Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban"

Transkript

1 Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt, wähle also ei äquivaletes Martigalmaß Q Q, ud wolle de Zahlugsaspruch Hω) : t ω), ω Ω, T T tt zur Zeit t, t T < T T bewerte. T ud T spae die Periode, über die H de Durchschittspreis der Aktie berechet ud auszahlt. H ist ach Voraussetzug erreichbar, also verwede wir direkt die risikoeutrale Bewertugsformel: π t H) E Q H F t E Q T T ) T T ) T T ) T T ) t T T ) st s st E Q s F t st B s E Q st B s t s B s F t F t st B s, t T Aufgabe Butterfly-pread) Für feste chlusskurs T sid die Auszahluge vo Call bzw. Put CK) : T K) + max{, T K} bzw. P K) : K T ) + max{, K T }. Wähle K < K 3 < ud K : K + K 3 ). Der Butterfly-pread hat das Auszahlugsprofil siehe kizze auf dem Übugsblatt), T < K T K, K T < K BK, K, K3) K 3 T, K T < K 3, K 3 T <

2 Ma erhält de Butterfly-pread durch Hadel vo vier Optioe der selbe orte, wahlweise Call oder Put, ud zwar kauft ma eie Optio auf K, verkauft zwei Optioe auf K ud kauft eie Optio auf K 3 : CK ) CK ) + CK 3 ) P K ) P K ) + P K 3 ) BK, K, K 3 ). iehe auch das folgede Maple-Worksheet.

3 ) )

4 Aufgabe 3 Barriere-Optioe im spezielle CRR-Modell) Wir habe eie T -periodige CRR-Markt, u d ud wolle zum trike K > die Barriere-Optioe H C d&o T K) + mi{,..., T }>B, H C d&i T K) + mi{,..., T } B bewerte. Eie vorgegebee Barriere B R wird etweder eigehalte oder icht, also addiere sich ei ad-out ud ei ad-i -Aspruch der selbe Hadelsrichtug auf das selbe Papier ud mit idetischem trike zu eiem Zahlugsaspruch ohe Barrierebedigug. Hier gilt also H C d&o + HC d&i HC ud H C ist ei Europäischer Call zum trike K auf. Die risikoeutrale Bewertugsformel ist liear, also folgert ma π H C d&o) + π H C d&i ) π H C ). ) Der Preis vo H C ist aus der Vorlesug bekat, also geügt es im Folgede eie der beide Optioe zu bewerte. Wir etscheide us für de Dow-ad-I-Call ud stelle zuächst fest, dass auch für Barriere-Optioe eie Variate der Put-Call-Parity gilt: π A T K) +) E Q A T K) + E Q A K T ) + + T K ) π A K T ) +) + E Q A T K QA), A F T. ) Wir köe also statt des Calls de Put betrachte. Die Berechug der zwei zusätzliche Erwartugswerte wird im Folgede ebebei afalle. Der Dow-ad-I-Put ist im gewisse ie das piegelbild des i der Vorlesug diskutierte Up-ad-I-Calls: Hier muss das Miimum eie chrake uterschreite, damit die Verkaufszahlug K T ) + fließt, währed im adere Fall eie chrake überschritte werde muss, damit die Akaufsdifferez T K) + eigestriche werde ka. Tatsächlich köe wir bei der Bewertug vo H P d&i K T ) + mi{,..., T } B aalog zur Vorlesug vorgehe. Zerlege dazu zuächst de Preis küstlich i zwei Erwartugswerte: π Hd&i P ) EQ K T ) + B mi{,..., T } B, T B + EQ K T ) + mi{,..., T } B, T >B) T E Q K T ) + T B E Q K T ) + } {{ } B mi{,..., T } B, T >B T } {{ } :I + :I 3) Im CRR-Modell sid zu jeder Zeit ur edlich viele Kurswerte möglich, also gibt es eie bestimmte, oberhalb desse die chrake eigehalte wird ud uterhalb desse sie verletzt ist. Wir wähle daher obda mit B u k für ei geeigetes k die Barriere als geau diese Kurswert. Wie i der Vorlesug bezeiche Z t die Differez aus der Azahl Kursetwickluge i u-richtug ud dee i d-richtug bis zur Zeit t. Der Prozess Z t ) t,...,t ist eie je ach Maß symmetrische oder icht symmetrische) Irrfahrt auf { T,..., T }. Zu I. Es gilt t u Zt u k B Z t k, mi{,..., T } B mi{z,..., Z T } k. etze fs) : K s) + s B. Da ist I ) T q q) T f u T ) u q q) T f u T )

