Lösungen E: Gutenberg-Produktionsmodell

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lösungen E: Gutenberg-Produktionsmodell"

Transkript

1 Craskrs Aktiitätsanalyse nd Kostenbeertng SS 00.ni-nacilfe.de Lösngen E: Gtenberg-Prodktionsmodell E.a) As den gegebenen Daten kann direkt die kostenfnktion übernommen erden: k a+ a + a33 ( 0, ² +,9) + 5,5+ 3 ( 0, ² 0,+,) 0, ² + 5, + 7,5 + 0,3 ², +, 0,5 ² 3, + 7,5 Ableiten, Nll setzen nd Aflösen: k 3, 0 3, Bei 3, /Mte sd demnac die kosten mimal. b) Die mimalen kosten liegen bei: k ( 3, ) 0,5 3, 3, 3, + 7,5,3. Hierbei erden ro Mte 3, ergestellt, also ergeben sic die Kosten ro Mte as:,3 3, 39,6. E.a) Ott : []; Intensität : Prodktionsgescdigkeit Ints Verbracsfnktion: Intreise:. Zeit: a 6. Betriebsstoff: Die Verbracsfnktion für Betriebsstoff je der Asbrgngseeit mss as dem Tet ermittelt erden obei diese lear mit der Intensität ansteigen: a m+ n I, m + n II, 3 m + n 3 n 0,, m a + 0, l 0 b) kostenfnktion afstellen, ableiten, Nll setzen nd aflösen: 6 6 k 0( 0,) k c) zeitlice nd tensitätsmäßige Anassng: Da die Masce am Tag öcstens Stnden arbeiten kann, ist bei kostenmimaler Intensität öcstens ee Prodktionsmenge on 6Eeiten möglic., für 6, für > 6, für 6 t, für > 6 Afassen: Drc, da nr Stnden möglic Drc, da das die otimale Intensität ist. d) Ac ier gibt s die Brcstelle bei 6. Solange eniger als 6 Eeiten rodziert erden sollen, ird mit der otimalen Intensität on gearbeitet. Die kosten betragen ier: 6 k ( ) Lösngen 35

2 Craskrs Aktiitätsanalyse nd Kostenbeertng SS 00.ni-nacilfe.de Die Gesamtkosten ergeben sic damit as: K. Für alle Ottgrößen größer 6 mss die Intensität angeasst erden, die kosten liegen demnac bei: 6 6 k ( ) Und somit:, für 6 K , für > 6 e) Wir alten den Stndenlon ariabel, obei der Term erendet erden soll. Die ostenfnktion latet dann: k Da immer noc die stückkostenmimale Intensität gesct ist, mss diese Fnktion also ieder abgeleitet nd Nll gesetzt erden. Das ergibt: k 0 + Da der Eflss eer Änderng des Lonsatzes af den Verbrac jeeils on Betriebsstoff nd Zeit gesct ird, mss im näcsten Scritt diese otimale Intensität die Verbracsfnktionen egesetzt nd abscließend müssen diese abgeleitet erden: Zeit: a a 3 Betriebsstoff: a + 0, a 0 Die Ableitng ist kleer als Nll, d.. der Esatz on Zeit skt mit steigendem Lonsatz. Die Ableitng ist größer als Nll, d.. der Esatz on Betriebsstoff steigt mit steigendem Lonsatz. As beidem folgt: Ja, bei eer Steigerng des Lonsatzes ird Arbeit drc Betriebsstoff sbstitiert. So, nd allerabscließend noc der Eflss af die Kostenfnktion: Die nee otimale Intensität fürt ac z eer neen kostenfnktion: k Abgeleitet nac ergibt sic: ac die Gesamtkosten). E.3) Ott : []; Intensität : k. Da dies e ositier Term ist, steigen die kosten (nd damit Die rürt daer, dass on abängig ist, nd zar lt. Afgabenstellng nac:. Ints Verbracsfnktionen: Intreise:. Zeit: a 56. Betriebmittel: Hierfür sd nict Verbracsfnktion nd Intreis etra gegeben, sondern direkt die Kombation as beiden: a. Wir bracen als Eeit aber [ /], müssen diesen Term also noc mal drc den Stndenot- Lösngen 36

3 Craskrs Aktiitätsanalyse nd Kostenbeertng SS 00.ni-nacilfe.de t () diidieren: a 3. Damit ergibt sic die kostenfnktion ( Abängigkeit on der Intensität) as: 56 k a+ a + 3 Ableiten, Nll setzen nd Aflösen: 3 k k a + a 0,3 + 0, + E.a) b) Ableiten, Nll setzen, aflösen: 0 k, 0 0 c) esetzen kostenfnktion: 0 k( ), d) Znäcst ird die Stelle ermittelt, ab der tensitätsmäßig angeasst erden mss: Mit otimaler Intensität kann 0 Stnden 00 km gefaren erden. Soll mer gescafft erden, mss entsrecend scneller gefaren erden, odrc sic folgende kosten ergeben: 0 00 k( 0 ), + 0,+ 0 K 0, für 00 0, + 00, für 00 < 000 E.5a) kostenfnktion ableiten, Nll setzen, aflösen: k b) Mit der stückkostenmimalen Intensität as a) sd Stnden maimal Flascen möglic. c) Die b) ermittelten Flascen stellen die Brcstelle der Kostenfnktion dar. Bis ier ird mit gearbeitet, die kosten betragen dann: k ( 0.000) + + 0, 0 0, Sollen allerdgs mer Flascen abgefüllt erden, ist die Intensität z eröen, nd zar af:, da ja nr Stn- den zr Verfügng steen. Dann betragen die kosten: k , , Die gefndenen kosten müssen noc mit der zal mltiliziert erden, m die Kostenfnktion angeben z können: Lösngen 37

