Versuch 15. Wechselstromwiderstände

Größe: px
Ab Seite anzeigen:

Download "Versuch 15. Wechselstromwiderstände"

Transkript

1 Physikalisches Praktikum Versuch 5 Wechselstromwiderstände Name: Christian Köhler Datum der Durchführung: Gruppe Mitarbeiter: Henning Hansen Assistent: Thomas Rademacher testiert:

2

3 3 Einleitung In diesem Versuch wird das Verhalten von Spulen und Kondensatoren bei Wechselstrom untersucht. Insbesondere geht es dabei um die geeignete Berechnung eines Widerstandes sowie zum Schluss einigen wichtigen Anwendungsgebieten. 2 Theorie 2. Effektivwert Der Effektivwert eines Wechselstroms bezeichnet den entsprechenden Wert eines Gleichstroms, der an einem ohmschen Widerstand eine identische Leistung verrichten würde. Berechnet werden kann er als Wurzel der zeitlichen Mittelwerte des Quadrates der Größe, z. B. U eff = U 2. Für einen sinusförmigen Wechselstrom mit Scheitelwert U 0 erhält man U eff = (U 0 sin ωt) 2 = U 0 sin 2 ωt = U 0 2 und entsprechend I eff = I 0 2. Bei einer rechteckförmigen Wechselspannung sind die Effektivwerte identisch mit den Scheitelwerten. 2.2 Wechselstromwiderstände Für die Wechselstromrechnung erweist es sich als sinnvoll mit komplexen Zahlen zu rechnen. Das komplexe Verhältnis U/I bezeichnet man dann als Impedanz Z. U(t) = U 0 e iωt, I(t) = I 0 e i(ωt+φ) Der reelle, messbare Wert ist dann jeweils der Realteil der komplexen Größen. Ohmscher Widerstand Das Verhalten eines ohmschen Widerstandes bei Wechselstrom entspricht dem bei Gleichstrom. Der Wechselstromwiderstand ist unabhängig von der Frequenz und es kommt zu keiner Phasenverschiebung zwischen Spannung und Strom. Z R = U(t) I(t) = U 0 e iωt I 0 e iωt = U 0 I 0 = U eff I eff = R

4 4 2 THEORIE Kapazitiver Widerstand Nach der Definition der Kapazität C = Q/U beträgt die Ladung des Kondensators und die Stromstärke Q(t) = C U 0 e iωt I(t) = dq dt = iωc U 0 e iωt = ωc U 0 e i(ωt+ π Es ergibt sich eine Phasenverschiebung zwischen Spannung und Strom, der Strom hinkt der Spannung um eine Viertelperiode hinterher. Daher ist die Impedanz imaginär: Z C = U(t) I(t) = iωc = i ωc. Sie ist proportional zum Kehrwert der Frequenz. Für ω = 0 ist der Widerstand unendlich groß, der Kondensator sperrt bei Gleichstrom. 2 ). Induktiver Widerstand Ein durch eine Spule fließender Strom bewirkt die Induktionsspannung U ind = L I, die laut Lenzscher Regel der Ursache entgegen gerichtet ist. Es ist also U(t) = U ind = LI di dt = U 0 L eiωt I(t) = U 0 iωl eiωt = U 0 ωl π ei(ωt Der Strom eilt der Spannung um eine Viertelperiode voraus. Es ergibt sich die Impedanz Sie wächst linear mit der Frequenz. Z L = U(t) I(t) = iωl. 2 ). 2.3 Reihenschaltung von Wechselstromwiederständen Die Wechselstromwiderstände addieren sich nach den selben Regeln wie ohmsche Widerstände. Im Falle einer Reihenschaltung von Kondensator, Spule und ohmschen Widerstand ergibt sich der Gesamtwiderstand also aus der einfachen Addition der Einzelwiderstände. ( Z = R + Z L + Z C = R + i ωl ) ωc Den Realteil der Impedanz bezeichnet man als Wirkwiderstand R, den Imaginärteil als Blindwiderstand X. Der Betrag der Impedanz, den man auch als Scheinwiderstand bezeichnet, berechnet sich nach Pythagoras: Z = R 2 + X 2 = R 2 + ( ωl ) 2 ωc

5 2.4 Parallelschaltung von Wechselstromwiderständen 5 Abbildung : Zeigerdiagramm für die Reihenschaltung Abbildung 2: Zeigerdiagramm für die Parallelschaltung Er bestimmt das Verhältnis zwischen den Amplituden von Spannung und Strom, bzw. deren Effektivwerten, denn U 0 cos(ωt) = Re(Z I(t)) = Re( Z e iφ I 0 e iωt ) = Z I 0 cos(ωt + φ) mit der frequanzabhängigen Phasenverschiebung ( ) ( X ωl ) ωc φ = arctan = arctan. R R Für den Fall ωl = /ωc ist der Scheinwiderstand minimal, das geschieht bei der Resonanzfrequenz ω R = LC. 2.4 Parallelschaltung von Wechselstromwiderständen Bei der Parallelschaltung addieren sich die Kehrwerte der Einzelwiderstände zum Kehrwert des Gesamtwiderstandes. Z = R + + = ( Z L Z C R + i ωc ) ωl Z = + ( ωc R 2 ωl ) 2

6 6 2 THEORIE Z Reihe I Reihe Parallel Parallel ω R ω R ω ω Abbildung 3: Scheinwiderstand und Effektivstrom für Reihen- und Parallelschaltung U, I, P U(t) I(t) P (t) P ωt Abbildung 4: Leistung im Wechselstromkreis Hier ist der Scheinwiderstand im Resonanzfall ωc = /ωl besonders hoch. Die Resonanzfrequenz beträgt ebenfalls ω R = LC. 2.5 Leistung im Wechselstromkreis Die momentane Leistung berechnet sich als Produkt von Spannung und Strom. Im Gegensatz zu Gleichstrom ist sie bei Wechselstrom nicht zeitlich konstant: P (t) = U(t) I(t). Daher gibt man im Normalfall ihren zeitlichen Mittelwert an, für einen sinusförmigen Wechselstrom ist dieser: P = U 0 I 0 cos(ωt) cos(ωt + φ) = U 0 I 0 2 = U 0 I 0 2 [cos(φ) + cos(2ωt + φ)] cos(φ) = U eff I eff cos(φ)

