrix

z 2 + 2z + 10 = 0 = 2 ± 36 2 Aufgabe 2 (Lineares Gleichungssystem) Sei die reelle 3 4 Matrix Mathematik für Wirtschaftswissenschaftler im WS 03/04 Lösungsvorschläge zur Klausur im WS 03/04 Aufgabe (Komplexe Zahlen (4 Punkte a Berechnen Sie das Produkt der beiden komplexen Zahlen + i und 3 + 4i

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

1.6 Implizite Funktionen

1.6 Implizite Funktionen 1 1.6 Implizite Funktionen Wir werden uns jetzt mit nichtlinearen Gleichungen beschäftigen, f(x) = 0, wobei f = (f 1,..., f m ) stetig differenzierbar auf einem Gebiet G R n und m < n ist. Dann hat man

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

Wirtschaftsmathematik 00054: Mathematik für Wirtschaftswissenschaftler II Kurseinheit 2: Lineare Algebra II

Wirtschaftsmathematik 00054: Mathematik für Wirtschaftswissenschaftler II Kurseinheit 2: Lineare Algebra II Wirtschaftsmathematik 00054: Mathematik für Wirtschaftswissenschaftler II Kurseinheit : Lineare Algebra II Leseprobe Autor: Univ.-Prof. Dr. Wilhelm Rödder Dr. Peter Zörnig 74 4 Extrema bei Funktionen mehrerer

Mehr

2 Funktionen in mehreren Variablen: Differentiation

2 Funktionen in mehreren Variablen: Differentiation Satz 2. (Richtungsableitung) Für jede auf der offenen Menge D R n total differenzierbaren Funktion f (insbesondere für f C 1 (D, R) und für jeden Vektor v R n, v 0, gilt: n v f(x) = f(x) v = f xi (x)v

Mehr

8 Blockbild und Hohenlinien

8 Blockbild und Hohenlinien Mathematik fur Ingenieure Institut fur Algebra, Zahlentheorie und Diskrete Mathematik Dr. Dirk Windelberg Universitat Hannover Stand: 18. August 008 http://www.iazd.uni-hannover.de/windelberg/teach/ing

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 7. Juni 201 *Aufgabe 1. Gegeben seien fx, y = xy 2 8e x+y und P = 1, 2. Der Gradient von f ist genau an der Stelle P Null. a Untersuchen Sie mit Hilfe der Hesse-Matrix,

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS /5 G. Bärwol, A. Gündel-vom-Hofe..5 Februar Klausur Analysis II für Ingenieurswissenschaften Lösungsskizze. Aufgabe 6Punkte Bestimmen

Mehr

Klausur Mathematik, 1. Oktober 2012, A

Klausur Mathematik, 1. Oktober 2012, A Klausur, Mathematik, Oktober 2012, Lösungen, A 1 Klausur Mathematik, 1. Oktober 2012, A Die Klausureinsicht ist Do, 8.11.2012 um 18:00 in MZG 8.136. Die Klausur ist mit 30 Punkten bestanden. Falls Sie

Mehr

3. Mai Zusammenfassung. g x. x i (x).

3. Mai Zusammenfassung. g x. x i (x). 3. Mai 2013 Zusammenfassung 1 Hauptsatz Satz 1.1 Sei F C 1 (D) für eine offene Teilmenge D von R q+1 = R q R. Für (x 0, u 0 ) D gelte F (x 0, u 0 ) = 0, (x 0, u 0 ) 0. Dann gibt es eine Umgebung V von

Mehr

Lösung zur Prüfung HM 1,2 el+phys+kyb+geod, Teil 2

Lösung zur Prüfung HM 1,2 el+phys+kyb+geod, Teil 2 Lösung zur Prüfung HM, el+phys+kyb+geod, Teil Universität Stuttgart Fachbereich Mathematik Institut für Analysis, Dynamik und Modellierung 9.7.6 Name Vorname Matr.-nummer Raum Anmerkungen zur Korrektur:...