5 ud mit b k : max{,..., T : u T u k } max{,..., T : k+t } drückt ma die Barrierebedigug i f über die umme aus ud fidet I b k q q) T K u T ) +. ) Zu I. Wir werde die Wahrscheilichkeit vo Pfade bestimme müsse, die ei Miimum erreiche oder uterquere. Für die Irrfahrt Z gilt hier das piegelugsprizip: Z P mi{z,..., Z T } k, Z T k + l) P Z T k l), k Z, l N. 5) t N k gültiger Pfad gespiegelter Pfad chreibe kurz miz) : mi{z,..., Z T }. Wie i der Vorlesug ka ma zum Maß Q wechsel mit woraus zusamme mit dem piegelugsprizip direkt dq dp T q T +Z T ) q) T Z T ), 6) Q miz) k, Z T k + l) 6) T q T +k+l)) q) T k+l)) P miz) k, Z T k + l) 5) T q T +k+l) q) T k l) P Z T k l) 6) T k l) T q T +k+l) q) T q T +k l) q) Q Z T k+l) T k l) ) q l Q Z T k l) q ) q k Q Z T l k) 7) q folgt. Die letzte Gleichheit gilt umittelbar durch Eisetze der Biomialverteilug vo Z uter Q T + l + k gerade, sost sid alle auftretede Wahrscheilichkeite ohehi ull). Damit köe wir 5

6 de Erwartugswert ausreche: I E Q K T ) + mi{,..., T } B, T >B K E Q u Z ) + T miz) k, ZT >k K u k+l) + EQ miz) k, ZT k+l l K u k+l) + Q miz) k, ZT k + l) l 7) K u k+l) ) + q k Q Z T l k) q l ) q k u k q }{{} B l Ku k } {{ } : K u l k + Q Z T l k) ) q k ) B ) + K u Z T Q ZT l k) q l ) q k ) B ) + E Q K u Z T ZT > k q q q ) k B ) E Q K T ) + T > B wobei hier B : B u k. Wie bei I defiiert ma fs) : K s) + s> B ud fidet mit der utere chrake b k : mi{ N : u T > B} mi{ N : > T k E Q K T ) + T > B, } q q) T f u T ) q q) T K ) u T +, 8) b k für I also i Fortsetzug obiger Rechug isgesamt ) 8) q k ) B T I q b k q q) T K ) u T +. 9) Die Erwartuge E Q A T ud QA) E Q A i der Put-Call-Parity ) lasse sich wege A {ω Ω : mi {,..., T ω)} B} leicht mit de gleiche Methode wie I ud I behadel, es sid de facto die selbe Rechuge, ur falle hier sogar die Auszahluge K T ) + weg. Damit habe wir die gesuchte Preise: π Hd&o C ) ) π H C) π Hd&i) C, ) ) ) T + EQ A π H C d&i π H P d&i 3) I + I ) + E Q K QA) A T K QA). 6

7 Aufgabe Noch eimal Floatig-trike Lookback Optioe) Wir habe eie T -periodige CRR-Markt mit u d ud wolle de Floatig-trike Lookback Call Hω) : T ω) mi {, ω),..., T ω)}) +, ω Ω, bewerte. etze mi) : mi{,..., T }. Mit der risikoeutrale Bewertugsformel gilt T mi)) + πh) E Q T mi) E Q E Q mi). De Erwartugswert des Miimums uter Q köe wir schreibe als E Q mi) E Q u miz) T u QmiZ) ), wobei hier Z t die Azahl prüge ach obe i u-richtug) abzüglich der Azahl prüge ach ute i d-richtug) agibt, gezählt bis zur Zeit t, ud wie obe miz) : mi{z,..., Z T }. Die Wahrscheilichkeit QmiZ) ) ka ma wie i der Vorlesug bestimme, idem ma Z t ) t,...,t i Gedake och eie Zeitschritt weiterlaufe läßt, vergleiche dazu die ätze zum piegelugsprizip uter P bzw. uter Q. Wir wolle hier eie adere Weg gehe ud zerlege dazu wie folgt: QmiZ) ) QmiZ) ) QmiZ) ) l QmiZ), Z T + l) QmiZ), Z T + l). Diese Wahrscheilichkeite habe wir bereits i Aufgabe 3 zu de Barriere-Optioe berechet. Es gilt mit dem piegelugsprizip ) q QmiZ), Z T + l) QZ T l ) q q l q) T l, l QmiZ), Z T + l) QmiZ) ), Z T ) + l + )) ) q QZ T l + ) q ) T q l+ q) T l l + ud wir habe ur och Terme übrig, die wir bereche köe. 7

