Canon Nikon Sony. Deutschland Österreich Schweiz Resteuropa J

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30"

Transkript

1 15 Mtrizenrechnung 15 Mtrizenrechnung 15.1 Mtrix ls Zhlenschem Eine Internetfirm verkuft über einen eigenen Shop Digitlkmers. Es wird jeweils nur ds Topmodel der Firmen Cnon, Nikon und Sony ngeboten. Verkuft wird in die Länder Deutschlnd, Österreich, Schweiz und Resteurop. Die folgenden Tbelle zeigt den Lieferumfng für den Mont Jnur. Cnon Nikon Sony Deutschlnd Österreich Schweiz Resteurop Für weitere Berechnungen mit dem Computer sind nur die Verkufszhlen von Interesse. Verzichtet mn uf die Angbe des Produkt und des Ziellndes und konzentriert sich nur uf ds Wesentlich, hier die Zhlen, dnn erhält mn eine Kurzform des Schems: J Ein solches Zhlenschem bezeichnet mn ls Mtrix. Die obige Mtrix besteht us 4 Zeilen und 3 Splten. Mn bezeichnet sie dher ls 43 Mtrix. Allgemein gilt: Ein Zhlenschem A us Zhlen ij IR mit m Zeilen und n Splten heißt mn Mtrix n... A... mn Ein Mtrix heißt qudrtisch, wenn sie genu so viele Zeilen wie Splten besitzt, d.h. wenn gilt: m n In der Mtrix J unseres Beispiels gilt: W. Strk; Berufliche Oberschule Freising 1

2 15 Mtrizenrechnung 15.2 Rechenregeln für Mtrizen Die Verkufzhlen der verschiedenen Kmertypen für die Länder ist in den Monten Jnur bis November gleich geblieben. Um nun zu berechnen, wie viele Kmers der einzelnen Firmen in die einzelnen Länder letztendlich verkuft wurden, muss die Mtrix J mit der Anzhl der Monte multiplizieren J Multipliktion einer reellen Zhl mit einer Mtrix: Eine mn Mtrix A ij wird mit einer reellen Zhl multipliziert, indem mn lle Mtrixelemente mit der Zhl multipliziert n... A... mn Im Dezember ht sich ds Kufverhlten der Internetkunden ufgrund des Weihnchtsgeschäfts verändert. Für diesen Mont erhält mn nun die Verkufsmtrix D Um nun zu berechnen, wie viele Kmers der einzelnen Firmen in die einzelnen Länder im gesmten Jhr verkuft wurden muss mn obige Mtrix 11 J, mit der Mtrix D ddieren Addition zweier Mtrizen: Zwei mn Mtrizen A ij und B b ij werden ddiert, indem mn die Mtrizenelemente mit gleichem Index ddiert n b11 b... b1n 11 b11 b... 1n b1n... b b... b b b... b A B... mn b b... b mn b b... mn bmn W. Strk; Berufliche Oberschule Freising 2

3 15 Mtrizenrechnung Bemerkungen: Die beiden Mtrizen, die ddiert werden sollen, müssen vom gleichen Typ sein. D.h. die Anzhl ihrer Zeilen und Splten muss übereinstimmen. Die Mtrizenddition ist kommuttiv und ssozitiv. Also gilt: A B B A A B C A B C und Die Differenz zweier Mtrizen berechnet mn in gleicher Weise, nämlich elementweise. Aufgben: 1.0 Gegeben sind die Mtrizen A 0 2 3, Berechnen Sie 3A 2A 5 B C 2A B C 2 A B 3 A B 2 C B und C Multipliktion einer Mtrix mit einem Vektor Eine Firm produziert Türen, Fenster und Vordächer. Dbei durchlufen diese Produkte während ihrer Herstellung drei verschiedene Werkstätten (Schreinerei, Schlosserei, Glserei). Je nch Produkt benötigen die einzelnen Werkstätten unterschiedlich lnge zur Herstellung eines dieser Produkte. Der entsprechende Zeitbedrf je Produkt und Werksttt wird durch folgende Tbelle wiedergegeben. Tür Fenster Vordch Schreinerei Schlosserei Glserei Eine Tür befindest sich lso 9 Stunden in der Schreinerei und 2 Stunden in der Schlosserei. D die Tür kein Fenster ht ist es somit nicht in der Glserei.... Jemnd der ein Hus gebut ht bestellt bei dieser Firm nun 8 Türen, 15 Fenster und 2 Vordächer. Eine solche Bestellung wird oft uch mithilfe eines sogennnten Bestellvektors b beschrieben. Für diesen gilt: W. Strk; Berufliche Oberschule Freising 3

