Beschreibende Statistik Kenngrößen in der Übersicht (Ac)

Größe: px
Ab Seite anzeigen:

Download "Beschreibende Statistik Kenngrößen in der Übersicht (Ac)"

Transkript

1 Beschreibede Statistik Kegröße i der Übersicht (Ac) Im folgede wird die Berechugsweise des TI 83 (sowie vo SPSS, s. ute) verwedet. Diese geht auf eie Festlegug vo Moore ud McCabe (00) zurück. I der Literatur existiere isbesodere für die Berechug der Quartile Q1 ud Q3 (s.u.) och gaz adere Formel. Zum Beispiel reche EXCEL ud das NRW-Schulportal Lear-lie ach eier Methode vo Joh W. Tukey (1983; Begrüder der Explorative Dateaalyse)! Gegebe sei eie Liste x(i) vo Date. Eie ugeordete Liste muss zuächst sortiert werde. U.a. werde jeweils 5 Kezahle ermittelt: xmi, xmax, med, Q1, Q3 ( siehe Erläuterug ute). Beispiel 1 mit =9: xmi=1 Q1=,5 med=3 Q3=4,5 xmax=6 Beispiel mit =10: xmi=0 Q1= med=5 Q3=8 xmax=9 Ersichtlich gibt es Uterschiede i der Behadlug bei gerade ud ugerade! 1) Formel zur Berechug der Kegröße (mit dem TI 83): Die Spaweite (Rage): Differez zwische Miimum ud Maximum der Liste rage = xmax xmi Im Beispiel 1: rage = 6-1= 5 Bei de folgede 3 Kegröße ka es vorkomme, dass der Listeidex zwische gaze Zahle liegt, z.b. x(6,5). Es muss da das arithm. Mittel verwedet werde. x(6,5) x ( 6) + x(7). Der Zetralwert (Media oder med): Der Wert i der Mitte der sortierte Liste + 1 med = x Im Beispiel 1: med = x(5) = 3

2 Das erste (utere) Quartil Q1: Adere Defiitio: Q1 gibt de obere Bereich des erste Viertels der Liste a. Q1 ist der Media der liks vo med liegede Liste ugerade: Q1 = x gerade: Q1 = x Im Beispiel 1: Q1 = x(,5) = =,5 Das dritte (obere) Quartil Q3: Adere Defiitio: Q3 gibt de obere Bereich des dritte Viertels der Liste a. Q3 ist der Media der rechts vo med liegede Liste: ugerade: Q3 = x gerade: Q3 = x Im Beispiel 1: Q3 = x(7,5) = =4,5 Der Iterquartilsabstad IQR (iterquartile rage) : IQR = Q3-Q1 Im Beispiel 1: IQR = 4,5,5 = Wichtig: Im IQR (zwische Q1 ud Q3) liegt geau die Hälfte aller Date! Begrüdug? Ausreißer: Ei Wert, der mehr als das 1,5-fache des IQR vo de Quartile abweicht. Wie fidet ma Ausreißer? Ma defiiert ei Itervall [z u ; z o ] = [Q1-1,5*IQR ; Q3 + 1,5*IQR] Liegt ei Wert der Liste außerhalb dieses Bereichs, so ist er ei Ausreißer. Im Beispiel 1 ist das Itervall [-0,5 ; 7,5]. Es gibt dort also keie Ausreißer. Die Quatile: Der Begriff Quatil ist ei Oberbegriff bzgl. Quartil ud Media. Quatile = Pukte eier ach Rag oder Größe geordete Dateliste. Z.B. gibt das 0,35-Quatil die Obergreze für 35% der utere geordete Liste a. Beispiel für =8 : x(1) x() x(3) x(4) x(5) x(6) x(7) x(8) Das 0,-Quatil ist x()=4. Das 0,5-Quatil(Media) ist x(4,5)=5,5. Mögliche Formel (vo Ac): Das p-quatil (0<p<1) besitzt de Wert x( [( + 1) p) ] ) + x( [( + 1) p) ] + 1), falls frac((+1)p) = 0,5 [] = Gaußklammerfuktio x( roud(( + 1) p) ), falls frac((+1)p) 0,5 Diese Formel sid icht immer ( aber häufig) kompatibel zur Quartilsdefiitio (Q1,Q3) des TI 83! Markus Paul gibt für das p-quatil folgede Berechuge a (vermutlich ach Tukey bzw: EXCEL): x( p) + x( p + 1), falls p gazzahlig x([ p+1]), falls p icht gazzahlig