7 2.6 Tief-, Hoch- und Bandpass 7 Im Allgemeinen ist diese Leistung nicht identisch mit dem Produkt U eff I eff, welches man als Scheinleistung S bezeichnet. Dies ist auch plausibel, denn es wird eine Leistung gebraucht um die elektrischen bzw. magnetische Felder in Kondensatoren und Spulen aufzubauen. Bei deren Abbau wird die Leistung wieder zurückgegeben. Erkennbar wird das anhand einer negativen Leistung im P (t)-diagramm (siehe Abb. 4). Die Blindleistung Q ist der Anteil der Leistung, der so periodisch aufgenommen und wieder abgegeben wird. 2.6 Tief-, Hoch- und Bandpass Bei Tief- Hoch- und Bandpässen handelt es sich um Filter, die in der Elektronik dazu dienen, aus einem Signal bestimmte Frequenzen herauszufiltern. Ein Tiefpass filtert dabei hohe Frequenzen heraus, ein Hochpass tiefe und ein Bandpass sowohl Frequenzen oberhalb als auch unterhalb eines bestimmten Frequenzbandes. Es gibt grundsätzlich sehr viele verschiedene Arten, diese Filter zu realisieren. Welche davon genutzt wird, hängt in erster Linie von der Anwendung ab. Bei den hier erwähnten Versionen handelt es sich grundsätzlich um die simpelsten Realisierungen dieser Filter. Abbildung 5: Von links nach rechts: Tiefpass, Hochpass, Bandpass Mit der Spannungsteilerformel erhält man für den Tiefpass und entsprechend für den Hochpass U A = Z C U E R + Z C = /ωc R2 + /ω 2 C = 2 R2 ω 2 C 2 + U A U E = Für den Bandpass erhält man das Verhältnis R R2 + /ω 2 C 2 = /R2 ω 2 C 2 +. U A U E = R R 2 + (ωl /ωc) 2. Mit Hilfe dieser drei Gleichungen lässt sich nun der für einen Filter charakteristische Frequenzgang bestimmen. Für die oben abgebildeten Filter ist dieser in Abb. 6 zu sehen.

8 8 3 DURCHFÜHRUNG Tiefpass Hochpass Bandpass U A /U E ω [/s] Abbildung 6: Frequenzgang der drei Filtertypen Abbildung 7: Schaltplan zum Versuch 3 Durchführung Nachdem die Schaltung gemäß Abb. 7 aufgebaut wurde, kann mit der Messung begonnen werden. Der zu vermessende Frequenzbereich reicht etwa von 60 Hz bis 480 Hz. Die Resonanzstelle ist besonders genau zu vermessen.. Um die Induktivität der Spule bestimmen zu können, wird zunächst der Kondensator mit dem Schalter überbrückt und für ungafähr zehn verschiedene Frequenzen Strom I 0, Spannung U 0 und Phasenverschiebung gemessen. 2. Am RLC-Serienresonanzkreis (d. h. bei geöffnetem Schalter) werden nun Strom I 0, Gesamtspannung U 0, Spannungen an Kondensator U C und Spule mit Widerstand U L+R sowie die Phasenverschiebung in Abhängigkeit der Frequenz gemessen. 3. Die Schaltung wird zu einem LC-Parallelkreis umgebaut und Strom I 0 und Spannung U 0 in Abhängigkeit der Frequenz gemessen.

9 9 Am Ende wird noch der Innenwiderstand des verwendeten Amperemeters, der ohmsche Widerstand des seperaten Widerstandes und der Spule sowie die Kapazität des Kondensators gemessen. Außerdem sind die angegebenen Spulendaten zu notieren. 4 Auswertung 4. Auswertung der Schaltung ohne Kondensator Aus den gemessenen Werten U 0 und I 0 bei der Reihenschaltung aus Spule und Ohm schem Widerstand wurde jeweils der Betrag der Impedanz Z = U 0 I 0 berechnet und dessen Quadrat in Abb. 8 über dem Quadrat der Frequenz ω aufgetragen. Der Quadrat des Betrages der Impedanz ist Z 2 [ Ω 2] ω 2 [ s 2 ] Ergebnis des linearen Fittens: Z 2 = A + B ω 2 A = 6(2) 0 4 Ω 2 B = 2, (2) 0 H 2 Abbildung 8: Bestimmung der Induktivität der Luftspule Z 2 = R 2 (Z) + I 2 (z) = R 2 + L 2 ω 2, d.h. aus der Auftragung ergibt sich L = B, wobei B die Steigung der Regressionsgeraden ist. Aufgrund des zu groß gewählen Messbereichs am Strommessgerät kommen die Sprünge im Graphen zustande, was dazu führt, dass sich die Regressionsgerade nicht zur Bestimmung des Ohm schen Widerstandes eignet (negativer Z 2 -Achsenabschnitt), die

10 0 4 AUSWERTUNG Induktivität L kann dagegen mit dem Fehler σ L = σ B B 3 L = 5(3) H bestimmt werden und es ergibt sich: Der Ohm sche Gesamtwiderstand R ergibt sich aus dem Ohm schen Widerstand 67, 6 Ω der Spule (mit dem Multimeter gemessen), dem Ohm schen Widerstand 0, 4 Ω des Ampèremeters (ebenfalls mit einem anderen Multimeter gemessen) und dem eingebauten Ohm schen Widerstand 0() Ω zusammen zu: R = 88() Ω 4.2 Impedanz des Serienresonanzkreises In Abb. 9 ist der Betrag der Impedanz Z in Abhängigkeit von der Kreisfrequenz ω aufgetragen. Zu erkennen ist das Minimum des Betrages der Impedanz bei der Resonanzfrequenz ω r = 98(4) s Als Fehler der Resonanzfrequenz ω r ist die halbe Spannweite zwischen den beiden benachbarten Messpunkten angegeben. Aufgrund der zu ungenauen Messung von I 0 eignet sich der minimale Betrag der Impedanz Z, der dem Ohm schen Widerstand R der Schaltung entsprechen sollte, ebenfalls nicht, denselben zu bestimmen Z [Ω] ω [ ] s Abbildung 9: Die frequenzabhängige Impedanz im Serienresonanzkreis

11 4.3 Phasenverschiebung im Serienresonanzkreis 4.3 Phasenverschiebung im Serienresonanzkreis Der aus der von der Frequenz ω abhängigen Phasenverschiebung ϕ bestimmte Wert für ω r ist der gleiche wie der aus der Impedanz bestimmte Wert, da direkt ein Wert mit der Phasenverschiebung ϕ = 0 gemessen wurde, was durch das Oszilloskop gut ermöglicht wurde. Die Phasenverschiebung ist in Abb. 0 aufgetragen.,0 0,5 0,0-0,5 ϕ [rad] -, ω s Abbildung 0: Phasenverschiebung im Serienresonanzkreis 4.4 Zwischenergebnisse und Kapazität des Kondensators Da wie gesagt der Gesamtwiderstand R nicht direkt gemessen wurde, kann daraus auch nicht der ohm sche Widerstand R L = 67, 6 Ω der Spule berechnet werden, der angegebene Wert ist der mit dem Multimeter gemessene. Aus der Resonanzfrequenz ω r = 98(4) s L = 5(3) H der Spule kann gemäß C = ( ) 2 σ C = 2 σω ( r ω r + σll ) 2 bestimmt werden. ω 2 r L und der Induktivität die Kapazität C des Kondensators mit dem Fehler C =, 5(9) 0 6 F Mit dem Multimeter wurde die Kapazität zu C =, F bestimmt, der aus ω r und L bestimmte Wert weicht von diesem um ca. 3, 0 % ab und schließt ihn in seinem Fehlerbalken ein.