4 Craskrs Aktiitätsanalyse nd Kostenbeertng SS 00 0,03, für K , 0, für < ni-nacilfe.de Die Masce at ee Höcsttensität on Flascen ro Stnde daer sd maimal am Tag Flascen möglic. d) In diesem Fall mss noc der Verbracsfaktor Zeit die kostenfnktion (biser lt. Afgabenstellng nr Verbracsfaktor Energie) afgenommen erden. Zeit: a Flasce k ne + + 0, , e) Die nee kostenfnktion ird abgeleitet, Nll gesetzt nd afgelöst: ne 5 5 k E.6) Ott : zrückgelegte Fartstrecke, [km]; Intensität : Fartgescdigkeit km Ints Verbracsfnktion: Intreise:. Kraftstoff: l a ,3 l. Zeit: a km D Der erste Haken liegt dar, dass die Verbracsfnktion für Kraftstoff l/km gegeben ist, ir das ganze aber af l/km normieren müssen. Also mss der ganze Term noc drc die Intensität geteilt erden: [ ] km [ ] + + l ne 600 l 600 km a Und damit ergibt sic die kostenfnktion as: 0,6+ D k 0,3 + D ( 0,6+ D ) Um diese z mimieren ird sie abgeleitet nd Nll gesetzt (ergibt die Otimalitätsbedgng): ( 0,6 + D) k ( 0,6 + D) ,6 + ( D) 000 0, , D D D Diese Umstellng fürt zr offiziellen Lerstllösng. E.7) Ott : Teekannen, []; Intensität : Ints Verbracsfnktion: Intreise: Lösngen 3

5 Craskrs Aktiitätsanalyse nd Kostenbeertng SS 00.Teekannenrolge: a Dieser Faktoresatz mss noc af die rictige Eeit gebract erden, also drc diidiert erden: 3 (Rolge) a (Teekannen). Zeit: a.ni-nacilfe.de 50 Zielfnktion: Otimalitätsbedgng: Otimale Gescdigkeit: 3 k 50 ( ) + k k m E.) Ott : Teelöffel, []; Intensität : Hbzal (Hübe) m Der Gesamtott (ro Mte) ergibt sic as der geälten Intensität abzüglic des Asscsses, obei die Asscssrate Abängigkeit on der Intensität gealten erden mss: ( α ). Also ergibt sic die benötigte Hbzal für een Löffel as: r α ( α ) Zr Verdetlicng kann ier ielleict e Zalenbeisiel elfen. Wir setzen α 0%. Bei eer geälten Intensität on 0 Hüben ro Mte ergäben sic somit e Asscss nd nen felerfreie Löffel. Und somit ätte man ro felerfreiem Löffel 0 0 r ( ), Hübe benötigt. 0 0, 9 ( ) Ints Verbracsfnktion: Intreise:. Werkstoff: r α Blec (Teelöffel) Blec. Zeit: r m ( α ) (Teelöffel) m 3. Stanzerkzeg: r3 Stanzerkzege 00000( α ) 3 (Teelöffel) Stanzerkzeg Die kostenfnktion ergibt sic somit as: 3 3 k α ( ) 00000( ) α( ) α α 3 k + + α ( ) Bei der Ableitng der kostenfnktion nac ird dieser Term als Qotient gescrieben (nd somit ac die Qotientenregel angeendet): Lösngen 39

6 Craskrs Aktiitätsanalyse nd Kostenbeertng SS 00.ni-nacilfe.de k α 3 ( α ) ( α ) k 0 ( α ) Und damit: 3 α + + α ( ) E.9a) Ott : Asbrgngseeiten, []; Intensität : Ints Verbracsfnktion: Intreise:. Zeit: a 00. Werkzeg: Gegeben sd direkt die Werkzegkosten je der Asbrgngseeit, also scon das Prodkt as Verbracsfnktion nd dem dazgeörigen Intreis obei diese lear mit der Intensität ansteigen: a m+ n Und damit: k I m + n 00 II,5 m + n 00 n 0,005, m,5 a, 5 + 0, , 5 + 0, 005 b),5 k 0, 005, 5 0 0, ne c) Die kostenfnktion der Überstndenzeit latet: k 0,005+,5, 0, ne 6 k 0, , o 0 d) Um die mimalen kosten bei Überstndenarbeit z ermitteln, mss die gefndene stückkostenmimale Intensität efac die Überstnden-kostenfnktion egesetzt erden: 0, ,0 ne k + e) Um die geforderten 00 Normalarbeitszeit z scaffen, müsste die Stnden lang mit eer Intensität on 75 [/Stnde] gearbeitet erden (tensitätsmäßige Anassng). Die Gesamtkosten ierbei betragen: Die Gesamtkosten ierbei betragen: K k , , Würde man nict tensitätsmäßig anassen, sd den Stnden Normalarbeitszeit nr 00 z scaffen der Rest on 00 müsste also der Überstndenzeit erstellt erden. Die Gesamtkosten ierbei belafen sic af: ne K K , , , Lösngen 0

7 Craskrs Aktiitätsanalyse nd Kostenbeertng SS 00.ni-nacilfe.de Da dies offensictlic terer ürde, ält e kostenbesster Betriebsleiter die tensitätsmäßige Anassng. E.0) Ott : zrückgelegte Fartstrecke, [km]; Intensität : Fartgescdigkeit km Ints Verbracsfnktion: Intreise:. Kraftstoff: l a. + 0.( 60) 00 km Diese Verbracsfnktion mss noc af die rictige Eeit gebract erden, also drc 00 diidiert erden: l a ( 60) km l. Zeit: a km.3 Zielfnktion: Otimalitätsbedgng: Otimale Gescdigkeit:.3 90 k ( ( 60) ) +.3 k k m E.a) Ott : Asbrgngseeiten, []; Intensität : Lon nd Fertigngsgemekosten je Stnde Ints Verbracsfnktion: Intreise:. Zeit: a 7. Werkzeg: Gegeben sd direkt die Werkzegkosten je der Asbrgngseeit, also scon das Prodkt as Verbracsfnktion nd dem dazgeörigen Intreis obei diese lear mit der Intensität ansteigen: a m+ n I 5 m + n 5 II 5,5 m + n 6 n 0,5, m,5 a,5 + 0,5 Damit ergeben sic die kosten als Fnktion der Intensität as: k a+ a 7 +,5 + 0,5. Da der Fragestellng aber elizit nac den ariablen kosten gefragt ist, latet die Antort: k 7 + 0,5 b+c) Um die otimale Intensität z errecnen, mss die abgeleitet, Nll gesetzt nd nac afgelöst erden: 7 k + 0,5 0 (Otimalitätsbedgng) 7 0,5 (otimale Intensität) Lösngen

Integrationsmethoden. für. gebrochen rationale Funktionen DEMO. Übersicht über die wichtigsten Methoden. Vor allem für das Studium!