4 15 Mtrizenrechnung 8 b 15 2 Zur besseren Plnung bezüglich der Auslstung der einzelnen Werkstätten ist es nun wichtig zu wissen, wie lnge die einzelnen Werkstätten für diesen Auftrg benötigen. Schreinerei: Schlosserei: Glserei: Dieses Ergebnis erhält mn wenn die Mtrix A (gegeben durch obige Tbelle) mit dem Bestellvektor b multipliziert Ab Den Vektor c 75 nennt mn den Ergebnisvektor. Er sgt us, dss die Schreinerei Stunden, die Schlosserei 75 Stunden und die Glserei 32 Stunden für den Auftrg benötigt. Multipliktion einer Mtrix mit einem Vektor: Eine m n Mtrix A ij wird mit einem Vektor b (mit n Koordinten) multipliziert, indem mn jede Zeile der Mtrix A mit dem Vektor b multipliziert n b1 11 b1 b n bn... b2 b1 b 2... bn Ab... mn b n b1 b 2... mn b n Ds Produkt Ab ist ein Vektor mit m Koordinten. Bemerkungen: Die Multipliktion einer Mtrix A mit einem Vektor b ist nur dnn möglich, wenn die Anzhl der Splten von A mit der Anzhl der Koordinten von b übereinstimmt. Unter der Vorrussetzung, dss die Produkte der Mtrizen mit den Vektoren bildbr sind, gilt für die Mtrizen A, B und für die Vektoren x, y : A B x Ax B x A x y A x A y W. Strk; Berufliche Oberschule Freising 4

5 15 Mtrizenrechnung Aufgben: 2.0 Berechnen Sie Bei einer Ausschreibung bieten drei Firmen A, B und C Tische, Stühle und Aktenschränke nch folgenden Preislisten n. Tisch Stuhl Schrnk Firm A Firm B Firm C Bestimmen Sie, welches Angebot ds günstigste ist, wenn Tische, 15 Stühle und 20 Aktenschränke ngeschfft werden sollen Ds Angebot der Firm A ist mit m günstigsten. Mn könnte bei obigem Beispiel ber uch ndersherum frgen: Wie viele Türen, Fenster und Vordächer können täglich hergestellt werden, wenn die Schreinerei täglich 3 Arbeitsstunden, die Schlosserei 46 Arbeitsstunden und die Glserei 15 Arbeitsstunden zur Verfügung ht. b1 Dzu setzt mn gnz einfch den Bestellvektor b b2 llgemein n und löst ds b 3 Gleichungssystem, welches mn durch folgenden Anstz erhält: b1 3 9b16b2 3 A b b2 46 2b1 3b2 7b b b2 b Lösung: b 7 1 W. Strk; Berufliche Oberschule Freising 5

6 15 Mtrizenrechnung 15.4 Einheitsmtrix Bei der Multipliktion reeller Zhlen gilt: 1 für lle IR D die Zhl 1 bei Multipliktion mit einer Zhl deren Wert nicht ändert nennt mn sie uch ds neutrle Element der Multipliktion. Ein solches neutrles Element gibt es uch bei der Multipliktion einer Mtrix mit einem Vektor. Einheitsmtrix: Die qudrtische nn Mtrix En, bei der uf der Digonlen die Zhl 1, sonst die Zhl 0 steht, heißt Einheitsmtrix (vom Typ n). Die Einheitsmtrix verhält sich neutrl bezüglich der Multipliktion mit einem Vektor x (mit n Koordinten). Es gilt: Ex x Beispiel: x1 x1 E3 x x2 x x 3 x 3 Die Bedeutung der Einheitsmtrix wird sich uns erst im nächsten Abschnitt erschließen. Aufgben: 4.0 Gegeben sind die Mtrizen 2 x 1. Berechnen Sie E A x 4.2 A E x E und A sowie der Vektor W. Strk; Berufliche Oberschule Freising 6