Mehr

3. Approximation von Funktionen und Extremwertprobleme im R n

3. Approximation von Funktionen und Extremwertprobleme im R n 3. Approximation von Funktionen und Extremwertprobleme im R n Wie in D ist es wichtig Funktionen mit mehreren Variablen durch Polynome lokal approximieren zu können. Polynome lassen sich im Gegensatz zu

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

Substitutionsverfahren

Substitutionsverfahren Substitutionsverfahren 1 Motivation Wir stehen vor folgendem Problem: In unserem Betrieb kann unsere einzige Maschine Produkt A in zwei Stunden und Produkt B in einer Stunde produzieren. Die Maschine läuft

Mehr

Einführung in die Volkswirtschaftslehre

Einführung in die Volkswirtschaftslehre Einführung in die Volkswirtschaftslehre Übung 1: Mathematische Analyseinstrumente Dipl.-Volksw. J.-E.Wesselhöft/ Dipl.-Volksw. J.Freese Bachelor Modul Volkswirtschaftliche Analyse (WS-14-V-03) HT 2009

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 3. Mai 203 *Aufgabe. Bestimmen Sie alle Punkte (x 0, y 0 ), an denen der Gradient der Funktion f(x, y) = (xy 2 8)e x+y Null ist. Untersuchen Sie, ob diese Punkte lokale

Mehr

Mathematik I Internationales Wirtschaftsingenieurwesen

Mathematik I Internationales Wirtschaftsingenieurwesen Mathematik I Internationales Wirtschaftsingenieurwesen Funktionen mit mehreren reellen Variablen 18.11.08 Beispiel: Funktionsgebirge Das Beispiel zeigt die Funktion z = y sin(x 2 ) Schnittkurven: Beispiel

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

Aufgabe 1 (Komplexe Zahlen) Berechnen Sie die folgenden komplexe Zahlen:

Aufgabe 1 (Komplexe Zahlen) Berechnen Sie die folgenden komplexe Zahlen: Mathematik für Wirtschaftswissenschaftler im SoSe 24 Lösungsvorschläge zur Klausur im SoSe 24 Aufgabe (Komplexe Zahlen) Berechnen Sie die folgenden komplexe Zahlen: z = ( + i) 2 w = + i. Stellen Sie jeweils

Mehr

Ein Buch. Für Anwendungen des Stoffs in den Wirtschaftswissenschaften: Knut Sydsæter, Peter Hemmond: Mathematik für Wirtschaftswissenschaftler

Ein Buch. Für Anwendungen des Stoffs in den Wirtschaftswissenschaften: Knut Sydsæter, Peter Hemmond: Mathematik für Wirtschaftswissenschaftler Ein Buch Für Anwendungen des Stoffs in den Wirtschaftswissenschaften: Knut Sydsæter, Peter Hemmond: Mathematik für Wirtschaftswissenschaftler (Aber bei der Mathematik ein bisschen aufpassen!) 4 Extremstellen

Mehr

Optimierung. Optimierung. Vorlesung 5 Optimierung mit Nebenbedingungen Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 5 Optimierung mit Nebenbedingungen Thomas Brox, Fabian Kuhn Optimierung Vorlesung 5 Optimierung mit Nebenbedingungen 1 Minimierung mit Gleichheitsrestriktionen Gegeben: Funktion,,,, : Ziel:,,, Unrestringierter Fall: Notwendige Bedingung für lokales Minimum keine

Mehr

Kapitel 6 Differential- und Integralrechnung in mehreren Variablen

Kapitel 6 Differential- und Integralrechnung in mehreren Variablen Kapitel 6 Differential- und Integralrechnung in mehreren Variablen Inhaltsverzeichnis FUNKTIONEN IN MEHREREN VARIABLEN... 3 BEISPIELE UND DARSTELLUNGEN... 3 GRENZWERT UND STETIGKEIT (ABSTANDSBEGRIFF)...

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Auffrischungskurs Mathematik WS 2017/18 7 Differentialrechnung 1 / 75 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f

Mehr

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrechnung f = f 0 + f 0 = f 0 0 heißt Differenzenquotient an der Stelle 0., Sekante 0, f 0 f 0 Josef Leydold Auffrischungskurs

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Aufgaben zur nicht-linearen Optimierung Teil II Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Aufgabe 5 Bestimmen

Mehr

Extremwertrechnung in mehreren Veränderlichen

Extremwertrechnung in mehreren Veränderlichen KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 2014 14.05.2014 Höhere Mathematik II für die Fachrichtung Informatik 3. Saalübung (14.05.2014) Extremwertrechnung

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

Outline. 1 Funktionen von mehreren Veränderlichen. 2 Grenzwert und Stetigkeit. 3 Partielle Ableitungen. 4 Die verallgemeinerte Kettenregel

Outline. 1 Funktionen von mehreren Veränderlichen. 2 Grenzwert und Stetigkeit. 3 Partielle Ableitungen. 4 Die verallgemeinerte Kettenregel Outline 1 Funktionen von mehreren Veränderlichen 2 Grenzwert und Stetigkeit 3 Partielle Ableitungen 4 Die verallgemeinerte Kettenregel 5 Das totale Differential 6 Extremstellen Roman Wienands (Universität

Mehr