Integrationsmethoden. für. gebrochen rationale Funktionen DEMO. Übersicht über die wichtigsten Methoden. Vor allem für das Studium! Integralrechnng Integrationsmethoden für gebrochen rationale Fnktionen Übersicht über die wichtigsten Methoden Vor allem für das Stdim! Tet 800 Stand 8. Febrar 08 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK

Mehr

Hilfe zum neuen Online-Shop

Hilfe zum neuen Online-Shop Hilfe zum neuen Online-Sop Hier finden Sie umfassend bescrieben, wie Sie sic in unserem neuen Sop zurectfinden. Wenn Sie Fragen zur Kunden-Nr., Kunden-ID oder zum Passwort aben, rufen Sie uns bitte an:

Mehr

Frau Lembke. Bisphenol A. Pfui Teufel: Eigenhufe & Brouët

Frau Lembke. Bisphenol A. Pfui Teufel: Eigenhufe & Brouët Fra Lembke Pfi Tefel: Bispenol A Eigenfe & Broët r g Die andelnden Personen ir #1 Fra Lembke ª #3 Der nee glaborant #5 Unsere Umwelt #2 Professor Stabmantel #4 Bispenol A #6 Elvira Lembke T 2 Im Hasflr:

Mehr

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11.

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11. Teil Gleicungen mit Unbekannten mit Textaufgaben und 3 Gleicungen mit Unbekannten Datei Nr. 80 Stand. April 0 Lineare Gleicungssysteme INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 80 Gleicungssysteme Vorwort

Mehr

Bis zu 20 % Ra g. t c

Bis zu 20 % Ra g. t c batt! Bi z 20 % Ra www.gvb.c : o l g r o Einfac z t c m d der Rn a H r I r ü f In jedem Fall af der iceren Seite Unere Zatzvericerngen ergänzen die obligatorice Gebädevericerng optimal. Mit der obligatoricen

Mehr

Betriebsverhalten des Z-Source-Wechselrichters

Betriebsverhalten des Z-Source-Wechselrichters Betriebsverhalten des Z-Sorce-Wechselrichters Wlf-Toke Franke *, Malte Mohr +, Friedrich W. Fchs # * hristian Albrecht niversität z Kiel, Kaiserstr., 443 Kiel, tof@tf.ni-kiel.de + hristian Albrecht niversität

Mehr

6. Die Exponentialfunktionen (und Logarithmen).

6. Die Exponentialfunktionen (und Logarithmen). 6- Funktionen 6 Die Eponentialfunktionen (und Logaritmen) Eine ganz wictige Klasse von Funktionen f : R R bilden die Eponentialfunktionen f() = c ep( ) = c e, ier sind, c feste reelle Zalen (um Trivialfälle

Mehr

Vitamine auf Weltreise

Vitamine auf Weltreise Konzipiert vom Förderverein NaturGut Opoven Vitamine auf Weltreise Zielgruppe: Klasse 2-3 Fac: Dauer: Sacunterrict 90 Minuten Temenbereic: Zusammenang Ernärung und Klimawandel 20 % der Kinder sind zu dick,

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 001 - hp://www.emah.de 1 Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR Ihr Schabild sei K. a Unersche K af Asympoen, Schnipnke

Mehr

PACKAGING DESIGN LIMBIC SCHMIDT SPIELE KNIFFEL MASTER

PACKAGING DESIGN LIMBIC SCHMIDT SPIELE KNIFFEL MASTER PAKAGING DESIGN LIMBI SHMIDT SPIELE KNIFFEL MASTER 16. Präsentation 03. Dezember 2014 Für alle Kniffel-Fans dürfte Einiges bei Kniffel Master scon bekannt sein. Der blaue Text kann daer von allen überspruen

Mehr

Lösungshinweise. 5. Übungsblatt

Lösungshinweise. 5. Übungsblatt Lösungsineise 5. Übungsblatt ugabe 1 a)die terms o trade stellen das Verältnis der Preise der Güter, die eortiert erden u den Gütern die imortiert erden, dar. In der Vergangeneit urde diese Größe ot olitisc

Mehr

Balancierte Bäume. Kapitel AVL-Bäume Fibonacci-Heaps

Balancierte Bäume. Kapitel AVL-Bäume Fibonacci-Heaps Kapitel 5 alancierte äme Wir aben geseen, daß fast alle Operationen af äme on der Höe des ames abängen. Wir ollen ns in diesem Kapitel überlegen, ie ir die äme so afbaen, daß eine möglicst geringe Höe

Mehr

ANALYSIS Differenzialrechnung Kapitel 1 5

ANALYSIS Differenzialrechnung Kapitel 1 5 TELEKOLLEG MULTIMEDIAL ANALYSIS Differenzialrecnung Kapitel 5 Ferdinand Weber BRmedia Service GmbH Inaltsverzeicnis Jedes Kapitel beginnt mit der Seitenzal.. Das Tangentenproblem. Steigung einer Geraden

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com www.mathe-afgaben.com Berfliches Gymnasim (WG, EG, AG, SG) Haptprüfng 0 Teil 4, Lineare Optimierng, Afgabe Baden-Württemberg. Af den Malediven soll eine nee Hotelanlage entstehen. Die Investoren wollen

Mehr

Zeitplan Abitur. März/Mai des 13. Schuljahres: Mündliche Prüfungen zur besonderen Lernleistung und zur Präsentationsprüfung (jeweils P5).

Zeitplan Abitur. März/Mai des 13. Schuljahres: Mündliche Prüfungen zur besonderen Lernleistung und zur Präsentationsprüfung (jeweils P5). Zeitplan Abitur Nac jedem Halbjareszeugnis: Überprüfung der erbracten Halbjaresleistungen und der recneriscen Möglickeit das Abitur zu besteen durc Sculleitung bzw. APK (Abiturprüfungskommission). Ab April

Mehr

Aufgaben zu den Newtonsche Gesetzen

Aufgaben zu den Newtonsche Gesetzen Aufgaben zu den ewtonce Geetzen. Zwei Maen von = 8 und = ängen an den Enden eine Seil, da über eine fete Rolle it vernacläigbarer Mae gefürt it. a) Wie groß it die Becleunigung de al reibungfrei angenoenen

Mehr

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2.

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2. Tangentensteigung Gegeben ist die Funktion () =. Um die Steigung der Tangente im Punkt P( ) zu bestimmen, ermitteln wir zunäcst die Steigung der Sekante durc P( ) und Q( ). Q soll so beweglic sein, dass

Mehr

Vorgehen zur Kalibrierung von Kamerabildern

Vorgehen zur Kalibrierung von Kamerabildern Vorgehen r Kalibrierng von Kamerabildern Prof. Dr.-Ing. Bernhard Lang, 06.04.2013 3 Kalibrierng von Kamerabildern 3.1 Hintergrnd Eine reale Kamera lässt sich geometrisch drch eine Lochkamera modellieren.