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik Karlsruher Istitut für Techologie (KIT) Istitut für Aalysis Priv.-Doz. Dr. Gerd Herzog M. Sc. Adreas Hirsch WS 204/5 24.0.204 Höhere Mathematik I (Aalysis) für die Fachrichtug Iformatik Lösugsvorschlag

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr

Stichproben im Rechnungswesen, Stichprobeninventur

Stichproben im Rechnungswesen, Stichprobeninventur Stichprobe im Rechugswese, Stichprobeivetur Prof Dr Iree Rößler ud Prof Dr Albrecht Ugerer Duale Hochschule Bade-Württemberg Maheim Im eifachste Fall des Dollar-Uit oder Moetary-Uit Samplig (DUS oder MUS-

Mehr

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3 INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

Stochastik für WiWi - Klausurvorbereitung

Stochastik für WiWi - Klausurvorbereitung Dr. Markus Kuze WS 2013/14 Dipl.-Math. Stefa Roth 11.02.2014 Stochastik für WiWi - Klausurvorbereitug Gesetz der totale Wahrscheilichkeit ud Satz vo Bayes (Ω, F, P) Wahrscheilichkeitsraum, E 1,..., E F

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen Thema Fit i Mathe Musterlösuge 1 April Klassestufe 10 Wurzelfuktioe Uter der -te Wurzel eier icht-egative Zahl (i Zeiche: ) versteht ma die icht-egative Zahl, die mal mit sich selber multipliziert, die

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09 Musterlösug zu Blatt 8 der Vorlesug Aalysis I WS08/09 Schriftliche Aufgabe Aufgabe. Voraussetzuge: Für alle N setze a : +2 ud b : ( 2. [Amerkug: I der Aufgabestellug heiÿe die Reihe beide gleich. Es steht

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden Folge ud Reihe Folge Eie Folge ist eie Abbildug der atürliche Zahle N = {0, 1,,...} i die Mege der (zumidest i de meiste Fälle) reelle Zahle R. I diesem Fall ka ma sich eie Folge als Pukte i eiem Koordiatesystem

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 2008/09 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum 4. Übugsblatt

Mehr

Kapitel VI. Einige spezielle diskrete Verteilungen

Kapitel VI. Einige spezielle diskrete Verteilungen Kapitel VI Eiige spezielle diskrete Verteiluge D 6 (Hypergeometrische Verteilug) Eie Zufallsvariable X heißt hypergeometrisch verteilt, we sie folgede Wahrscheilichkeitsfuktio besitzt: M N M P ( X ) p

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgabe ud e Ausarbeitug der Übugsstude zur Vorlesug Aalysis I Witersemester 008/009 Übug am 8..008 Übug 5 Eileitug Zuerst soll auf de aktuelle Übugsblatt ud Stoff der Vorlesug eigegage werde. Dazu werde

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst. Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004) Aufgabe 7. Ubeschräktes

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8 Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i D. Reterechug 1.1. Jährliche Retezahluge 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Statistik ud Wahrscheilichkeitsrechug Übug 6 3.03.20 Ihalt der heutige Übug Aufgabe D.7: Reche mit Zufallsvariable Erwartugswert- ud Variazoperator Statistik ud Wahrscheilichkeitsrechug

Mehr

1. Zahlenfolgen und Reihen

1. Zahlenfolgen und Reihen . Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,

Mehr

1 Randomisierte Bestimmung des Medians

1 Randomisierte Bestimmung des Medians Praktikum Diskrete Optimierug (Teil 0) 0.07.006 Radomisierte Bestimmug des Medias. Problemstellug ud Ziel I diesem Abschitt stelle wir eie radomisierte Algorithmus zur Bestimmug des Medias vor, der besser