12 2 4 AUSWERTUNG 4.5 Spannungen im Serienresonanzkreis In Abb. 4.5 sind die Spannungen U 0, U C und U L+R in Abhängigkeit von der Frequenz ω eingezeichnet. U 0 U C 55 U L+R U [V] ω [ ] s Abbildung : Die frequenzabhängigen Spannungen im Serienresonanzkreis Es ist erkennbar, dass für geringe Frequenzen der Spannungsabfall U C an der Kapazität und für Frequenzen oberhalb von ω r die Induktivität die Impedanz dominiert, während die Gesamtspannung U 0 konstant bleibt. 4.6 Zeigerdiagramm des Resonanzkreises Die Phase des kapazitiven Spannungsabfalls U C ist π 2 vor der der Gesamtspannung U 0, welche im Fall der Resonanz wiederum in Phase mit dem Strom I 0 ist. Daher lässt sich die Phasenverschiebung zwischen I 0 und dem Spannungsabfall U L+R anhand des arctan des Verhältnisses zwischen U C und ( ) ( ) U U 0 berechnen: ϕ = arctan C U0 mit dem Fehler σ ϕ = σuc 2 ( ) UC σ +ϕ + U0 2. Das Ergebnis 2 ist ϕ =, 385(2). Berechnet man die Phasenverschiebung ϕ theoretisch aus der Induktivität L, dem Ohm schen Gesamtwiderstand R und der Resonanzfrequenz ω r nach der Formel ϕ = arctan ( ) ω L R, wobei der Fehler ( ) 2 σ ϕ = L σωr ( +ϕ 2 R + ω σl ) 2 R ist, so ergibt sich als Wert ϕ =, 4, dessen Fehler σϕ =, 20 U 0 U 2 0

13 4.7 Impedanz des Parallelresonanzkreises 3 jedoch aufgrund des großen Fehlers bei der linearen Regression für L zustande kommt. Der aus den Spannungen errechnete Wert weicht vom theoretischen Wert um, 8 % ab. Das Zeigerdiagramm ist in 2 zu sehen. Dabei handelt es sich bei der eingezeichneten Phase von U L+R um den aus U 0 und U C berechneten Wert, die Pfeillänge ist jedoch der Messwert für U L+R. Abbildung 2: Zeigerdiagramm im Resonanzfall 4.7 Impedanz des Parallelresonanzkreises Der im parallel geschalteten Resonanzkreis ebenfalls gemäß Z = U 0 I 0 ist in Abb. 3 an Abhängigkeit von der Frequenz ω eingezeichnet. berechnete Wert der Impedanz 5 Diskussion Hätten wir einen kleineren Messbereich beim Ampèremeter gewählt, so wäre sicher auch der Fehler für die Induktivität kleiner und die Graphen für die Impedanz im Serienresonanzkreis wären geeignet gewesen daraus den Gesamtwiderstand des Aufbaus zu bestimmen. Dennoch erhalten wir anhand der gemessenen Ohm schen Widerstände relativ widerspruchsfreie Werte, z.b. für die Kapazität des Kondensators und die Phasenverschiebung zwischen der Gesamtspannung und der Spannung am Ohm schen Widerstand und der Induktivität.

14 4 5 DISKUSSION Z [Ω] ω [ ] s Abbildung 3: Die frequenzabhängige Impedanz im Parallelresoanzkreis Dank der Messung mit dem Oszilloskop konnte das Wirken der Bauelemente Kondensator und Spule im Wechselstromkreis während der Versuchsdurchführung sehr schön dargestellt werden.

Wechselstromwiderstände

Wechselstromwiderstände Physikalisches Praktikum für das Hauptfach Physik Versuch 15 Wechselstromwiderstände Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9 Assistent:

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Physikalisches Grundpraktikum Versuch 14 Wechselstromwiderstände Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor: Gruppe:

Mehr

Versuch 14 Wechselstromwiderstände

Versuch 14 Wechselstromwiderstände Grundpraktikum der Fakultät für Physik Georg August Universität Göttingen Versuch 4 Wechselstromwiderstände Praktikant: Joscha Knolle Ole Schumann E-Mail: joscha@htilde.de Durchgeführt am: 3.09.202 Abgabe:

Mehr

Versuch 8 Wechselstromwiderstände

Versuch 8 Wechselstromwiderstände Anfängerpraktikum der Fakultät für Physik, Universität Göttingen Versuch 8 Wechselstromwiderstände Praktikanten: Maximilian Kurjahn Lukas Hupe E-Mail:..@stud.uni-goettingen.de..@stud.uni-goettingen.de

Mehr

Wechselstromwiderstände und Reihenresonanz

Wechselstromwiderstände und Reihenresonanz Versuch C8/9: Wechselstromwiderstände und Reihenresonanz. Literatur: Demtröder, Experimentalphysik : Elektrizität und Optik Pohl, Einführung in die Physik, Bd. Gerthsen, Kneser, Vogel; Physik Bergmann-Schaefer,

Mehr

U N I V E R S I T Ä T R E G E N S B U R G

U N I V E R S I T Ä T R E G E N S B U R G U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch ww : Wechselstromwiderstand Dr. Tobias Korn Manuel März Inhaltsverzeichnis

Mehr

1 Wechselstromwiderstände

1 Wechselstromwiderstände 1 Wechselstromwiderstände Wirkwiderstand Ein Wirkwiderstand ist ein ohmscher Widerstand an einem Wechselstromkreis. Er lässt keine zeitliche Verzögerung zwischen Strom und Spannung entstehen, daher liegt

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Ausarbeitung zum Versuch Wechselstromwiderstände Versuch 9 des physikalischen Grundpraktikums Kurs I, Teil II an der Universität Würzburg Sommersemester 005 (Blockkurs) Autor: Moritz Lenz Praktikumspartner:

Mehr

Versuch 14: Wechselstromwiderstände

Versuch 14: Wechselstromwiderstände Versuch 14: Wechselstromwiderstände Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Grundlagen................................... 3 2.2 Bauteile..................................... 3 2.3 Stromkreise...................................