Mehr

1. Oszilloskop. Das Oszilloskop besitzt zwei Betriebsarten: Schaltsymbol Oszilloskop

1. Oszilloskop. Das Oszilloskop besitzt zwei Betriebsarten: Schaltsymbol Oszilloskop . Oszilloskop Grndlagen Ein Oszilloskop ist ein elektronisches Messmittel zr grafischen Darstellng von schnell veränderlichen elektrischen Signalen in einem kartesischen Koordinaten-System (X- Y- Darstellng

Mehr

Einführung in FEM Motivationsbeispiel. Berechnungsbeispiel COMSOL Multiphysics: Elastizitätsberechnung eines F1 Frontflügels. www.comsol.

Einführung in FEM Motivationsbeispiel. Berechnungsbeispiel COMSOL Multiphysics: Elastizitätsberechnung eines F1 Frontflügels. www.comsol. Einführng in FEM Motivationsbeispiel Berechnngsbeispiel COMSO Mltiphysics: Elastizitätsberechnng eines F Frontflügels. www.comsol.de Originalgeometrie CAD-Modell mit Berechnngsgitter FEM Ergebnis der Aslenkng

Mehr

Weitere Anwendungen von ganzrationalen Funktionen

Weitere Anwendungen von ganzrationalen Funktionen Weitere Anwendungen von ganzrationalen Funktionen 1.0 Um Obstkisten aus Pappe erzustellen, werden aus recteckigen Kartonplatten (Länge 16 dm, Breite 1 dm) an den vier Ecken jeweils Quadrate abgescnitten.

Mehr

EINFÜHRUNG IN DIE TENSORRECHNUNG

EINFÜHRUNG IN DIE TENSORRECHNUNG EINFÜHRUNG IN DIE TENSORRECHNUNG Teil SIEGFRIED PETRY Nefassng vom.jni 016 I n h a l t 1 Mehr über Tensoren. Stfe Darstellng eines Tensors in einer Basis 4 Beispiele nd Übngen 5 4 Lösngen 1 1 1 Tensoren.

Mehr

Schaltungen mit nichtlinearen Widerständen

Schaltungen mit nichtlinearen Widerständen HOCHSCHLE FÜ TECHNIK ND WITSCHAFT DESDEN (FH) niversity of Applied Sciences Fachbereich Elektrotechnik Praktikm Grndlagen der Elektrotechnik Versch: Schaltngen mit nichtlinearen Widerständen Verschsanleitng

Mehr

Hauptprüfung Fachhochschulreife Baden-Württemberg

Hauptprüfung Fachhochschulreife Baden-Württemberg Baden-Württember: Facocsclreife 2014 www.mate-afaben.com Haptprüfn Facocsclreife 2014 Baden-Württember Afabe 3 Analysis Hilfsmittel: rafikfäier Tascenrecner Berfskolle Alexander Scwarz www.mate-afaben.com

Mehr

Der Approximationsalgorithmus von Christofides

Der Approximationsalgorithmus von Christofides Der Approximationsalgorithms on Christofides Problem: Traeling Salesman Inpt: Ein Graph G = (V, E) mit einer Distanzfnktion d : E Q 0. Afgabe: Finde eine Tor, die alle Knoten des Graphen G gena einmal

Mehr

Veranstaltung. Logistik und Materialfluss (Lagerlogistik), Sommersemester 2013

Veranstaltung. Logistik und Materialfluss (Lagerlogistik), Sommersemester 2013 Veranstaltung Logistik und Materialfluss (Lagerlogistik), Sommersemester 203 Übung 4: Tema: Statisce Losgröße Andler Modell Los (lot) : Menge eines Produktes, die one Unterbrecung gefertigt wird. Losgröße(lotsize):

Mehr

Dentaurum Online-Shop www.dentaurum.de

Dentaurum Online-Shop www.dentaurum.de online-shop de Dentarm Online-Shop www.dentarm.de schneller komfortabler einfacher www.dentarm.de Die Adresse für Orthodontie, Implantologie nd Zahntechnik im Internet Entdecken Sie den Online-Shop von

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Taufe von Noah Windirsch

Taufe von Noah Windirsch Taufe von Noah Wdirsch am 10. März 2013 der Pfarrkirche St. Peter und Paul Aurach > > > ` > Eröffnung B A Begrüßung Frage an Eltern und Paten Bezeichnung mit dem Kreuz B A 1 4 4 4 Unser 5 4 Mit 8 4 eist

Mehr

Michael Buhlmann Mathematik > Vektorrechnung > Kreuzprodukt

Michael Buhlmann Mathematik > Vektorrechnung > Kreuzprodukt Michael Bhlmann Mathematik > Vektorrechnng > Krezprodkt Einleitng a Für zwei Vektoren a a nd gelten im dreidimensionalen reellen Vektorram a neen der Addition Vektoraddition) nd der Mltiplikation mit einer

Mehr

R a i n e r N i e u w e n h u i z e n K a p e l l e n s t r G r e v e n T e l / F a x / e

R a i n e r N i e u w e n h u i z e n K a p e l l e n s t r G r e v e n T e l / F a x / e R a i n e r N i e u w e n h u i z e n K a p e l l e n s t r. 5 4 8 6 2 8 G r e v e n T e l. 0 2 5 7 1 / 9 5 2 6 1 0 F a x. 0 2 5 7 1 / 9 5 2 6 1 2 e - m a i l r a i n e r. n i e u w e n h u i z e n @ c

Mehr

F r e i t a g, 3. J u n i

F r e i t a g, 3. J u n i F r e i t a g, 3. J u n i 2 0 1 1 L i n u x w i r d 2 0 J a h r e a l t H o l l a, i c h d a c h t e d i e L i n u x - L e u t e s i n d e i n w e n i g v e r n ü n f t i g, a b e r j e t z t g i b t e

Mehr

L 3. L a 3. P a. L a m 3. P a l. L a m a 3. P a l m. P a l m e. P o 4. P o p 4. L a. P o p o 4. L a m. Agnes Klawatsch