3 Die Perzetile: Spezialfall der Quatile. Pukte, welche die Obergreze für die Hudertstel (q%) der utere geordete Liste agebe. Arithmetischer Mittelwert (mea): x = x( 1) + x() x( ) Stadardabweichug (stadard deviatio) ud Variaz: Erst wird die Variaz V(x) als mittlere Abweichug der Quadrate vom Mittelwert gebildet. ( x(1) + ( x() ( x( ) V(x) = Da ist die Stadardabweichug σ ( σ x beim TI 83) die Wurzel aus der Variaz: ( x(1) + ( x() ( x( ) σ = Achtug: I der Praxis verwedet ma bei Date eher ei aderes Sigma, ämlich σ 1 (Sx beim TI83 ). Bei diesem wird i der Wurzel durch (-1) statt durch dividiert! Deoch hat auch σ z.b. bei theor. Verteiluge seie Berechtigug. Vorteile des Medias gegeüber dem arith.mittel sowie des IQRs geg. der Stadardabweichug: Media ud IQR sid uempfidlich gegeüber Ausreißer ud uzuverlässige Messuge oder Übertragugsfehler, weil sie keie Gewichtug der Date vorehme!!

4 ) Grafische Darstellug vo Datereihe: 18 A) Boxplot (Box-Whisker-Plot): 16 Der Boxplot stellt die Kegröße 14 mittels eier Box dar. 1 Willkürliches Beispiel: Es gelte da: 8 xmi= xmax=1 med=5 Q1=4 Q3=7 IQR=3 6 ( modifizierter Boxplot ) 4 xmi Q1 med Q3 uterer Whisker oberer Whisker Ausreißer xmax -4 Whisker (Schurrbarthaare) sid beim ormale Boxplot die Verbidugsliie vo Q1 zu xmi sowie vo Q3 zu xmax. -6 Beim modifizierte Boxplot (siehe Grafik obe) ka es aber vorkomme, dass die Whisker eie der Radpukte oder gar -8 beide Radpukte (xmi, xmax) icht erreiche, weil Ausreißer immer außerhalb des Bereichs der Whisker gezeichet werde. Geauer: I obiger Grafik gilt IQR = 3 ud somit 1,5 IQR = 4,5. Das für de Ausschluss vo Ausreißer zu betrachtede Itervall ist [ Q1-1,5 IQR ; 7+1,5 IQR]. Setzt ma die etsprechede Zahle ei, so erhält ma das Itervall [ -0,5 ; 11,5 ]. xmi = liegt ierhalb dieses Itervalls, ist also kei Ausreißer. xmax = 1 liegt außerhalb dieses Itervalls ud ist demach ei Ausreißer! Aus diesem Grude schließt der obere Whisker die Zahl 1 icht ei, soder er erstreckt sich vo Q3 bis zum letzte Wert, der och ierhalb des Itervalls [ -0,5 ; 11,5 ] liegt. I diesem Fall ist das die Zahl 10. Whisker ud IQR sid Bereiche, keie Pukte. Im IQR liege 50% aller Date, im Bereich zwische xmi ud Q1 sowie Q3 ud xmax liege ochmals je 5% aller Date. Geauso wie bei de Quartile gibt es für die Defiitio der Lage der Whisker i der Literatur verschiedee Möglichkeite. IQR Darstellug mit dem TI83. Modifizierter Boxplot (mit Ausreißer) ud ormaler Boxplot im Vergleich:

5 Boxplots mit dem TI 83 Zuächst ochmal das eiführede Beispiel : Dies ist ei ormaler Boxplot (Type 5). Mögliche Ausreißer würde hier icht gezeichet! Die Kezahle köe mit TRACE abgefragt werde ( siehe Bild 3 obe). Alterativ köe sie auch mittels STAT CALC 1-Var Stats ausgegebe werde (Bilder ute). Ei weiteres Beispiel, diesmal werde absolute Häufigkeite i L mitverwedet. Im Statplot bei Freq de Wert L ( statt 1) eitrage! Zuerst der ormale Boxplot: Verwedet ma zusätzlich de modifizierte Boxplot (Type 4), so köe Ausreißer agezeigt werde. Hier ist das der Wert 9. Der Whisker geht da rechts ur och bis zu x=5. Dies ist der letze Wert der um de Ausreißer gekürzte Liste. Ohe GTR fidet ma bei diesem eifache Beispiel die Kezahle ebefalls mühelos: Betrachte die sortierter Liste: Ablese: xmi=1 xmax=9 med=3 Q1= Q=4 IQR= 1,5*IQR=3 Das durch 1,5*IQR defiierte Itervall zum Ausschluss der Ausreißer ist da [ -1;7]. Da 9 icht i diesem Bereich liegt ist es ei Ausreißer ud somit geht der obere Whisker ur bis 5.