Mehr

Weitere Beispiele zur Anwendung komplexer Zahlen

Weitere Beispiele zur Anwendung komplexer Zahlen Weitere Beispiele zur Anwendung komplexer Zahlen Harmonische Schwingungen............................... 27 Anwendung: Zeigerdiagramm bei der Wechselstromrechnung............. 28 Additionstheoreme für

Mehr

Hochpass, Tiefpass und Bandpass

Hochpass, Tiefpass und Bandpass Demonstrationspraktikum für Lehramtskandidaten Versuch E3 Hochpass, Tiefpass und Bandpass Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: daniel@mehr-davon.de Gruppe: 4 Durchgeführt

Mehr

4 Kondensatoren und Widerstände

4 Kondensatoren und Widerstände 4 Kondensatoren und Widerstände 4. Ziel des Versuchs In diesem Praktikumsteil sollen die Wirkungsweise und die Frequenzabhängigkeit von Kondensatoren im Wechselstromkreis untersucht und verstanden werden.

Mehr

E4 Wechselstromwiderstände

E4 Wechselstromwiderstände Physikalische Grundlagen Grundbegriffe (ohmsche, induktive und kapazitive) Leistung im Wechselstromkreis Effektivwerte Zeigerdiagramm Reihen- und Parallelschwingkreis. Die Bestimmung von Widerständen in

Mehr

Wechselstromkreis mit verschiedenen Bauteilen

Wechselstromkreis mit verschiedenen Bauteilen Wechselstromkreis mit verschiedenen Bauteilen Im Folgenden werden nun die Auswirkungen eines ohmschen Widerstands, eines induktiven Widerstands (Spule) und eines kapazitiven Widerstands (Kondensator) auf

Mehr

Elektrische Messverfahren Versuchsvorbereitung

Elektrische Messverfahren Versuchsvorbereitung Versuche P-70,7,8 Elektrische Messverfahren Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 6.2.200 Spannung, Strom und Widerstand Die Basiseinheit

Mehr

Anhang A3. Darstellung von Wechselströmen und -spannungen im Zeigerdiagramm

Anhang A3. Darstellung von Wechselströmen und -spannungen im Zeigerdiagramm Anhang A3 Darstellung von Wechselströmen und -spannungen im Zeigerdiagramm Für die Darstellung und Berechnung von Wechselstromkreisen sind sogenannte Zeigerdiagramme sehr von Nutzen. Dies sind instruktive

Mehr

4.5 Wechselstromkreise

4.5 Wechselstromkreise 4.5 Wechselstromkreise Wechselstrom in vielen Punkten praktischer: ransformatoren Elektromotoren Frequenz als Referenz... Prinzip der Erzeugung einer sinusförmigen Wechselspannung: V: Wechselstromgenerator

Mehr

Reihenresonanz - C8/ C8/9.2 -

Reihenresonanz - C8/ C8/9.2 - Versuch C8/9: - C8/9. - Wechselstromwiderstände und Reihenresonanz - C8/9.2 - Wechselstromkreis mit induktiven und kapazitiven Elementen Spannung und Strom im allgemeinen nicht die gleiche Phase haben

Mehr

2.1 Ele kt rom agnetis c he. Sc hwingunge n und We lle n. Sc hwingunge n

2.1 Ele kt rom agnetis c he. Sc hwingunge n und We lle n. Sc hwingunge n 2 Ele kt rom agnetis c he Sc hwingunge n und We lle n 2.1 Ele kt rom agnetis c he Sc hwingunge n 2.1.1 Kapazit ive r und indukt ive r Wide rs t and In einem Gleichstromkreis hängt die Stromstärke, sieht

Mehr

WB Wechselstrombrücke

WB Wechselstrombrücke WB Wechselstrombrücke Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Wechselstromwiderstand................. 2 2.2 Wechselstromwiderstand

Mehr

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H ET 6 Elektromagnetisches Feld Magnetische Feldstärke (magnetische Erregung) In der Umgebung stromdurchflossener Leiter entsteht ein magnetisches Feld, H = H e s... quellenfreies Vektorfeld der Feldstärke

Mehr

Wir betrachten wieder die Leiterschleife im homogenen Magnetfeld von <29.2.>: Im rechten Schenkel der Leiterschleife herrscht ein E r '-Feld 1

Wir betrachten wieder die Leiterschleife im homogenen Magnetfeld von <29.2.>: Im rechten Schenkel der Leiterschleife herrscht ein E r '-Feld 1 3. Wechselstrom I 3.. Erzeugung von Wechselströmen Wir betrachten wieder die eiterschleife im homogenen Magnetfeld von : Wie wir dort bereits festgestellt hatten führt ein Strom in der eiterschleife

Mehr

Elektrische Messverfahren

Elektrische Messverfahren Vorbereitung Elektrische Messverfahren Carsten Röttele 20. Dezember 2011 Inhaltsverzeichnis 1 Messungen bei Gleichstrom 2 1.1 Innenwiderstand des µa-multizets...................... 2 1.2 Innenwiderstand

Mehr

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L Versuch E 1: PHASENVERSCHIEBUNG IM WECHSELSTROMKREIS Stichworte: Elektronenstrahloszillograph Komplexer Widerstand einer Spule und eines Kondensators Kirchhoffsche Gesetze Gleichungen für induktiven und

Mehr

Praktikum Physik. Protokoll zum Versuch: Wechselstromkreise. Durchgeführt am 08.12.2011. Gruppe X

Praktikum Physik. Protokoll zum Versuch: Wechselstromkreise. Durchgeführt am 08.12.2011. Gruppe X Praktikum Physik Protokoll zum Versuch: Wechselstromkreise Durchgeführt am 08.12.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das

Mehr

6 Verfahren zur Messung von Widerständen/ Impedanzen in elektrischen Anlagen und an Geräten

6 Verfahren zur Messung von Widerständen/ Impedanzen in elektrischen Anlagen und an Geräten Mehr Informationen zum Titel 6 Verfahren zur Messung von Widerständen/ Impedanzen in elektrischen Anlagen und an Geräten Bearbeitet von Manfred Grapentin 6.1 Arten und Eigenschaften von elektrischen Widerständen

Mehr

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit R-C-Kreise durchgeführt am 07.06.200 von Matthias Dräger und Alexander Narweleit PHYSIKALISCHE GRUNDLAGEN Physikalische Grundlagen. Kondensator Ein Kondensator ist ein passives elektrisches Bauelement,

Mehr

Aufgaben Wechselstromwiderstände

Aufgaben Wechselstromwiderstände Aufgaben Wechselstromwiderstände 69. Eine aus Übersee mitgebrachte Glühlampe (0 V/ 50 ma) soll mithilfe einer geeignet zu wählenden Spule mit vernachlässigbarem ohmschen Widerstand an der Netzsteckdose

Mehr

Komplexe Zahlen und Wechselstromwiderstände

Komplexe Zahlen und Wechselstromwiderstände Komplexe Zahlen und Wechselstromwiderstände Axel Tobias 22.2.2000 Ein besonderer Dank geht an Ingo Treunowski, der die Übertragung meines Manuskriptes in L A TEX durchgeführt hat tob skript komplex.tex.