L 3. L a 3. P a. L a m 3. P a l. L a m a 3. P a l m. P a l m e. P o 4. P o p 4. L a. P o p o 4. L a m. Agnes Klawatsch 1 L 3 P 1 L a 3 P a 1 L a m 3 P a l 1 L a m a 3 P a l m 2 P 3 P a l m e 2 P o 4 L 2 P o p 4 L a 2 P o p o 4 L a m 4 L a m p 6 N a 4 L a m p e 6 N a m 5 5 A A m 6 6 N a m e N a m e n 5 A m p 7 M 5 A m p

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

DAS ABI-PFLICHTTEIL Büchlein

DAS ABI-PFLICHTTEIL Büchlein DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal

Mehr

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker Rudolps Sclitten Autor: Jocen Ricker Aufgabe Endlic ist es wieder soweit: Weinacten stet vor der Tür! Diesmal at der Weinactsmann sic ein ganz besonderes Gescenk für seine Rentiere einfallen lassen. Sie

Mehr

Produktregel (Ableitung von f g)

Produktregel (Ableitung von f g) Produktregel (Ableitung von f g) f f g 0 f 0 g g 0 Wir aben die Hoffnung, dass die Ableitung von f g mit Hilfe der Ableitungen von f und g ermittelt werden kann. f ( 0 ) = lim 0 f( 0 +) f( 0 ) g ( 0 )

Mehr

Aufgabe T1: Eine Druckgasflasche (V=50l) sei gefüllt mit Stickstoff unter einem Druck von 300 bar.

Aufgabe T1: Eine Druckgasflasche (V=50l) sei gefüllt mit Stickstoff unter einem Druck von 300 bar. ysikkurs i Raen des Forbildungslerganges Indusrieeiser Facricung arazeuik anuar 008 Lösungen Wärelere Aufgabe : Eine Drucasflasce (V50l) sei gefüll i icksoff uner eine Druck von 00 bar. ϑ a) Wieviel ol

Mehr

Übungsaufgaben Mathematik III MST. Zu b) Klassifizieren Sie folgende Differentialgleichungen nach folgenden Kriterien : - Anfangswertproblem

Übungsaufgaben Mathematik III MST. Zu b) Klassifizieren Sie folgende Differentialgleichungen nach folgenden Kriterien : - Anfangswertproblem Übngsafgaben Mathematik III MST Lösngen z Blatt 4 Differentialgleichngen Prof. Dr. B.Grabowski Z Afgabe ) Z a) Klassifizieren Sie folgende Differentialgleichngen nach folgenden Kriterien: -Ordnng der Differentialgleichng

Mehr

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik Ministerium für Bildung, Jugend und Sport Prüfungen am Ende der Jargangsstufe 10 Scriftlice Prüfung Sculjar: 2008/2009 Sculform: Matematik Allgemeine Arbeitsinweise Die Prüfungszeit beträgt 160 Minuten.

Mehr

Für eine einstufige Gleichdruckturbine gelten folgende Daten:

Für eine einstufige Gleichdruckturbine gelten folgende Daten: Afgabe 5.0 Für eine einstfige Gleidrktrbine gelten folgende Daten: mittlerer Besafelngsdrmesser D m 0, m Drezal n 30.000 min - Massendrsatz m& kg/s spez. statises isentropes Entalpiegefälle der tfe Δ -

Mehr

A = N gilt für das Inland : und für das Ausland :

A = N gilt für das Inland : und für das Ausland : Lösungsinweise zum 3.Übungsblatt: a.) = N In utarkie = N gilt ür das Inland : und ür das usland : 20 + 20 = 100 20 40 + 20 = 80 20 40 = 80 40 = 40 = 2 = 1 X = 60 X = 60 =) Imortnacrage des Inlands ; Exortangebot

Mehr

2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 25 26 28

Mehr

DSA E-Series 4TB. Video DSA E-Series 4TB. www.boschsecurity.de

DSA E-Series 4TB. Video DSA E-Series 4TB. www.boschsecurity.de Video DSA E-Series 4TB DSA E-Series 4TB www.boschsecrity.de Horizontal skalierbare Netzwerkspeicher-Lösng: Controller mit 12 internen Festplatten, die über moderne Erweiterngseinheiten mit SAS- Schnittstelle

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Medienmitteilung Rothenburg, 26. April 2013

Medienmitteilung Rothenburg, 26. April 2013 Pistor AG Medienmitteilung Rotenburg, 26. April 2013 Gescäftsjar 2012 Ausblick 2013 Pistor mit gutem Ergebnis Die Pistor ist gut unterwegs. Im Jar 2012 wurde mit dem Bau des neuen Tiefkülcenters erneut

Mehr

1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4

1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4 1. Kennlinien Der Transistor BC550C soll auf den Arbeitspunkt U CE = 4 V und I C = 15 ma eingestellt werden. a) Bestimmen Sie aus den Kennlinien (S. 2) die Werte für I B, B, U BE. b) Woher kommt die Neigung

Mehr

Lösung der Abitur-Übung 3:

Lösung der Abitur-Übung 3: Löng dr Abitr-Übng : Agab..a Fnktion allgmin: Ablitngn allgmin: =a +b +c+d =a +b+c =a+b Urprng / = =d Brürngpnkt im WP / = =a+b+c+d wil: g= Stigng im WP it m=- =- -=a+b+c wil: g =- Wndpnkt bi = = =a+b

Mehr

Überholen mit konstanter Beschleunigung

Überholen mit konstanter Beschleunigung HTL Überolen mit konstanter Seite 1 von 7 Nietrost Bernard bernard.nietrost@tl-steyr.ac.at Überolen mit konstanter Bescleunigung Matematisce / Faclice Inalte in Sticworten: Modellieren kinematiscer Vorgänge;

Mehr

1. Hilbertschen Geometrie I: Punkte, Geraden, Ebenen

1. Hilbertschen Geometrie I: Punkte, Geraden, Ebenen 1. Hilbertscen eometrie I: Punkte, eraden, benen Wir bescreiben den axiomatiscen Zuan zur eometrie, wie er von Hilbert erstmals formuliert wurde. Der Ausanspunkt unserer Betractun ist die folende Definition.