6 Wozu diee Boxplots? Vergleich zweier Datesätze: Die Schüler der Klasse 9a ud 9b gebe die Etferug (i km) ihres Wohortes zur Schule a: 9a: b: Aufgabe: Orde die Liste ud bestimme die Kezahle. Vergleiche mit de Ergebisse des TI 83. Hiweis: Die zweite Statistik erhält ma mittels STAT CALC 1-Var Stats L ENTER. Schlussfolgeruge aus de Ergebisse: - Die 9b woht im Schitt äher a der Schule - I der 9b hat die Hälfte höchstes 7 km Schulweg, i der 9a höchstes 11 km - Ei Viertel der 9b woht höchstes km vo der Schule etfert, i der 9a sid es höchstes 5 km - Keie Uterschiede gibt es beim kürzeste bzw. lägste Schulweg der beide Klasse

7 B) Histogramme: Das sid Rechtecke, dere Fläche proportioal zur klassespezifische Häufigkeit sid. Die Breite der Rechtecke (Klassebreite!) ka variabel sei, was aber der TI83 icht beherrscht. Beispiel vo obe : Wohortetferug vo Schüler: Ma gibt am beste für jede Klasse Liste ei, ud zwar die jeweilige Etferug ud die dazugehörige Häufigkeit (Azahl der Schüler mit dieser Etferug). Für die 9a ist das z.b. Etf / km Azahl Teilt ma u die Etferuge i Klasse der Breite 5km ei, so erhält ma eie eue Liste mit der Klassebreite 5, bei der die Rechtecksfläche der Azahl (Häufigkeit) etspreche. Folglich ergibt sich die jeweilige Rechteckshöhe aus Fläche / Klassebreite = Azahl / Klassebreite! Etferug i km [ > a ; b ] Azahl [ 0 ; 5 ] 8 1,6 [ 5 ; 10 ] 7 1,4 [ 10 ; 15 ] 3 0,6 [ 15 ; 0 ] 7 1,4 [ 0 ; 5 ] 6 1, Rechteckshöhe = Azahl / 5 Korrekt dargestelltes Histogramm (mit KarloPlot) Histogramm mit TI83: km i L1, Azahl i L Eistelluge wie liks: mit Xscl=5 Xmax=31 Ymax=9 Ma erket, dass - die Rechteckshöhe icht a die Fläche agepasst werde, - isgesamt 6 Rechtecke statt 5 etstehe. Offesichtlich ist der TI83 icht für Histogramme geeiget.

8 C) Weitere gebräuchliche grafische Darstelluge Außer de Histogramme sid och gebräuchlich: Stägel-Blatt-Diagramm, Stabdiagramm, Häufigkeitspolygo, Kreisdiagramm (Torte-), Puktdiagramm(Scatter). Der TI 83 bietet hiervo ur Histogramm, Scatter ud Häufigkeitspolygo. D) Speziellere grafische Möglichkeite: Normal-Quatil-Plot: Sid die erhobee Date aäherd ormalverteilt? Um dies zu etscheide, ka über das Histogramm die Normalverteilugskurve mit etsprechedem Mittelwert ud Stadardabweichug gelegt werde. I der explorative Dateaalyse jedoch verwedet ma Normal-Quatil-Plots. Hierbei werde die Quatile der Häufigkeitsverteilug mit etsprechede Quatile der Stadardormalverteilug vergliche. Liege die Pukte auf eier Gerade, so spricht das für eie aäherde Normalverteilug. Der TI 83 bietet hierfür de Plot-Type 6. Eie geauere Betrachtug ist achzulese bei Markus Paul (T^3 Europe): Beschreibede Statistik ud explorative Dateaalyse