Mehr

!!!! 2. Wechselstrom. 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen

!!!! 2. Wechselstrom. 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen 2. Wechselstrom 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen 3. Theorie des sinusförmigen Wechselstroms. 4. Komplexe Schaltungsberechnung. 59 1.1 Einführende

Mehr

PW11 Wechselstrom II. Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007

PW11 Wechselstrom II. Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007 PW11 Wechselstrom II Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007 Andreas Allacher 0501793 Tobias Krieger 0447809 Mittwoch Gruppe 3 13:00 18:15 Uhr Dr.

Mehr

2. Graphische Darstellung des Phasenwinkels als Funktion der Frequenz.

2. Graphische Darstellung des Phasenwinkels als Funktion der Frequenz. E a Phasenbeziehungen und RC-Filter Toshiki Ishii (Matrikel 3266690) 7.06.203 Studiengang Chemie (Bachelor of Science) Aufgabenstellung. Ermitteln des Phasenverlaufes zwischen Strom und Spannung mithilfe

Mehr

6 Wechselstrom-Schaltungen

6 Wechselstrom-Schaltungen für Maschinenbau und Mechatronik Carl Hanser Verlag München 6 Wechselstrom-Schaltungen Aufgabe 6.1 Durch ein Grundeintor C = 0,47 µf an der Sinusspannung U = 42 V fließt ein Sinusstrom mit dem Effektivwert

Mehr

Brückenschaltungen (BRUE)

Brückenschaltungen (BRUE) Seite 1 Themengebiet: Elektrodynamik und Magnetismus 1 Literatur W. Walcher, Praktikum der Physik, 3. Aufl., Teubner, Stuttgart F. Kohlrausch, Praktische Physik, Band 2, Teubner, 1985 W. D. Cooper, Elektrische

Mehr

Ernst-Moritz-Arndt-Universität Greifswald Institut für Physik. 1. Aufgabenstellung. Versuch E7a - Wechselstromwiderstände

Ernst-Moritz-Arndt-Universität Greifswald Institut für Physik. 1. Aufgabenstellung. Versuch E7a - Wechselstromwiderstände Ernst-Moritz-Arndt-Universität Greifswald Institut für Physik Name: Versuch E7a - Wechselstromwiderstände Mitarbeiter: Gruppennummer: lfd. Nummer: Datum: 1. Aufgabenstellung Bestimmen Sie die Impedanz

Mehr

Wechselspannungskreis Definition Teil C: Wechselstromkreis Beschreibungsgrößen Wechselspannung:

Wechselspannungskreis Definition Teil C: Wechselstromkreis Beschreibungsgrößen Wechselspannung: Teil C: Wechselstromkreis Beschreibungsgrößen Ohmscher, kapazitiver, induktiver Widerstand Knoten- und Maschenregeln Passiver / Bandpass Dezibel Bode-Diagramm 6.2.3 Beschreibungsgrößen Wechselspannung:

Mehr

E10 Wechselstromwiderstände: Serienschwingkreis

E10 Wechselstromwiderstände: Serienschwingkreis Physikalisches Anfängerpraktikum Universität Stuttgart WS 2013/14 Protokoll zum Versuch E10 Wechselstromwiderstände: Serienschwingkreis Johannes Horn, Robin Lang 28.03.2014 Verfasser: Robin Lang (BSc.

Mehr

Versuch V03: Passive Netzwerke

Versuch V03: Passive Netzwerke Versuch V3: Passive Netzwerke Henri Menke und Jan Trautwein Gruppe 1 11 Platz k (Betreuer: Torsten endler) (Datum: 4. November 13) Im Versuch soll in erster Linie der Frequenzgang eines Tiefpasses aufgenommen

Mehr

Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik

Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik Untersuchen Sie das Übertragungsverhalten eines RC-Tiefpasses mit Hilfe der Oszilloskopmesstechnik 1.Es ist das Wechselstromverhalten

Mehr

Physikalisches Praktikum I. Wechselstromwiderstände: Serienschwingkreis Matrikelnummer:

Physikalisches Praktikum I. Wechselstromwiderstände: Serienschwingkreis Matrikelnummer: Fachbereich Physik Physikalisches Praktikum I E10 Name: Wechselstromwiderstände: Serienschwingkreis Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat:

Mehr

Induktionsgesetz (E13)

Induktionsgesetz (E13) Induktionsgesetz (E13) Ziel des Versuches Es soll verifiziert werden, dass die zeitliche Änderung eines magnetischen Flusses, hervorgerufen durch die Änderung der Flussdichte, eine Spannung induziert.

Mehr

Protokoll zum Versuch E7: Elektrische Schwingkreise. Abgabedatum: 24. April 2007

Protokoll zum Versuch E7: Elektrische Schwingkreise. Abgabedatum: 24. April 2007 Protokoll zum Versuch E7: Elektrische Schwingkreise Sven E Tobias F Abgabedatum: 24. April 2007 Inhaltsverzeichnis 1 Einleitung 3 2 Physikalischer Zusammenhang 3 2.1 Wechselstromwiderstände (Impedanz)...............

Mehr

E 4 Spule und Kondensator im Wechselstromkreis

E 4 Spule und Kondensator im Wechselstromkreis E 4 Spule und Kondensator im Wechselstromkreis 1. Aufgaben 1. Die Scheinwiderstände einer Spule und eines Kondensators sind in Abhängigkeit von der Frequenz zu bestimmen und gemeinsam in einem Diagramm

Mehr

Abitur 2009 Physik 1. Klausur Hannover, arei LK 2. Semester Bearbeitungszeit: 90 min

Abitur 2009 Physik 1. Klausur Hannover, arei LK 2. Semester Bearbeitungszeit: 90 min Abitur 009 hysik Klausur Hannover, 0403008 arei K Semester Bearbeitungszeit: 90 min Thema: Spule, Kondensator und Ohmscher Widerstand im Wechselstromkreis Aufgabe eite begründet her: Für den Gesamtwiderstand

Mehr

Fokussierung des Elektronenstrahls ist mit dem Regler Focus mglich.