7 Zufluss 15 Mtrizenrechnung 15.4 Verflechtungsdigrmm - Übergngsmtrix In Byern konkurrieren drei Stromnbieter EON, Stdtwerke und Yellow-Strom um einen ls konstnt ngenommenen Kundenstmm. Durch eine längerfristige Befrgung wurde ds Wechselverhlten der Kunden von Jhr zu Jhr untersucht. Ds Ergebnis ist in einem Verflechtungsdigrmm (uch Gozintogrph gennnt) drgestellt. 0,7 Yellow 0, 2 0,2 EON 0,8 0,3 Stdtwerke 0,5 Der Grfik ist zum Beispiel zu entnehmen, dss von den derzeitigen Kunden von EON im folgenden Jhr 80% wieder bei EON Strom kufen, jedoch jeweils 10% zu den Anbietern Yellow-Strom und Stdtwerke wechseln. Diese grphische Drstellung lässt sich ber uch in eine Tbelle übertrgen. Abfluss EON Stdtwerke Yellow EON 0,8 0,3 0,2 Stdwerke 0,5 Yellow 0,2 0,7 In den Zeilen ist der Zufluss n die Stromnbieter, in den Splten die Abgbe von Kunden n die Konkurrenz notiert. Zu dieser Tbelle gehört eine Mtrix M, die mn ls Übergngsmtrix bezeichnet. 0,8 0,3 0, 2 M 0,5 0,2 0,7 Mit Hilfe der Übergngsmtrix M lässt sich nun die Veränderung des Kundenverhltens von Jhr zu Jhr berechnen. W. Strk; Berufliche Oberschule Freising 7

8 15 Mtrizenrechnung Zu Beginn der Untersuchung hben die Stromnbieter folgende Mrktnteile: EON: 60% Stdtwerke: 25% Yellow-Strom: 15% 0,6 Dieser Ausgngszustnd knn nun durch einen Bestndsvektor b0 0,25 beschrieben 5 werden. Der prozentule Kundennteil der einzelnen Stromversorger zum Beginn des nächsten Jhres ergibt sich dnn nch folgender Rechnung: 0,8 0,3 0, 2 0, 6 0,585 M b 0,5 0, 25 0, 2 b 0, 2 0, 7 5 0, Yellow-Strom ht somit nch einem Jhr seinen Anteil uf,5% gesteigert. EON ht seinen Anteil von 60% nicht hlten können und nur noch 58,5% und die Stdtwerke einen Verlust ihres Anteil von 25% uf 20% hinnehmen müssen. Unter der Vorrussetzung, dss ds Wechselverhlten der Kunden gleich bleibt erhält mn für den prozentulen Kundennteil zu Beginn eines weiteren Jhres: 0,8 0,3 0, 2 0,585 0,571 M b 0,5 0, 2 8 b 0,2 0,7 0,5 0, Entsprechend würden sich die Kundennteile (Bestellvektoren) für die nächsten Jhre ergeben. Die Stdtwerke müssten ber ihr wirtschftliches Denken etws überdenken!!!! Aufgben: 5.0 Der Vorschlg eines Politikers zu einer umfssenden Steuerreform sieht vor, die Steuerzhler nur noch drei Einkommensgruppen (Niedrig, Mittel, Hoch) zuzuordnen und innerhlb dieser Gruppen einheitlich zu besteuern. Jeweils zur Mitte des Jhres erfolgt eine neue Einordnung bhängig vom Einkommen des Vorjhres. Für einen Lndkreis mit Erwerbstätigen ht mn über einen längeren Zeitrum untersucht, welche Verschiebungen zwischen den Gruppen uftreten. Ds nebenstehende Digrmm gibt für jede Einkommensgruppe n, welche Anteile dieser Gruppe bei der Neueinstufung zur Jhresmitte die Gruppe wechseln bzw. in ihrer derzeitigen Gruppe bleiben. 5.1 Beschreiben Sie den Wechsel zwischen den Einkommensgruppen in Form einer Tbelle und geben Sie die zugehörige Übergngsmtrix n. 5.2 Berechnen Sie die prozentulen Anteile in den einzelnen Einkommensgruppen nch einem und nch zwei Jhren, wenn zu Beginn folgende Verteilung vorlg: N 0,8 0,7 H 0, 2 0,2 M 0,8 W. Strk; Berufliche Oberschule Freising 8