9 3) Amerkuge zu aderer Software: 3.1) EXCEL u.a. bereche ach der Tukey-Methode die Quartile folgedermaße: Q1 = x ud Q3 = x [z] ist die sog. Gaußklammerfuktio ( größte gaze Zahl z ) Bei dieser Methode wird bei ugeradem der med-wert i der Teiliste liks (bzw. rechts) mitgezählt! Bei geradem ist die Methode idetisch mit derjeige des TI ) Mehrere Softwarepakete zeiche Boxplots vertikal statt horizotal ( siehe Grafik) oder sie biete beide Darstellugsmöglichkeite. 3.3) Die Läge der Whisker im modifizierte Boxplot wird sehr uterschiedlich gehadhabt: a) maximal bis zum 1,5-fache IQR-Abstad vo der Box; falls xmax bzw. xmi kleier als dieser Abstad ist, da bis zu xmax bzw. xmi b) geau bis zum 0,05- bzw. 0,95-Quatil. c) geau bis zum 0,05- bzw. 0,975-Quatil. 3.4) Gägige Statistik-Software-Pakete (kommerziell) sid: - Fathom - Miitab - S-Plus - SPSS Meist erfordert diese Software eie icht ubeträchtliche Eiarbeitugszeit. Es gibt aber auch freie (oder sehr preisgüstige) Pakete: - Statistik-Labor(FU Berli) - VU-Statistik (Verlag Schroedel) - Calc3D (außer Statistik och weitere Theme) - usw. - GrafStat

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert Deskriptive Statistik dimesioale Date Date ud Häufigkeite Seite Nomial Ordial Metrisch (Kardial Metrisch klassiert Beschreibug: Date habe keie atürliche Reihefolge. Bsp: Farbe, Religio, Geschlecht, Natioalität...

Mehr

3. Einführung in die Statistik

3. Einführung in die Statistik 3. Eiführug i die Statistik Grudlegedes Modell zu Date: uabhägige Zufallsgröße ; : : : ; mit Verteilugsfuktio F bzw. Eizelwahrscheilichkeite p ; : : : ; p r i de Aweduge: kokrete reale Auspräguge ; : :

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

Univariate Verteilungen

Univariate Verteilungen (1) Aalyse: "deskriptive Statistike" Aalysiere -> deskriptive Statistike -> deskriptive Statistik Keie tabellarische Darstellug der Häufigkeitsverteilug () Aalyse: "Häufigkeitsverteilug" Aalysiere -> deskriptive

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Parameter von Häufigkeitsverteilungen

Parameter von Häufigkeitsverteilungen Kapitel 3 Parameter vo Häufigkeitsverteiluge 3. Mittelwerte Mo Der Modus (:= häufigster Wert, Abk.: Mo) ist der Merkmalswert mit der größte Häufigkeit, falls es eie solche gibt. Er sollte ur bei eigipflige

Mehr

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte.

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte. Statistik Vorlesug,. ärz, Statistische aßzahle Iformatio zu verdichte, Besoderheite hervorzuhebe ittelwerte Aufgabe: die Lage der Verteilug auf der Abszisse zu zeige. Der odus: derjeige Wert, der im Häufigste

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

Weitere Lagemaße: Quantile/Perzentile II. Weitere Lagemaße: Quantile/Perzentile I. Weitere Lagemaße: Quantile/Perzentile IV

Weitere Lagemaße: Quantile/Perzentile II. Weitere Lagemaße: Quantile/Perzentile I. Weitere Lagemaße: Quantile/Perzentile IV 3 Auswertug vo eidimesioale Date Lagemaße 3.3 Weitere Lagemaße: Quatile/Perzetile I 3 Auswertug vo eidimesioale Date Lagemaße 3.3 Weitere Lagemaße: Quatile/Perzetile II Für jede Media x med gilt: Midestes

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Kennwerte Univariater Verteilungen

Kennwerte Univariater Verteilungen Kewerte Uivariater Verteiluge Kewerte Beschreibug vo Verteiluge durch eie (oder weige) Werte Werde auch als Parameter oder Maße vo Verteiluge bezeichet Ma uterscheidet: Lagemaße oder auch Maße der zetrale

Mehr

Formelsammlung. zur Klausur. Beschreibende Statistik

Formelsammlung. zur Klausur. Beschreibende Statistik Formelsammlug zur Klausur Beschreibede Statistik Formelsammlug Beschreibede Statistik. Semester 004/005 Statistische Date Qualitative Date Nomial skalierte Merkmalsauspräguge (Uterscheidugsmerkmale) köe

Mehr

Linsengesetze und optische Instrumente

Linsengesetze und optische Instrumente Lisegesetze ud optische Istrumete Gruppe X Xxxx Xxxxxxxxx Xxxxxxx Xxxxxx Mat.-Nr.: XXXXX Mat.-Nr.: XXXXX XX.XX.XX Theorie Im olgede werde wir eie kurze Überblick über die Fuktio, de Aubau ud die Arte vo

Mehr

Statistik Einführung // Beschreibende Statistik 2 p.2/61

Statistik Einführung // Beschreibende Statistik 2 p.2/61 Statistik Eiführug Beschreibede Statistik Kapitel Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Beschreibede Statistik

Mehr

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen.