Mehr

10. Testen von Hypothesen Seite 1 von 6

10. Testen von Hypothesen Seite 1 von 6 10. Teste vo Hypothese Seite 1 vo 6 10.1 Eiführug i das Teste vo Hypothese Eie Hypothese ist eie Vermutug bzw. Behauptug über die Wahrscheilichkeit eies Ereigisses. Mit Hilfe eies geeigete Tests (=Testverfahre)

Mehr

Mathematische Probleme, SS 2015 Montag 1.6. $Id: convex.tex,v /06/01 09:26:03 hk Exp $

Mathematische Probleme, SS 2015 Montag 1.6. $Id: convex.tex,v /06/01 09:26:03 hk Exp $ athematische Probleme, 2015 otag 1.6 $Id: cove.te,v 1.19 2015/06/01 09:26:03 hk Ep $ 3 Kovegeometrie 3.2 Die platoische Körper I der letzte itzug habe wir mit de Vorarbeite zur Berechug der platoische

Mehr

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 4 LÖSUNGEN MAT/MAT3 ANALYSIS I HERBSTSEMESTER 00 PROF. DR. AMILLO DE LELLIS Aufgabe. Etscheide Sie für folgede Folge (wobei N \ {0}), ob diese koverget sid, ud bereche sie gegebeefalls ihre

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

Versicherungstechnik

Versicherungstechnik Operatios Research ud Wirtschaftsiformati Prof. Dr. P. Recht // Dipl.-Math. Rolf Wedt DOOR Versicherugstechi Übugsblatt 3 Abgabe bis zum Diestag, dem 03..205 um 0 Uhr im Kaste 9 Lösugsvorschlag: Vorbereituge

Mehr

x = a + b α + β. b) Wir erweitern den Bruch geeignet (Standardtrick: z z ist reell, daher ergibt 1/z = 1/z z/ z = z/(z z) einen reellen Nenner):

x = a + b α + β. b) Wir erweitern den Bruch geeignet (Standardtrick: z z ist reell, daher ergibt 1/z = 1/z z/ z = z/(z z) einen reellen Nenner): Karlsruher Istitut für Techologie (KIT) Istitut für Aalysis Priv-Doz Dr P C Kustma Dr D Frey WS 0/ Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zum 3 Übugsblatt Aufgabe Zuächst zum Supremum:

Mehr

4. Übungsblatt Aufgaben mit Lösungen

4. Übungsblatt Aufgaben mit Lösungen 4. Übugsblatt Aufgabe mit Lösuge Aufgabe 6: Bestimme Sie alle Häufugspukte der Folge mit de Folgeglieder a) a 2 + cosπ), b) b i) i j, ud gebe Sie jeweils eie Teilfolge a, die gege diese Häufugspukte kovergiert.

Mehr

Dritter Zirkelbrief: Ungleichungen

Dritter Zirkelbrief: Ungleichungen Matheschülerzirkel Uiversität Augsburg Schuljahr 014/015 Dritter Zirkelbrief: Ugleichuge Ihaltsverzeichis 1 Grudlage vo Ugleichuge 1 Löse vo Ugleichuge 3 3 Mittel 4 4 Mittelugleichuge 5 5 Umordugsugleichug

Mehr

Aufgaben und Lösungen der Probeklausur zur Analysis I

Aufgaben und Lösungen der Probeklausur zur Analysis I Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur

Mehr

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien?

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien? Fiazmathematik Aufgabesammlug. Ei Kapital vo 5000 ist zu 6,5% ud ei Kapital vo 4500 zu 7% auf 2 Jahre agelegt. Wie groß ist der Uterschied der Edkapitalie? 2. Wa erreicht ei Kapital eie höhere Edwert,

Mehr

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte.