Mehr

Die "Goldene Regel der Messtechnik" ist nicht mehr der Stand der Technik

Die Goldene Regel der Messtechnik ist nicht mehr der Stand der Technik Die "Goldene Regel der Messtechnik" Ator: Dipl.-Ing. Morteza Farmani Häfig wird von den Teilnehmern nserer Seminare zr Messsystemanalyse nd zr Messnsicherheitsstdie die Frage gestellt, für welche Toleranz

Mehr

Liebe Grüße. von Eurem Jackie. h h. Die vertraulichen Briefe eines Findelkaters. Silke Sintram. Verlag Gisela Preuss

Liebe Grüße. von Eurem Jackie. h h. Die vertraulichen Briefe eines Findelkaters. Silke Sintram. Verlag Gisela Preuss Liebe Grüße Silke Sintram von Eurem Jackie Die vertraulicen Briefe eines Findelkaters 0 Verlag Gisela Preuss Der Findelkater Das Katzenbaby namenlos wurde im kalten Winter von einer Frau, unter Sträucern

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

Binäre Suchbäume. 6. Binäre Suchbäume. Einfügen in binären Suchbäumen

Binäre Suchbäume. 6. Binäre Suchbäume. Einfügen in binären Suchbäumen 6. Binäre Sucbäume Natürlice binäre Sucbäume - Begriffe und Definitionen - Grundoperationen: Einfügen, sequentielle Suce, direkte Suce, öscen - Bestimmung der mittleren Zugriffskosten Balancierte Binärbäume

Mehr

Neue GuideLed Sicherheitsleuchten

Neue GuideLed Sicherheitsleuchten CEAG GuideLed Sicereitsleucten Neue GuideLed Sicereitsleucten Geradliniges Design kombiniert mit oer Wirtscaftlickeit C-C8 C-C GuideLed SL., 2. CG-S Deckeneinbau EN 838 LED * GuideLed SL. CG-S IP GuideLed

Mehr

Dritte Klausur. 3 x 2 7 x dx = 3 x 2 7 x dx. 3 x 2 7 x dx = 7 x 3 x 2 dx. x 3 2 x + 5 dx = x 3 2 x + 5 dx + x 3 2 x + 5 dx. x dx = x dx

Dritte Klausur. 3 x 2 7 x dx = 3 x 2 7 x dx. 3 x 2 7 x dx = 7 x 3 x 2 dx. x 3 2 x + 5 dx = x 3 2 x + 5 dx + x 3 2 x + 5 dx. x dx = x dx École Interntionle Allemnde Dritte Klsr Vornme, Nme Mthemtik Klsse Mittwoch, 7. März. Kreze n, whr oder flsch! Jede richtige Antwort zählt einen Pnkt, bei flschem Krez wird ein Pnkt bgezogen. Kein Krez

Mehr

iscsi-disk-arrays der DSA E-Series

iscsi-disk-arrays der DSA E-Series Video iscsi-disk-arrays der DSA E-Series iscsi-disk-arrays der DSA E-Series www.boschsecrity.de Horizontal skalierbare Netzwerkspeicher-Lösng: Controller mit 12 internen Festplatten, die über moderne Erweiterngseinheiten

Mehr

iek Institut für Entwerfen und Konstruieren

iek Institut für Entwerfen und Konstruieren Grundlaen der Darstellun Institut für Entwerfen und Konstruieren Prof. José Luis Moro Heiko Stacel Mattias Rottner 1 Konstruktion der senkrecten Axonometrie 2 Mertafelprojektion B(A) A B A Aufriss Seitenriss

Mehr

Formelsammlung. Fachangestellte für Bäderbetriebe Meister für Bäderbetriebe. Inhalt

Formelsammlung. Fachangestellte für Bäderbetriebe Meister für Bäderbetriebe. Inhalt Forelsalung Facangestellte für Bäderbetriebe Meister für Bäderbetriebe Erstellt von Dipl.-Ing. (FH) Wolfgang Hetteric, BVS it Ergänzungen von Dipl.-Ing. (FH) Peter Vltavsky, BS Lindau Inalt llgeeine Mecanik...

Mehr

Aufgabenzettel. Löse rechnerisch mit Hilfe geeigneter Funktionsgleichungen. Überprüfe deine Lösung mit einer Zeichnung.

Aufgabenzettel. Löse rechnerisch mit Hilfe geeigneter Funktionsgleichungen. Überprüfe deine Lösung mit einer Zeichnung. Matematik Klasse 11 1 Zylinder Zwei Zylinderförmige Gefäße werden mit Wasser gefüllt (siee unten). Jedes Gefäß at einen Grundfläceninalt von 1dm 2 und ist 85cm oc. Erreict der Wasserspiegel des zweiten

Mehr

Physik I Übung 7, Teil 2 - Lösungshinweise

Physik I Übung 7, Teil 2 - Lösungshinweise Pysik I Übung 7, Teil - Lösungsinweise Stefan Reutter SoSe 0 Moritz Kütt Stand:.06.0 Franz Fujara Aufgabe Clausius- Klappermann Clapeyron Revisited (Vorsict, Aufgabe vom Cef!) Da sic Prof. Fujara wie immer

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

Beispiele für Terme: a 7 + 4x Eine Zahl ist durchaus sinnvoll. Die Addition zweier Zahlen ist sinnvoll.

Beispiele für Terme: a 7 + 4x Eine Zahl ist durchaus sinnvoll. Die Addition zweier Zahlen ist sinnvoll. 2 Terme, Variaen, Geicungen 01 Üera Terme Merke dir: Ein Term ist ein sinnvoer matematiscer Ausdruck. Information Ein Term ist ein sinnvoer matematiscer Ausdruck, der aus Zaen, Recenzeicen und Variaen

Mehr

ZUKUNFT BILDEN. Die Bildungsinitiative der Region. Februar 2015. Journalistische Darstellungsformen. Teil 3

ZUKUNFT BILDEN. Die Bildungsinitiative der Region. Februar 2015. Journalistische Darstellungsformen. Teil 3 ZUKUNFT Februar 2015 Journalistisce Darstellungsformen Teil 3 Das Projekt zur Bildungsförderung für Auszubildende getragen von starken Partnern Initiatoren: Förderer und Stiftungspartner: INHALT Journalistisce

Mehr

Chapter 1 : þÿ b e t a t h o m e. e s m o v i l c h a p t e r

Chapter 1 : þÿ b e t a t h o m e. e s m o v i l c h a p t e r Chapter 1 : þÿ b e t a t h o m e. e s m o v i l c h a p t e r þÿ e i n e n g e w i s s e n.. B e i m v e r l i e r e n z u z u s e h e n e r g ä n z e n s i c h f ü r a u f d i e. b e s t e n b e t - a