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen. 3. Variazaalyse Die Variazaalyse mit eier quatitative abhägige Variable ud eier oder mehrerer qualitativer uabhägiger Variable wird auch als ANOVA (Aalysis of Variace) bezeichet. Mit eier Variazaalyse

Mehr

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie Streuugsmaße Istitut für Geographie Streuugswerte (Streuugsmaße) Die Diskussio um die Mittelwerte hat die Vorteile dieser statistische Kewerte gezeigt, aber bereits, isbesodere beim arithmetische Mittel,

Mehr

Inhaltsverzeichnis Office Excel 2003 - Themen-Special: Statistik I

Inhaltsverzeichnis Office Excel 2003 - Themen-Special: Statistik I W-EX2003S Autor: Christia Müster Ihaltliches Lektorat: Peter Wies Überarbeitete Ausgabe vom 23. Mai 2007 by HERDT-Verlag für Bildugsmedie GmbH, Bodeheim Microsoft Office Excel 2003 für Widows Theme-Special:

Mehr

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3 INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

Statistische Formelsammlung Begleitende Materialien zur Statistik - Vorlesung des Grundstudiums im Fachbereich IK

Statistische Formelsammlung Begleitende Materialien zur Statistik - Vorlesung des Grundstudiums im Fachbereich IK Statistische Formelsammlug Begleitede Materialie zur Statistik - Vorlesug des Grudstudiums im Fachbereich IK Erstellt im Rahme des studierede Projektes PROST Studiejahr 00/00 uter Aleitug vo Frau Prof.

Mehr

Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung

Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK Physikalische Prozesse, die eier statistische Gesetzmäßigkeit uterworfe sid, lasse sich mit eier Verteilugsfuktio beschreibe. Die Gauß-Verteilug

Mehr

Übersicht: BS - 08 BS Häufigkeitsverteilung. Häufigkeitsverteilungen. Parametrisierung. unklassiert. eindimensional. klassiert.

Übersicht: BS - 08 BS Häufigkeitsverteilung. Häufigkeitsverteilungen. Parametrisierung. unklassiert. eindimensional. klassiert. Übersicht: eidimesioal mehrdimesioal Häufigkeitsverteilug uklassiert klassiert tabellarische Darstellug Modul 07, graphische Darstellug Modul 07,2 Parametrisierug Lageparameter Modul 08 Streuugsparameter

Mehr

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT Qualitätskezahle für IT-Verfahre i der öffetliche Verwaltug Lösugsasätze zur Vo Stefa Bregezer Der Autor arbeitet im Bereich Softwaretest ud beschäftigt sich als Qualitätsbeauftragter mit Theme zu Qualitätssicherug

Mehr

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE Versuch 3/ NEWTONSCHE INTERFERENZRINGE Blatt NEWTONSCHE INTERFERENZRINGE Die Oberfläche vo Lise hat im allgemeie Kugelgestalt. Zur Messug des Krümmugsradius diet das Sphärometer. Bei sehr flacher Krümmug

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung MaMaEuSch Maagemet Mathematics for Europea Schools http://www.mathematik.uikl.de/ mamaeusch Grudgesamtheitsaaylse ud Stichprobe. Betrachtuge zur Stichprobefidug Paula Lagares Justo Puerto 1 MaMaEuSch 2

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

Empirische Methoden I

Empirische Methoden I Hochschule für Wirtschaft ud 2012 Umwelt Nürtige-Geislige Fakultät Betriebswirtschaft ud Iteratioale Fiaze Prof. Dr. Max C. Wewel Prof. Dr. Corelia Niederdrek-Felger Aufgabe zum Tutorium Empirische Methode

Mehr

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung .3. Prozetuale Häufigkeitsverteilug (HV) Die prozetuale Häufigkeitsverteilug erlaubt de Vergleich vo Auswertuge, dee uterschiedliche Stichprobegröße zugrude liege. Es köe auch uterschiedliche Stichprobegröße

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen LGÖ Ks VMa Schuljahr 6/7 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Eperte 8 Polyomgleichuge ud -ugleichuge

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

elektr. und magnet. Feld A 7 (1)

elektr. und magnet. Feld A 7 (1) FachHochschule Lausitz Physikalisches Praktikum α- ud β-strahlug im elektr. ud maget. Feld A 7 Name: Matrikel: Datum: Ziel des Versuches Das Verhalte vo α- ud β-strahlug im elektrische ud magetische Feld