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte. Statistik Vorlesug,. ärz, Statistische aßzahle Iformatio zu verdichte, Besoderheite hervorzuhebe ittelwerte Aufgabe: die Lage der Verteilug auf der Abszisse zu zeige. Der odus: derjeige Wert, der im Häufigste

Mehr

Binomialkoeffizienten und Binomischer Satz 1 Der binomische Lehrsatz

Binomialkoeffizienten und Binomischer Satz 1 Der binomische Lehrsatz Ihaltsverzeichis Biomialoeffiziete ud Biomischer Satz 1 Der biomische Lehrsatz wird als eie gaze Zahl vorausgesetzt, für die gilt: 0. a ud b werde als reelle Zahle vorausgesetzt, die icht Null sid. Bemerug:

Mehr

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen . Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE Versuch 3/ NEWTONSCHE INTERFERENZRINGE Blatt NEWTONSCHE INTERFERENZRINGE Die Oberfläche vo Lise hat im allgemeie Kugelgestalt. Zur Messug des Krümmugsradius diet das Sphärometer. Bei sehr flacher Krümmug

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 5

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 5 TUM, Zetrum Mathematik Lehrstuhl für Mathematische Physik WS 13/14 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weider Tutoraufgabe: Eiführug i die Wahrscheilichkeitstheorie Lösugsvorschläge zu Übugsblatt

Mehr

Wiederkehrende XML-Inhalte in Adobe InDesign importieren

Wiederkehrende XML-Inhalte in Adobe InDesign importieren Wiederkehrede XML-Ihalte i Adobe IDesig importiere Dieses Tutorial soll als Quick & Dirty -Kurzaleitug demostriere, wie wiederkehrede XML-Ihalte (z. B. aus Datebake) i Adobe IDesig importiert ud formatiert

Mehr

Gruppe 108: Janina Bär Christian Hörr Robert Rex

Gruppe 108: Janina Bär Christian Hörr Robert Rex TEHNIHE UNIVEITÄT HEMNITZ FAULTÄT FÜ INFOMATI Hardwarepraktikum im W /3 Versuch 3 equetielle ysteme I Gruppe 8: aia Bär hristia Hörr obert ex hemitz, 7. November Hardwarepraktikum equetielle ysteme I Aufgabe

Mehr

5. Übungsblatt Aufgaben mit Lösungen

5. Übungsblatt Aufgaben mit Lösungen 5. Übugsblatt Aufgabe mit Lösuge Aufgabe 2: Bestimme Sie alle Häufugspukte der komplexe) Folge mit de Glieder a) a = ) 5 + 7 + 2 ) b) b = i Lösug 2: a) Die Folge a ) zerfällt vollstädig i die beide Teilfolge

Mehr

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie Uiversität Müster Istitut für Mathematische Statistik Stochastik WS 203/204, Blatt Löwe/Heusel Aufgabe (4 Pukte) Übuge Abgabetermi: Freitag, 24.0.204, 0 Uhr THEMEN: Testtheorie Die Sollstärke der Rohrwäde

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr R Köig Dr M Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Mathematik für Physiker (Aalysis ) MA90 Witersem 07/8 Lösugsblatt 4 http://www-m5matumde/allgemeies/ma90 07W (007)

Mehr

Normierte Vektorräume

Normierte Vektorräume Normierte Vektorräume Wir betrachte im Folgede ur Vektorräume über R 1. Sei also V ei Vektorraum. Wir möchte Metrike auf V betrachte, die im folgede Sie mit der Vektorraumstruktur verträglich sid:, y,

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk,

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk, Musterlo suge zu Blatt 0 Kleigruppe zur Service-Verastaltug Mathematik I fu r Igeieure bei Prof. Dr. G. Herbort im WS/3 Dipl.-Math. T. Pawlaschyk, 9.. Theme: Kovergez vo Folge Aufgabe P (i) Sei a : k kk.

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

Analysis I für M, LaG/M, Ph 8.Übungsblatt

Analysis I für M, LaG/M, Ph 8.Übungsblatt Aalysis I für M, LaG/M, Ph 8Übugsblatt Fachbereich Mathematik Sommersemester 200 Dr Robert Haller-Ditelma 0206200 David Bücher Christia Bradeburg Gruppeübug Aufgabe G (Kovergezkriterie/Kovergezradie) (a)

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09 Mathematik Vorlesug im Bachelor-Studiegag Busiess Admiistratio (Modul BWL A) a der FH Düsseldorf im Witersemester 2008/09 Dozet: Dr. Christia Kölle Teil I Fiazmathematik, Lieare Algebra, Lieare Optimierug