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Mathematik für Chemiker I

Mathematik für Chemiker I Universität D U I S B U R G E S S E N Campus Essen, Matematik PD Dr. L. Strüngmann WS 007/08 Übungsmaterial sowie andere Informationen zur Veranstaltung unter: ttp://www.uni-due.de/algebra-logic/struengmann.stml

Mehr

Skriptum zur Vorlesung GASDYNAMIK

Skriptum zur Vorlesung GASDYNAMIK Tehnishe Uniersität ünhen Lehrsthl für Aerodynamik Uni. Professor Dr.-Ing.habil. N.A. Adams Skritm zr Vorlesng GASDYNAIK Sommersemester Steffen Shmidt Sommersemester Steffen Shmidt Umshlagbild Sae Shttle

Mehr

10. Übung Künstliche Intelligenz

10. Übung Künstliche Intelligenz Prof. Dr. Gerd Stumme, Dominik Benz Fachgebiet Wissensverarbeitung 28.01.2009 10. Übung Künstliche Intelligenz Wintersemester 2008/2009 Beschreibungslogiken 1. Belegen oder iderlegen Sie folgende Behauptungen

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN Einfürung in die Pysik für Cemiker Prof. J. Lipfert en zu Übungsblatt 7 WS 203/4 en zu Übungsblatt 7 Aufgabe Ballscleuder. Zwei Bälle werden übereinander und gleiczeitig fallen gelassen. Die Massen

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 205 (ohne CAS) Baden-Württemberg Wahlteil Analysis Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com März 205 Aufgabe A

Mehr

Ziel des spieles. Spielmaterial

Ziel des spieles. Spielmaterial Die Spieler erschen, drch das Errichten on Gebäden möglichst iele Siegpnkte z sammeln. 37 rechteckige Karten (nd zar 18 Arbeiter, 6 Sklaen, 4 Werkzege, 4 Kredite, 4 Uniersitäten nd 1 Startspieler) Beispiel

Mehr

Standard 8029HEPTA/GPS. Weil jeder Bruchteil einer Sekunde zählt. Netzwerksynchronisation auf kleinstem Raum. hopf Elektronik GmbH

Standard 8029HEPTA/GPS. Weil jeder Bruchteil einer Sekunde zählt. Netzwerksynchronisation auf kleinstem Raum. hopf Elektronik GmbH 8029HEPTA/GPS Standard Weil jeder Brchteil einer Seknde zählt Netzwerksynchronisation af kleinstem Ram hopf Elektronik GmbH Nottebohmstraße 41 58511 Lüdenscheid Detschland Telefon: +49 (0)2351 93 86-86

Mehr

T6 THERMOELEMENT UND ABKÜHLUNGSGESETZ

T6 THERMOELEMENT UND ABKÜHLUNGSGESETZ PHYSIKALISCHE GRUNDLAGEN Wichtige Grndbegriffe: ermspannng, ermelement, ermkraft, Astrittsarbeit, Newtnsches Abkühlngsgesetz Beschreibng eines ermelementes: Ein ermelement besteht as zwei Drähten verschiedenen

Mehr

Der einfache Dampfprozess Clausius Rankine Prozess Seite 1 von 8

Der einfache Dampfprozess Clausius Rankine Prozess Seite 1 von 8 Der einface Dapfproze Clauiu Rankine Proze Seite von 8 darin ind e die Exergie, b die Anergie und U die Ugebungteperatur Wie vergleicen zunäct den Carnot cen η C Prozewirkunggrad it de Clauiu-Rankine Prozewirkunggrad

Mehr

Mechanik 1.Gleichförmige Bewegung 1

Mechanik 1.Gleichförmige Bewegung 1 Mecanik 1.Gleicförige Bewegung 1 1. Geradlinige, gleicförige Bewegung (Bewegung it kontanter Gecwindigkeit) Zeit: 1 Unterricttunde 45 Minuten 2700 Sekunden 1 Sculjar entält etwa 34 Doppeltunden 68 Unterricttunden

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Aufgabe 2 Wetterstation Aufgabe aus der scriftlicen Abiturprüfung Hamburg 05. In einer Wetterstation wird die Aufzeicnung eines Niedersclagmessgeräts vom Vortag (im Zeitraum von 0 Ur bis Ur) ausgewertet.

Mehr

Ergebnisse der Umfrage Mitarbeiterbeteiligung im Umfeld drohender Finanzkrisen Oktober 2011

Ergebnisse der Umfrage Mitarbeiterbeteiligung im Umfeld drohender Finanzkrisen Oktober 2011 Ergebnisse der Umfrage Mitarbeiterbeteiligung im Umfeld drohender Fanzkrisen Oktober 2011 0. Zusammenfassung Die Weltwirtschaft erlebte den Jahren 2009 und 2010 ee schwere Fanz- und Wirtschaftskrise, die

Mehr

4.3.2 Erstattung von Fahrtkosten mit dem Privatfahrzeug des Arbeitnehmers

4.3.2 Erstattung von Fahrtkosten mit dem Privatfahrzeug des Arbeitnehmers 4.3.2 Erstattung von Fahrtkosten mit dem Privatfahrzeug des Arbeitnehmers Sofern der Arbeitnehmer für betriebliche Fahrten ein privates Fahrzeug nutzt, kann der Arbeitgeber ihm die entstandenen Aufwendungen

Mehr

bintec 4Ge LTE-Zugang für Ihre bestehende Infrastruktur

bintec 4Ge LTE-Zugang für Ihre bestehende Infrastruktur -Zgang für Ihre bestehende Infrastrktr Warm Was ist das gena Beim handelt es sich m ein Erweiterngsgerät, mit dessen Hilfe bestehende Netzwerk-Infrastrktren mit (4G) asgerüstet bzw. nachgerüstet werden

Mehr

The Royal London With Profits Bond Plus

The Royal London With Profits Bond Plus The Royal London With Profits Bond Pls Stärke nd Sicherheit In Zeiten des Wandels, bietet Ihnen der Royal London With Profits Bond Pls ein aßergewöhnliches Maß an Sicherheit nd Entwicklngspotenzial. Dank

Mehr

Explizite, eingebettete und implizite RK-Verfahren

Explizite, eingebettete und implizite RK-Verfahren Kutta-Teorie: Explizite, eingebettete und implizite RK-Verfaren Lukas Klic Kutta-Teorie: : Explizite, eingebettete und implizite RK- Verfaren Lukas Klic Seite: Gliederung -Verfaren - Explizite Verfaren