Mehr

2.2.1 Lagemaße. Exkurs: Quantile. und n. p n

2.2.1 Lagemaße. Exkurs: Quantile. und n. p n Ekurs: Quatile Ausgagspukt : Geordete Urliste Jeder Wert p, mit 0 < p

Mehr

Aufgaben zur vollständigen Induktion

Aufgaben zur vollständigen Induktion c 7 by Raier Müller - Aufgabe zur vollstädige Idutio We ichts aderes agegebe ist, da gelte die Behauptuge für IN {; ; ;...}. A) Teilbareit: ) ist gerade (d.h. durch teilbar). ) ist durch teilbar. ) ist

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Domiik Faas Stochastik Witersemester 00/0 Klausur vom 7.0.0 Aufgabe 3+.5+.5=6 Pukte Bei eier Umfrage wurde 60 Hotelbesucher ach ihrer Zufriedeheit

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Dritter Zirkelbrief: Ungleichungen

Dritter Zirkelbrief: Ungleichungen Matheschülerzirkel Uiversität Augsburg Schuljahr 014/015 Dritter Zirkelbrief: Ugleichuge Ihaltsverzeichis 1 Grudlage vo Ugleichuge 1 Löse vo Ugleichuge 3 3 Mittel 4 4 Mittelugleichuge 5 5 Umordugsugleichug

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert. Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

Konfidenzintervall_fuer_pi.doc Seite 1 von 6. Konfidenzintervall für den Anteilswert π am Beispiel einer Meinungsumfrage

Konfidenzintervall_fuer_pi.doc Seite 1 von 6. Konfidenzintervall für den Anteilswert π am Beispiel einer Meinungsumfrage Kofidezitervall_fuer_pi.doc Seite 1 vo 6 Kofidezitervall für de Ateilswert π am Beispiel eier Meiugsumfrage Nach eier Meiugsumfrage der Wochezeitug Bezirksblatt vom März 005, ei halbes Jahr vor de Ladtagswahle

Mehr

Löslichkeitsdiagramm. Grundlagen

Löslichkeitsdiagramm. Grundlagen Grudlage Löslichkeitsdiagramm Grudlage Zur etrachtug des Mischugsverhaltes icht vollstädig mischbarer Flüssigkeite, das heißt Flüssigkeite, die sich icht bei jeder Temperatur i alle Megeverhältisse miteiader

Mehr

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst. Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere

Mehr

Statistik. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.html

Statistik. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.html Statistik Prof. Dr. K. Melzer kari.melzer@hs-esslige.de http://www.hs-esslige.de/de/mitarbeiter/kari-melzer.html Ihaltsverzeichis 1 Eileitug ud Übersicht 3 2 Dategewiug (kurzer Überblick) 3 2.1 Plaugsphase

Mehr

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern Modrago Formel Herleitug, Azahl Quadrate ud Differeze 01.doc 1 FormelfürdieAzahlmöglicherQuadrateauf*Spielfelder Mit Erläuteruge zur Ableitug der Formel vo Dr. Volker Bagert Berli, 11.03.010 Ihaltsverzeichis

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares 4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier Der atürliche Werkstoff Holz - Statistische Betrachtuge zum uiaxiale Zugversuch am Beispiel vo Furier B. Bellair, A. Dietzel, M. Zimmerma, Prof. Dr.-Ig. H. Raßbach Zusammefassug FH Schmalkalde, 98574 Schmalkalde,

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

Klasse: Platzziffer: Punkte: / Graph zu f

Klasse: Platzziffer: Punkte: / Graph zu f Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25

Mehr

5.7. Aufgaben zu Folgen

5.7. Aufgaben zu Folgen 5.7. Aufgabe zu Folge Aufgabe : Lieares ud beschräktes Wachstum Aus eiem Quadrat mit der Seiteläge dm gehe auf die rechts agedeutete Weise eue Figure hervor. Die im -te Schritt agefügte Quadrate sid jeweils

Mehr

Behandlung von Messunsicherheiten (Fehlerrechnung)

Behandlung von Messunsicherheiten (Fehlerrechnung) Behadlug vo Messusicherheite (Fehlerrechug). Ermittlug vo Messusicherheite. Messug ud Messusicherheit Die Messug eier physikalische Größe erfolgt durch de Vergleich dieser Größe mit eier Bezugseiheit ach

Mehr

Klausur 1 über Folgen

Klausur 1 über Folgen www.mathe-aufgabe.com Klausur über Folge Hiweis: Der GTR darf für alle Aufgabe eigesetzt werde. Aufgabe : Bestimme eie explizite ud eie rekursive Darstellug! a) für eie arithmetische Folge mit a = 6, ;