Fokussierung des Elektronenstrahls ist mit dem Regler Focus mglich. Theorie Das Oszilloskop: Das Oszilloskop ist ein Messgerät welches Spannungen als Funktion der Zeit erfasst und graphisch darstellen kann. Besonderer Vorteil ist das eine Spannung als Funktion einer zweiten

Mehr

Kapitel 4. Elektrizitätslehre. 4.1 Grundlagen, Definitionen. 4.2 Vorversuche zu Wechselstromwiderständen

Kapitel 4. Elektrizitätslehre. 4.1 Grundlagen, Definitionen. 4.2 Vorversuche zu Wechselstromwiderständen Kapitel 4 Elektrizitätslehre 4.1 Grundlagen, Definitionen 4.2 Vorversuche zu Wechselstromwiderständen 4.2.1 Ohmscher Widerstand 4.2.2 Kapazitiver Widerstand 4.2.3 nduktiver Widerstand 4.3 Wechselstromschwingkreise

Mehr

Filter zur frequenzselektiven Messung

Filter zur frequenzselektiven Messung Messtechnik-Praktikum 29. April 2008 Filter zur frequenzselektiven Messung Silvio Fuchs & Simon Stützer Augabenstellung. a) Bauen Sie die Schaltung eines RC-Hochpass (Abbildung 3.2, Seite 3) und eines

Mehr

LW7. Wechselstrom Version vom 16. November 2015

LW7. Wechselstrom Version vom 16. November 2015 Wechselstrom Version vom 16. November 2015 Inhaltsverzeichnis 2 1.1 Grundlagen................................... 2 1.1.1 Begriffe................................. 2 1.1.2 Wechselspannung und Wechselstrom.................

Mehr

Übung 3: Oszilloskop

Übung 3: Oszilloskop Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Institut für Grundlagen und Theorie der Elektrotechnik Institut für Elektrische Antriebstechnik und Maschinen Grundlagen der Elektrotechnik,

Mehr

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den E6 Elektrische Resonanz Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch Münster, den.. INHALTSVERZEICHNIS. Einleitung. Theoretische Grundlagen. Serienschaltung von Widerstand R, Induktivität L

Mehr

Vorbereitung: elektrische Messverfahren

Vorbereitung: elektrische Messverfahren Vorbereitung: elektrische Messverfahren Marcel Köpke 29.10.2011 Inhaltsverzeichnis 1 Ohmscher Widerstand 3 1.1 Innenwiderstand des µa Multizets...................... 3 1.2 Innenwiderstand des AVΩ Multizets.....................

Mehr

RE Elektrische Resonanz

RE Elektrische Resonanz RE Elektrische Resonanz Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Impedanz...................................... 2 1.2 Phasenresonanz...................................

Mehr

Praktikum Grundlagen der Elektrotechnik

Praktikum Grundlagen der Elektrotechnik raktikum Grundlagen der Elektrotechnik Kondensatoren und Spulen m Wechselstromkreis (ersuch 10) Fachhochschule Fulda Fachbereich Elektrotechnik durchgeführt von (rotokollführer) zusammen mit Matrikel-Nr.

Mehr

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik FH D FB 4 Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik Elektro- und elektrische Antriebstechnik Prof. Dr.-Ing. Jürgen Kiel Praktikum Elektrotechnik und Antriebstechnik Versuch

Mehr

I = I 0 exp. t + U R

I = I 0 exp. t + U R Betrachten wir einen Stromkreis bestehend aus einer Spannungsquelle, einer Spule und einem ohmschen Widerstand, so können wir auf diesen Stromkreis die Maschenregel anwenden: U L di dt = IR 141 Dies ist

Mehr

Wechselstromwiderstände - Formeln

Wechselstromwiderstände - Formeln Wechselstromwiderstände - Formeln Y eitwert jω Induktiver Widerstand jω j ω Kapazitiver Widerstand X ω Induktiver Blindwiderstand X ω Kapazitiver Blindwiderstand U U U I di dt Idt Teilspannungen an Widerstand,

Mehr

Gleichstrom/Wechselstrom

Gleichstrom/Wechselstrom Gleichstrom/Wechselstrom 1 PHYSIKALISCHE GRUNDLAGEN durchgeführt am 31.05.2010 von Matthias Dräger, Alexander Narweleit und Fabian Pirzer 1 Physikalische Grundlagen 1.1 Definition des Widerstandes Der

Mehr

Division komplexer Zahlen

Division komplexer Zahlen Division komplexer Zahlen Der Quotient z /z 2 zweier komplexer Zahlen z k = x k + iy k = r k exp(iϕ k ) ist Speziell ist x x 2 + y y 2 x 2 2 + y 2 2 + x 2y x y 2 x 2 2 + y 2 2 i = r r 2 exp(i(ϕ ϕ 2 )).

Mehr

Grundlagen der Elektrotechnik Praktikum Teil 2 Versuch B2/3. "Parallelschwingkreis"

Grundlagen der Elektrotechnik Praktikum Teil 2 Versuch B2/3. Parallelschwingkreis Grundlagen der Elektrotechnik Praktikum Teil 2 Versuch B2/3 "Parallelschwingkreis" Allgemeine und Theoretische Elektrotechnik (ATE) Elektrotechnik und Informationstechnik Fakultät für Ingenieurwissenschaften

Mehr

U C = U o -U R = U o (1 - e - t

U C = U o -U R = U o (1 - e - t 43 VERSUCH 6: KONDENSATOR UND INDUKTIVITÄT - WECHSELSTROM 6A Ein- und Ausschaltvorgänge Wird ein Kondensator der Kapazität C ü- ber einen Widerstand R mit einer konstanten Spannung U o verbunden, so lädt

Mehr

Elektrotechnische/Elektronische Grundlagen. Lehrpläne. Grundlagen Elektrotechnik

Elektrotechnische/Elektronische Grundlagen. Lehrpläne. Grundlagen Elektrotechnik Elektrotechnische/Elektronische Grundlagen Lehrpläne Grundlagen Elektrotechnik 1. Gleichstromtechnik 1.1 Grundgrößen 1.1.1 Ladung 1.1.1.1 Ladungsbeschreibung 1.1.1.2 Ladungstrennung 1.1.2 Elektrische Spannung

Mehr

Schwingungen und komplexe Zahlen

Schwingungen und komplexe Zahlen Schwingungen und komplexe Zahlen Andreas de Vries FH Südwestfalen University of Applied Sciences, Haldener Straße 82, D-5895 Hagen, Germany e-mail: de-vries@fh-swf.de Hagen, im Mai 22 (Erste Version: November

Mehr

VPO Vierpole (Oszilloskop II)

VPO Vierpole (Oszilloskop II) VPO Vierpole (Oszilloskop II) 13. Juni 2012 Übersicht Ziele In diesem Versuch soll zunächst das physikalische Verhalten elementarer elektrischer Bauelemente wie Widerstand, Spule und Kondensator an sinusförmigen

Mehr

Wechselstromkreise. Christopher Bronner, Frank Essenberger Freie Universität Berlin. 29. September 2006. 1 Physikalische Grundlagen 1.