Mehr

AUFGABENSAMMLUNG ZUM LEHRGEBIET. AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME

AUFGABENSAMMLUNG ZUM LEHRGEBIET. AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME Dr.-Ing. Tatjana Lange Fachhochschle für Technik nd Wirtschaft Fachbereich Elektrotechnik AUFGABENSAMMLUNG ZUM LEHRGEBIET AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME. Differentialgleichngen Afgabe.:

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Kostenfunktionen. Kapitel 10. Ökonomische Kosten. Ökonomische Kosten. Kostenfunktionen

Kostenfunktionen. Kapitel 10. Ökonomische Kosten. Ökonomische Kosten. Kostenfunktionen Kapitel 10 Kosten der Produktion für eine gegebene Outputmenge. ösung des sproblems Gesamt-, Grenz- und Durchschnittskosten. Kurzfristige und langfristige Kostenkuren. 1 2 Ökonomische Kosten Die Opportunitätskosten

Mehr

Anwendungsaufgaben - Größen und Einheiten 1 Gib jeweils die Messgenauigkeit und die Anzahl der gültigen Ziffern an.

Anwendungsaufgaben - Größen und Einheiten 1 Gib jeweils die Messgenauigkeit und die Anzahl der gültigen Ziffern an. Anwendungsaufgaben - Größen und Eineiten 1 Gib jeweils die Messgenauigkeit und die Anzal der gültigen Ziffern an. Messgerät Messwert Messgenauigkeit gültige Ziffern Maßband Lineal Messscieber Mikrometer

Mehr

7 Lineare Gleichungssysteme

7 Lineare Gleichungssysteme 116 7 Lineare Gleichngssysteme Lineare Gleichngssysteme treten in vielen mathematischen, aber ach natrwissenschaftlichen Problemen af; zm Beispiel beim Lösen von Differentialgleichngen, bei Optimierngsafgaben,

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Tilgungsrechnung. (K n + R n = ln. / ln(q) (nachschüssig) + R. / ln(q) (vorschüssig)

Tilgungsrechnung. (K n + R n = ln. / ln(q) (nachschüssig) + R. / ln(q) (vorschüssig) (K n + R n = ln n = ln q 1 K 0 + R q 1 (K n q + R q 1 K 0 q + R q 1 ) / ln(q) (nachschüssig) ) / ln(q) (vorschüssig) Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. Tilgungsrechnung

Mehr

Musterlösung Nachklausur Gundlagen der Regelungstechnik WS0506 vom

Musterlösung Nachklausur Gundlagen der Regelungstechnik WS0506 vom Msterlösng Nachklasr Gndlagen der Regelngstechnik WS0506 vom 4.0.006 Afgabe : Das folgende Blockschaltbild ist z vereinfachen nd zsammenzfassen: G G G Schritt : G nd G zsammenfassen soie die Smmationsstelle

Mehr

WLAN "Hack" Disclaimer:

WLAN Hack Disclaimer: WLAN "Hack" Disclaimer: Diese Anleitung soll Sie nicht dazu verleiten, kriminelle Tätigkeiten durchzuführen. Sie machen sich unter Umständen strafbar. Informieren Sie sich vorher im BDSG und TDSG und anderen

Mehr

Chapter 1 : þÿ W a r u m w i l l i c h f ü r b e t a t h o m e a r b e i t e n c h a p t e r

Chapter 1 : þÿ W a r u m w i l l i c h f ü r b e t a t h o m e a r b e i t e n c h a p t e r Chapter 1 : þÿ W a r u m w i l l i c h f ü r b e t a t h o m e a r b e i t e n c h a p t e r þÿ M i t d i e s e m S l o g a n i s t M o b i l b e t s e i t d e m F u ß b a l l - W M - J a h r 2 0 1 4 o

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und en Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 008/009 Anweseneitsaufgaben Übung 4 Einleitung Es soll darauf ingewiesen werden, daß es in der Woce vor der Klausur

Mehr

Logik und Mengenlehre. Mengenlehre Aussagenlogik Prädikatenlogik Mengenalgebra Relationen Funktionen. Russelsche Antinomie Die freie Software R Quiz

Logik und Mengenlehre. Mengenlehre Aussagenlogik Prädikatenlogik Mengenalgebra Relationen Funktionen. Russelsche Antinomie Die freie Software R Quiz Logik und Mengenlere Mengenlere Aussagenlogik Prädikatenlogik Mengenalgebra Relationen Funktionen Russelsce Antinomie Die freie Software R Qui Mengenlere 1 Am Anfang war das Nicts Die leere Menge 2 entält

Mehr

Liebe Lehrerin, lieber Lehrer, dieses Unterrichtsmaterial ist speziell auf die Boardstory und das Buch "Als. hnsuch. ferd. das Nilpfe.

Liebe Lehrerin, lieber Lehrer, dieses Unterrichtsmaterial ist speziell auf die Boardstory und das Buch Als. hnsuch. ferd. das Nilpfe. i Liebe Lererin, lieber Lerer, dieses Unterrictsmaterial ist speziell auf die Boardstory und das Buc "Als fe Sen nsuc suct t atte te" von Iri ris Wewe wer ausgelegt. Die Arbeitsblätter unterstützen Lesekompetenz

Mehr

4.3.2 Ableitungsregeln

4.3.2 Ableitungsregeln Vorbereitungskurs auf die Aufnameprüfung der ETH: Matematik 4.3.2 Ableitungsregeln Der Differentialquotient [s. 43] zur Definition der Ableitung beinaltet eine Grenzwertbildung Limes), welce meist dadurc

Mehr

Financial Leverage. und die unendliche Rendite des Eigenkapitals und ihr Risiko

Financial Leverage. und die unendliche Rendite des Eigenkapitals und ihr Risiko Financial Leverage und die unendliche Rendite des Eigenkapitals und ihr Risiko Gliederung 1. Der Leverage-Effekt 2. Die Leverage-Chance 3. Die Leverage-Gefahr 4. Das Leverage-Risiko 5. Schlussfolgerungen

Mehr

Plotten von Linien ( nach Jack Bresenham, 1962 )

Plotten von Linien ( nach Jack Bresenham, 1962 ) Plotten von Linien ( nach Jack Bresenham, 1962 ) Ac Eine auf dem Bildschirm darzustellende Linie sieht treppenförmig aus, weil der Computer Linien aus einzelnen (meist quadratischen) Bildpunkten, Pixels

Mehr