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

Kapitel 6. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 6. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel 6 Aufgabe Verstädisfrage Aufgabe 6. Gegebe sei die Folge (x ) 2 mit x ( 2)/( + ) für 2. Bestimme Sie eie Zahl N N so, dass x ε für alle N gilt, we (a) ε 0, (b) ε 00 ist. Aufgabe 6.2 Stelle Sie

Mehr

4. Die Menge der Primzahlen. Bertrands Postulat

4. Die Menge der Primzahlen. Bertrands Postulat O. Forster: Eiführug i die Zahletheorie 4. Die Mege der Primzahle. Bertrads Postulat 4.1. Satz (Euklid. Es gibt uedlich viele Primzahle. Beweis. Wir zeige, dass es zu jeder edliche Mege p 1, p 2,..., p

Mehr

Kapitel 5: Gemeinsame Verteilung und Unabhängigkeit von Zufallsvariablen

Kapitel 5: Gemeinsame Verteilung und Unabhängigkeit von Zufallsvariablen - 39 (Kapitel 5: Gemeisame Verteilug ud Uabhägigkeit vo Zuallsvariable Kapitel 5: Gemeisame Verteilug ud Uabhägigkeit vo Zuallsvariable 5 Deiitio : : Ω Ω,, seie Abbilduge über derselbe Mege Ω Die Abbildug

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr A Müller-Rettkowski Dr T Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

Bewertung von Barriere Optionen im CRR-Modell

Bewertung von Barriere Optionen im CRR-Modell Bewertung von Barriere Optionen im CRR-Modell Seminararbeit von Susanna Wankmueller. April 00 Barriere Optionen sind eine Sonderform von Optionen und gehören zu den exotischen Optionen. Sie dienen dazu,

Mehr

Fakultät und Binomialkoeffizient Ac

Fakultät und Binomialkoeffizient Ac Faultät ud Biomialoeffiziet Ac 2013-2016 Die Faultät (atürliche Zahl): Die Faultät Faultät ist so defiiert:! = 1 2 3... ( - 1) ; 0! = 1 Die reursive Defiitio ist: Falls = 0, da! = 1; sost! = ( - 1)! JAVA-Methode(iterativ):

Mehr

Aufgaben zur Übung und Vertiefung

Aufgaben zur Übung und Vertiefung Aufgabe zur Übug ud Vertiefug ARITHMETISCHE ZAHLENFOLGEN Berufliches Gymasium / Uterstufe () Stelle Sie fest, welche der gegebee Folge arithmetisch sid: Bestimme Sie zuächst die erste füf Folgeglieder,

Mehr

10 Aussagen mit Quantoren und

10 Aussagen mit Quantoren und 0 Aussage mit Quatore ud 0.6. Eisatz vo (bereits bekater) Eistezaussage Bisher hatte wir Eistezbeweise geführt, idem wir ei passedes Objekt agegebe habe ( Setze... ). Stattdesse ka ma auch auf bereits

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

Vorlesung Informationssysteme

Vorlesung Informationssysteme Saarbrücke, 2.05.205 Iformatio Systems Group Vorlesug Iformatiossysteme Vertiefug Kapitel 4: Vo (E)ER is Relatioemodell Erik Buchma (buchma@cs.ui-saarlad.de) Foto: M. Strauch Aus de Videos wisse Sie......welche

Mehr

+ a 3 cos (3ωt) + b 3 sin (3ωt)

+ a 3 cos (3ωt) + b 3 sin (3ωt) Fourier-Reihe Wir gehe aus vo eier gegebee periodische Fuktio f (t). Die Fuktio hat die Fudametalperiode ( Schwigugsdauer ) ud damit die Grud-Kreisfrequez ω = π. Zeit t Periode Die Fuktio f (t) soll zerlegt

Mehr

5.3 Wachstum von Folgen

5.3 Wachstum von Folgen 53 Wachstum vo Folge I diesem Abschitt betrachte wir (rekursiv oder aders defiierte) Folge {a } = ud wolle vergleiche, wie schell sie awachse, we wächst Wir orietiere us dabei a W Hochstättler: Algorithmische