Wechselstromkreise. Christopher Bronner, Frank Essenberger Freie Universität Berlin. 29. September 2006. 1 Physikalische Grundlagen 1. Wechselstromkreise Christopher Bronner, Frank Essenberger Freie Universität Berlin 29. September 2006 Inhaltsverzeichnis 1 Physikalische Grundlagen 1 2 Aufgaben 5 3 Messprotokoll 5 3.1 Geräte.................................

Mehr

2. Parallel- und Reihenschaltung. Resonanz

2. Parallel- und Reihenschaltung. Resonanz Themen: Parallel- und Reihenschaltungen RLC Darstellung auf komplexen Ebene Resonanzerscheinungen // Schwingkreise Leistung bei Resonanz Blindleistungskompensation 1 Reihenschaltung R, L, C R L C U L U

Mehr

PC Praktikumsversuch Elektronik. Elektronik

PC Praktikumsversuch Elektronik. Elektronik Elektronik Im Versuch Elektronik ging es um den ersten Kontakt mit elektronischen Instrumenten und Schaltungen. Zu diesem Zweck haben wir aus Widerständen, Kondensatoren und Spulen verschiedene Schaltungen

Mehr

E6 WECHSELSPANNUNGSMESSUNGEN

E6 WECHSELSPANNUNGSMESSUNGEN E6 WECHSELSPANNNGSMESSNGEN PHYSIKALISCHE GRNDLAGEN Wichtige physikalische Grundbegriffe: elektrische Spannung, Gleichspannung, Wechselspannung, Frequenz, Amplitude, Phase, Effektivwert, Spitzenwert, Oszilloskop,

Mehr

Physikalisches Grundpraktikum II Grundversuch 2.2 Wechselstrom. von Sören Senkovic und Nils Romaker

Physikalisches Grundpraktikum II Grundversuch 2.2 Wechselstrom. von Sören Senkovic und Nils Romaker Physikalisches Grundpraktikum II Grundversuch 2.2 Wechselstrom von Sören Senkovic und Nils Romaker 1 Inhaltsverzeichnis Theoretischer Teil............................................... 3 Versuchsdurchführung...........................................

Mehr

3. Bestimmung der Frequenz einer Sinusspannung anhand von mindestens fünf Lissajous-Figuren.

3. Bestimmung der Frequenz einer Sinusspannung anhand von mindestens fünf Lissajous-Figuren. E 3a Messungen mit dem Oszilloskop Toshiki Ishii (Matrikel 3266690) 29.04.203 Studiengang Chemie (Bachelor of Science) Aufgabenstellung. Bestimmung der Ablenkempfindlichkeiten s des Oszilloskops durch

Mehr

EO - Oszilloskop Blockpraktikum Frühjahr 2005

EO - Oszilloskop Blockpraktikum Frühjahr 2005 EO - Oszilloskop, Blockpraktikum Frühjahr 25 28. März 25 EO - Oszilloskop Blockpraktikum Frühjahr 25 Alexander Seizinger, Tobias Müller Assistent René Rexer Tübingen, den 28. März 25 Einführung In diesem

Mehr

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3.

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3. Elektrizitätslehre Gleich- und Wechselstromkreise Wechselstromwiderstände LD Handblätter Physik P3.6.3. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen Versuchsziele

Mehr

BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND KAPAZITIVEM WIDERSTAND.

BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND KAPAZITIVEM WIDERSTAND. Elektrizitätslehre Gleich- und Wechselstrom Wechselstromwiderstände BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND KAPAZITIVEM WIDERSTAND. Bestimmung des Wechselstromwiderstandes

Mehr

Versuch 21. Der Transistor

Versuch 21. Der Transistor Physikalisches Praktikum Versuch 21 Der Transistor Name: Christian Köhler Datum der Durchführung: 07.02.2007 Gruppe Mitarbeiter: Henning Hansen Assistent: Jakob Walowski testiert: 3 1 Einleitung Der Transistor

Mehr

Versuchsprotokoll zum Versuch Nr.9 Messungen mit dem Elektronenstrahl-Oszilloskop vom 05.05.1997

Versuchsprotokoll zum Versuch Nr.9 Messungen mit dem Elektronenstrahl-Oszilloskop vom 05.05.1997 In diesem Versuch geht es darum, mit einem modernen Elektronenstrahloszilloskop verschiedene Messungen durch zuführen. Dazu kommen folgende Geräte zum Einsatz: Gerät Bezeichnung/Hersteller Inventarnummer

Mehr

1. Frequenzverhalten einfacher RC- und RL-Schaltungen

1. Frequenzverhalten einfacher RC- und RL-Schaltungen Prof. Dr. H. Klein Hochschule Landshut Fakultät Elektrotechnik und Wirtschaftsingenieurwesen Praktikum "Grundlagen der Elektrotechnik" Versuch 4 Wechselspannungsnetzwerke Themen zur Vorbereitung: - Darstellung

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD Elektrizitätslehre GV: Gleichstrom Durchgeführt am 14.06.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Philip Baumans Marius Schirmer E3-463 Inhaltsverzeichnis

Mehr

Vorbereitung zum Versuch

Vorbereitung zum Versuch Vorbereitung zum Versuch elektrische Messverfahren Armin Burgmeier (347488) Gruppe 5 2. Dezember 2007 Messungen an Widerständen. Innenwiderstand eines µa-multizets Die Schaltung wird nach Schaltbild (siehe

Mehr

TR - Transformator Blockpraktikum - Herbst 2005

TR - Transformator Blockpraktikum - Herbst 2005 TR - Transformator, Blockpraktikum - Herbst 5 8. Oktober 5 TR - Transformator Blockpraktikum - Herbst 5 Tobias Müller, Alexander Seizinger Assistent: Dr. Thorsten Hehl Tübingen, den 8. Oktober 5 Vorwort

Mehr

Amateurfunkkurs. Erstellt: 2010-2011. Landesverband Wien im ÖVSV. Passive Bauelemente. R. Schwarz OE1RSA. Übersicht. Widerstand R.

Amateurfunkkurs. Erstellt: 2010-2011. Landesverband Wien im ÖVSV. Passive Bauelemente. R. Schwarz OE1RSA. Übersicht. Widerstand R. Amateurfunkkurs Landesverband Wien im ÖVSV Erstellt: 2010-2011 Letzte Bearbeitung: 11. Mai 2012 Themen 1 2 3 4 5 6 Zusammenhang zw. Strom und Spannung am Widerstand Ohmsches Gesetz sformen Ein Widerstand......