Mehr

Einführung in die Grenzwerte

Einführung in die Grenzwerte Eiführug i die Grezwerte Dieser Text folgt hauptsächlich der Notwedigkeit i sehr kurzer Zeit eie Idee ud Teile ihrer Awedug zu präsetiere, so dass relativ schell mit dieser Idee gerechet werde ka. Der

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

Kursthemen 5. Sitzung. Lagemaße

Kursthemen 5. Sitzung. Lagemaße Kurstheme 5. Sitzug Folie I - 5 - Lagemaße A) Arithmetisches Mittel (AM), Media ud Modus (Folie 2 bis 8) A) Arithmetisches Mittel (AM), Media ud Modus (Folie 2 bis 8) B) Der Additiossatz für AM (Folie

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

1. Zahlenfolgen und Reihen

1. Zahlenfolgen und Reihen . Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,

Mehr

LV "Grundlagen der Informatik" Programmierung in C (Teil 2)

LV Grundlagen der Informatik Programmierung in C (Teil 2) Aufgabekomplex: Programmiere i C (Teil vo ) (Strukturierte Datetype: Felder, Strukture, Zeiger; Fuktioe mit Parameterübergabe; Dateiarbeit) Hiweis: Alle mit * gekezeichete Aufgabe sid zum zusätzliche Übe

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Transformator. n Windungen

Transformator. n Windungen echische iversität Dresde stitut für Ker- ud eilchephysik R. Schwierz V/5/29 Grudpraktikum Physik Versuch R rasformator rasformatore werde i viele ereiche der Elektrotechik ud Elektroik eigesetzt. Für

Mehr

Kunde. Kontobewegung

Kunde. Kontobewegung Techische Uiversität Müche WS 2003/04, Fakultät für Iformatik Datebaksysteme I Prof. R. Bayer, Ph.D. Lösugsblatt 4 Dipl.-Iform. Michael Bauer Dr. Gabi Höflig 17.11. 2003 Abbildug E/R ach relatioal - Beispiel:

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004) Aufgabe 7. Ubeschräktes

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

"Ich glaube nur die Statistik, die ich selbst gefälscht habe."

Ich glaube nur die Statistik, die ich selbst gefälscht habe. THEORETISCHE GRUNDLAGEN I der Biophysik versuche wir biologische Vorgäge mit physikalische Methode zu utersuche ud zu verstehe. Wir setze dabei voraus, dass biologische Größe quatitativ gemesse ud mit

Mehr

1. Goldener Schnitt Pascalsches Dreieck

1. Goldener Schnitt Pascalsches Dreieck 1 Goldeer Schitt Pascalsches Dreieck 1 1 Goldeer Schitt Pascalsches Dreieck 11 Fiboacci-Zahle Fiboacci 1 oder mit richtigem Name Leoardo vo Pisa war ei bedeuteder Mathematiker Er lebte im 12 Jahrhudert

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Methodelehre e e Prof. Dr. G. Meihardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstude jederzeit ach Vereibarug ud ach der Vorlesug. Mathematische ud statistische Methode I Dr. Malte Persike persike@ui-maiz.de

Mehr

Kapitel 5: Schließende Statistik

Kapitel 5: Schließende Statistik Kapitel 5: Schließede Statistik Statistik, Prof. Dr. Kari Melzer 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n, f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

Aufgaben und Lösungen der Probeklausur zur Analysis I

Aufgaben und Lösungen der Probeklausur zur Analysis I Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

(8) FOLGEN und REIHEN

(8) FOLGEN und REIHEN Folge ud Reihe ÜBUNGEN Bestimme die gegeseitige Lage der Ebee ud gib die gemeisame Pukte bzw. Gerade a. x+4y - 6z= x + y - z = 4x - 4y+4z=0 x + y z = 0 x - y+z = x + y + z = x+y -5z= 4x - 7y+z= -x+y -z=8

Mehr

Analysis ZAHLENFOLGEN Teil 4 : Monotonie

Analysis ZAHLENFOLGEN Teil 4 : Monotonie Aalysis ZAHLENFOLGEN Teil 4 : Mootoie Datei Nr. 40051 Friedrich Buckel Juli 005 Iteretbibliothek für Schulmathematik Ihalt 1 Eiführugsbeispiele 1 Mootoie bei arithmetische Folge Defiitioe 3 3 Welche Beweistechik