Mehr

4 Schwankungsintervalle Schwankungsintervalle 4.2

4 Schwankungsintervalle Schwankungsintervalle 4.2 4 Schwakugsitervalle Schwakugsitervalle 4. Bemerkuge Die bekate Symmetrieeigeschaft Φ(x) = 1 Φ( x) bzw. Φ( x) = 1 Φ(x) für alle x R überträgt sich auf die Quatile N p der Stadardormalverteilug i der Form

Mehr

Aufgaben zu Kapitel 6

Aufgaben zu Kapitel 6 Aufgabe zu Kapitel 6 Aufgabe zu Kapitel 6 Verstädisfrage Aufgabe 6. Gegebe sei die Folge x ) 2 mit x 2)/ + ) für 2. Bestimme Sie eie Zahl N N so, dass x ε für alle N gilt, we a) ε 0, b) ε 00 ist. Aufgabe

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen Regressio Dieser Text rekapituliert die i der Aalsis ud Statistik wohlbekate Methode der kleiste Quadrate, auch Regressio geat, zur Bestimmug vo Ausgleichsgerade Regressiosgerade ud allgemei Ausgleichpolome.

Mehr

3 Die Außenfinanzierung durch Fremdkapital (Kreditfinanzierung)

3 Die Außenfinanzierung durch Fremdkapital (Kreditfinanzierung) 3 Die Außefiazierug durch Fremdkapital (Kreditfiazierug) 3.1 Die Charakteristika ud Forme der Kreditfiazierug Aufgabe 3.1: Idealtypische Eigeschafte vo Eige- ud Fremdkapital Stelle Sie die idealtypische

Mehr

Perkolation (WS 2014) Übungsblatt 2

Perkolation (WS 2014) Übungsblatt 2 Istitut für Stochasti Prof. Dr. G. Last Dipl.-Math. S. Ziesche Perolatio WS 04 Übugsblatt Aufgabe Zeige Sie für T, dass θ 0 p ud χ 0 p stetig auf [0, ] sid, we ma als Wertebereich R + { } zulässt. Lösug:

Mehr

VAIO-Link Kundenservice Broschüre

VAIO-Link Kundenservice Broschüre VAIO-Lik Kudeservice Broschüre Wir widme us jedem eizele Kude mit der gebührede Aufmerksamkeit, mit großer Achtug ud Respekt. Wir hoffe damit, de Erwartuge jedes Eizele a das VAIO-Lik Kudeservice-Zetrum

Mehr

Wahrscheinlichkeitsrechnung & Statistik - Ergänzung zum Skript

Wahrscheinlichkeitsrechnung & Statistik - Ergänzung zum Skript Wahrscheilichkeitsrechug & Statistik - Ergäzug zum Skript Prof. Schweizer 9. Oktober 008 Mitschrift: Adreas Steiger Warug: Wir sid sicher dass diese Notize eie Mege Fehler ethalte. Betrete der Baustelle

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Lösungsskizzen Mathematik für Informatiker 6. Aufl. Kapitel 4 Peter Hartmann

Lösungsskizzen Mathematik für Informatiker 6. Aufl. Kapitel 4 Peter Hartmann Lösugssizze Mathemati für Iformatier 6. Aufl. Kapitel 4 Peter Hartma Verstädisfrage 1. We Sie die Berechug des Biomialoeffiziete mit Hilfe vo Satz 4.5 i eiem Programm durchführe wolle stoße Sie schell

Mehr

Positiv denken! Lösungen

Positiv denken! Lösungen Schülerzirkel Mathematik Fakultät für Mathematik. Uiversität Regesburg Positiv deke! Lösuge Aufgabe 1 (GMAMQM (ur für die Klasse 7/8) [ Pukte]). Seie a, b reelle Zahle. 1. Sei a 0 ud b 0. Zeige, dass a

Mehr

LV "Grundlagen der Informatik" Programmierung in C (Teil 2)

LV Grundlagen der Informatik Programmierung in C (Teil 2) Aufgabekomplex: Programmiere i C (Teil vo ) (Strukturierte Datetype: Felder, Strukture, Zeiger; Fuktioe mit Parameterübergabe; Dateiarbeit) Hiweis: Alle mit * gekezeichete Aufgabe sid zum zusätzliche Übe

Mehr