Mehr

DIY. Personal Fabrica1on. Elektronik. Juergen Eckert Informa1k 7

DIY. Personal Fabrica1on. Elektronik. Juergen Eckert Informa1k 7 DIY Personal Fabrica1on Elektronik Juergen Eckert Informa1k 7 Fahrplan Basics Ohm'sches Gesetz Kirchhoffsche Reglen Passive (und ak1ve) Bauteile Wer misst, misst Mist Dehnmessstreifen Später: Schaltungs-

Mehr

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung Grundlagen der Elektrotechnik Aufgabe Die gezeichnete Schaltung enthält folgende Schaltelemente:.0kΩ, ω.0kω, ω 0.75kΩ, /ωc.0k Ω, /ωc.3kω. Die gesamte Schaltung nimmt eine Wirkleistung P mw auf. C 3 C 3

Mehr

TG TECHNOLOGISCHE GRUNDLAGEN 30 LABORÜBUNGEN. Inhaltsverzeichnis

TG TECHNOLOGISCHE GRUNDLAGEN 30 LABORÜBUNGEN. Inhaltsverzeichnis TG TECHNOLOGISCHE GRUNDLAGEN Inhaltsverzeichnis 9 Einphasenwechselspannung 9.1 Induktivität einer Drosselspule (Fluoreszenzleuchte) 9.2 Induktivität ohne Eisenkern an Wechselspannung 9.3 Induktivität mit

Mehr

A. Ein Kondensator differenziert Spannung

A. Ein Kondensator differenziert Spannung A. Ein Kondensator differenziert Spannung Wir legen eine Wechselspannung an einen Kondensator wie sieht die sich ergebende Stromstärke aus? U ~ ~ Abb 1: Prinzipschaltung Kondensator: Physiklehrbuch S.

Mehr

Elektrotechnische Anwendungen: Wechselstromgenerator

Elektrotechnische Anwendungen: Wechselstromgenerator Elektrotechnische Anwendungen: Wechselstromgenerator Das Faradaysche Induktionsgesetz bildet die Grundlage für die technische Realisierung von elektrischen Motoren und Generatoren. Das einfachste Modell

Mehr

Robert-Bosch-Gymnasium Physik (2-/4-stÉndig), NGO

Robert-Bosch-Gymnasium Physik (2-/4-stÉndig), NGO Seite - 1 - Bestimmung des kapazitiven (Blind-)Widerstandes und (daraus) der KapazitÄt eines Kondensators, / Effektivwerte von WechselstromgrÅÇen 1. Theoretische Grundlagen Bei diesem Experiment soll zunächst

Mehr

Praktikum: RLC-Schwingkreis

Praktikum: RLC-Schwingkreis 1 Praktikum: RLC-Schwingkreis bstract In diesem Versuch sollen Sie einen Einblick in die Wechselstromlehre am eispiel des RLC-Kreises bekommen. Das aus der Schule bekannte Ohmsche Gesetz gilt nicht nur

Mehr

Versuch 17.2 Der Transistor

Versuch 17.2 Der Transistor Physikalisches A-Praktikum Versuch 17.2 Der Transistor Praktikanten: Gruppe: Julius Strake Niklas Bölter B006 Betreuer: Johannes Schmidt Durchgeführt: 11.09.2012 Unterschrift: E-Mail: niklas.boelter@stud.uni-goettingen.de

Mehr

Protokoll zum Grundversuch Wechselstrom

Protokoll zum Grundversuch Wechselstrom Protokoll zum Grundversuch Wechselstrom Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Sommersemester 2007 Grundpraktikum II 15.05.2007 Inhaltsverzeichnis 1 Ziel 2 2 Grundlagen 2 2.1 Wechselstrom................................

Mehr

Physik III - Anfängerpraktikum- Versuch 302

Physik III - Anfängerpraktikum- Versuch 302 Physik III - Anfängerpraktikum- Versuch 302 Sebastian Rollke (103095) und Daniel Brenner (105292) 15. November 2004 Inhaltsverzeichnis 1 Theorie 2 1.1 Beschreibung spezieller Widerstandsmessbrücken...........

Mehr

Komplexe Wechselstromrechnung

Komplexe Wechselstromrechnung vincent.stimper@gmail.com 0. Oktober 06 Inhaltsverzeichnis Einleitung Komplexe Zahlen 3 Beschreibung von Wechselstromkreisen mittels komplexer Zahlen 4 4 Anwendung der komplexen Wechselstromrechnung 7

Mehr

Messbericht MT-Praktikum Vergleichsmessungen mit Multimetern Frequenzgang von analogen und digitalen Multimetern

Messbericht MT-Praktikum Vergleichsmessungen mit Multimetern Frequenzgang von analogen und digitalen Multimetern Messbericht MT-Praktikum Vergleichsmessungen mit Multimetern Frequenzgang von analogen und digitalen Multimetern Autor: Pascal Hahulla 11. November 2008 Inhaltsverzeichnis Seite 1 Inhaltsverzeichnis 1

Mehr

Elektrotechnisches Praktikum II

Elektrotechnisches Praktikum II Elektrotechnisches Praktikum II Versuch 2: Versuchsinhalt 2 2 Versuchsvorbereitung 2 2. Zeitfunktionen................................ 2 2.. Phasenverschiebung......................... 2 2..2 Parameterdarstellung........................

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

Geneboost Best.- Nr. 2004011. 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist.

Geneboost Best.- Nr. 2004011. 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist. Geneboost Best.- Nr. 2004011 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist. An den BNC-Ausgangsbuchsen lässt sich mit einem störungsfreien

Mehr

Grundpraktikum II E4 Wechselstromwiderstände

Grundpraktikum II E4 Wechselstromwiderstände Mathematisch-Naturwissenschaftliche Fakultät Institut für Physik Grundpraktikum II E4 Wechselstromwiderstände Julien Kluge 15. Januar 2016 Student: Julien Kluge (564513) julien@physik.hu-berlin.de Partner:

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen 1 Allgemeine Grundlagen 1.1 Gleichstromkreis 1.1.1 Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j = di da di da Stromelement 1.1.2 Die

Mehr

Elektrische Filter und Schwingkreise

Elektrische Filter und Schwingkreise FB ET / IT Elektrische Filter und Schwingkreise Laborbericht Für Labor Physik und Grundlagen der Elektrotechnik SS 003 Erstellt von: G. Schley, B. Drollinger Mat.-Nr.: 90933, 9339 Datum: 3.05.003 G. Schley,

Mehr

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 2 Name: Pascal Hahulla Matrikelnr.: 207XXX Thema: Widerstände und Dioden Versuch durchgeführt

Mehr

Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007

Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007 Protokoll zum Versuch Transistorschaltungen Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007 1 Transistor-Kennlinien 1.1 Eingangskennlinie Nachdem wir die Schaltung wie in Bild 13 aufgebaut hatten,

Mehr

Enseignement secondaire technique. ELETE Électrotechnique

Enseignement secondaire technique. ELETE Électrotechnique Enseignement secondaire technique Régime technique Division technique générale Section technique générale Cycle supérieur ELETE Électrotechnique 13GE Nombres de leçons : 3h Langue véhiculaire : Allemand

Mehr