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

1.2. Taylor-Reihen und endliche Taylorpolynome

1.2. Taylor-Reihen und endliche Taylorpolynome 1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg

Mehr

x 2 + 2 m c Φ( r, t) = n q n (t) φ n ( r) (5) ( + k 2 n ) φ n ( r) = 0 (6a)

x 2 + 2 m c Φ( r, t) = n q n (t) φ n ( r) (5) ( + k 2 n ) φ n ( r) = 0 (6a) Quatisierug eies skalare Feldes Das Ziel ist eigetlich das elektromagetische Feld zu quatisiere, aber wie ma scho a de MAXWELLsche Gleichuge sehe ka, ist es zu kompliziert, um damit zu begie. Außerdem

Mehr

Stichproben im Rechnungswesen, Stichprobeninventur

Stichproben im Rechnungswesen, Stichprobeninventur Stichprobe im Rechugswese, Stichprobeivetur Prof Dr Iree Rößler ud Prof Dr Albrecht Ugerer Duale Hochschule Bade-Württemberg Maheim Im eifachste Fall des Dollar-Uit oder Moetary-Uit Samplig (DUS oder MUS-

Mehr

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH peter.uruh@src-gmbh.de Eileitug Biometrische Systeme werde durch zwei wichtige

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

6.6 Grundzüge der Fehler- und Ausgleichsrechnung 6.6.1 Fehlerarten- Aufgaben der Fehler- und Ausgleichsrechnung physikalisch-technische Experiment

6.6 Grundzüge der Fehler- und Ausgleichsrechnung 6.6.1 Fehlerarten- Aufgaben der Fehler- und Ausgleichsrechnung physikalisch-technische Experiment 103 66 Grudzüge der Fehler- ud Ausgleichsrechug 661 Fehlerarte- Aufgabe der Fehler- ud Ausgleichsrechug Jedes physikalisch-techische Experimet liefert gewisse gemessee Werte x Bei dem Messvorgag verwede

Mehr

Einführung in die induktive Statistik. Inferenzstatistik. Konfidenzintervalle. Friedrich Leisch

Einführung in die induktive Statistik. Inferenzstatistik. Konfidenzintervalle. Friedrich Leisch Spiel Körpergröße Zahl: Azahl weiblich Eiführug i die iduktive Statistik Friedrich Leisch Istitut für Statistik Ludwig-Maximilias-Uiversität Müche Tafelgruppe 8.5 8.6 8.7 8.8 8.9 9.0 9.1 4 5 3 2 1 0 1

Mehr

1 = 1. 6 Induktionsannahme: Die Formal gelte für n = k. Induktionsschritt: Gültigkeit der Formel für k+1: 1 2 + 2 2 +... + k 2 + (k + 1) 2 = 2 = 6 = 6

1 = 1. 6 Induktionsannahme: Die Formal gelte für n = k. Induktionsschritt: Gültigkeit der Formel für k+1: 1 2 + 2 2 +... + k 2 + (k + 1) 2 = 2 = 6 = 6 65 Eric Müller Vollstädige Iduktio Nach GIUSEPPE PEANO (858-93) ka ma die Mege N der atürliche Zahle durch folgede Axiome defiiere []:. ist eie atürliche Zahl.. Zu jeder atürliche Zahl gibt es geau eie

Mehr

Übungen mit dem Applet Fourier-Reihen

Übungen mit dem Applet Fourier-Reihen Fourier-Reihe 1 Übuge mit dem Applet Fourier-Reihe 1 Mathematischer Hitergrud... Übuge mit dem Applet... 3.1 Eifluss der Azahl ud der Sprugstelle...3. Eifluss vo y-verschiebug ud Amplitude...4.3 Eifluss

Mehr

Zählterme (Seite 1) Aufgabe: Wie viele Nummernschilder kann es theoretisch im Raum Dresden geben? Wann müsste die 4.Ziffer eingeführt werden?

Zählterme (Seite 1) Aufgabe: Wie viele Nummernschilder kann es theoretisch im Raum Dresden geben? Wann müsste die 4.Ziffer eingeführt werden? Bemerkug: I Mathematik sollte ma keie Fahrpläe verwede, i der Stochastik erst recht icht. Zitat vo S.L. Das Baumdiagramm ist aber fast immer ei geeigetes Hilfsmittel. Produktregel Aufgabe: Wie viele Nummerschilder

Mehr

Informatik II Dynamische Programmierung

Informatik II Dynamische Programmierung lausthal Iformatik II Dyamische Programmierug. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Zweite Techik für de Algorithmeetwurf Zum Name: "Dyamische " hat ichts mit "Dyamik" zu tu, soder mit

Mehr

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD. ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede

Mehr