9 15 Mtrizenrechnung Niedrige Gruppe: Erwerbstätige Mittlere Gruppe: Erwerbstätige Hohe Gruppe: Erwerbstätige 6.0 In Deutschlnd gibt es vier Hndy-Netzbetreiber (T-Mobile, E-Plus, Vodfone und O2). Diese Mobilfunknetze werden von sämtlichen Mobilfunk-Betreibern und Hndy- Discountern benutzt. Zum Ausbu der Netze ht mn ds Wechselverhlten der Kunden bezüglich der vier Netze untersucht. Der Zusmmenhng wird durch folgendes Digrmm beschrieben. Dbei wird ngenommen, dss der Wechsel der Kunden nur zum Qurtlsbeginn möglich ist. Der Anteil der Neukunden, lso der Kunden die vorher noch bei keinem Netzbetreiber wren sei für diese beiden Qurtle unberücksichtigt. 0,8 T Mobile 0,05 0,05 0,05 0,65 E Plus 5 Vodfone 0,7 5 0,05 5 O 2 0,7 6.1 Geben Sie die Übergngsmtrix M für den Austusch der Kunden der Netzbetreiber n. 6.2 Berechnen Sie die prozentule Kundenverteilung nch einem und nch zwei Qurtlen, wenn T-Mobile 40%, E-Plus 15%, Vodfone 25% und O2 20% der Kunden unter Vertrg htte. Begründen Sie, welcher Netzbetreiber eine Kundenflucht verzeichnet und welcher Netzbetreiber den größten Zuwchs nch zwei Qurtlen ht. 7.0 Die Herstellung von Wren A, B und C erfolgt n verschiedenen Stndorten X-Stdt, Y-Stdt und Z-Stdt. Die Grfik zeigt den Arbeitsstundenbedrf der einzelnen Stndorte X, Y und Z für die Wren. A B C X Y Z 7.1 Ermitteln Sie, welche Arbeitszeiten für die Stndorte einzuplnen sind, wenn 100 Stück der Wre A, 50 Stück der Wre B und 200 Stück von C benötigt werden. W. Strk; Berufliche Oberschule Freising 9

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

6.1. Matrizenrechnung

6.1. Matrizenrechnung 6 Mtrizenrechnung 6 Mtrizen und Vektoren Definition Eine Tbelle in der Drstellung A (m,n) n n m m mn heißt m,n-mtrix ( n ) ( ) mit den Zeilenvektoren ( m m mn ) und den Sltenvektoren m, m,, n n mn Mtrizen

Mehr

8 Längenberechnungen Winkelberechnungen - Skalarprodukt

8 Längenberechnungen Winkelberechnungen - Skalarprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmnn W Wu Herbstsemester 206 Linere Algebr und Numerische Mthemtik für D-BAUG Beispiellösung für Serie 5 ETH Zürich D-MATH Aufgbe 5 5) Seien u und v Lösungen des LGS Ax = b mit n Unbeknnten

Mehr

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG)

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG) Sript für die Oerstufe und ds Aitur Bden-Württemerg erufl. Gymnsium (AG, BTG, EG, SG, WG) Mtrizenrechnung, wirtschftliche Anwendungen (Leontief, Mterilverflechtung) und Linere Optimierung Dipl.-Mth. Alexnder

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Mtrizen und Determinnten Im bschnitt Vektorlgebr Rechenregeln für Vektoren Multipliktion - Sklrprodukt, Vektorprodukt, Mehrfchprodukte wurde in einem Vorgriff bereits eine interessnte mthemtische Konstruktion

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO)

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO) Fchhochschule Düsseldorf SS 2007 Teilfchprüfung Mthemtik Studiengng: Wirtschft Neue Diplomprüfungsordnung (NPO) Prüfungsdtum: 29..2007 Prüfer: Prof. Dr. Horst Peters / Dipl. Volkswirt Lothr Schmeink Prüfungsform:

Mehr

2. Das Rechnen mit ganzen Zahlen (Rechnen in )

2. Das Rechnen mit ganzen Zahlen (Rechnen in ) . Ds Rechnen mit gnzen Zhlen (Rechnen in ).1 Addition und Subtrktion 5 + = 7 Summnd Summnd Summe 5 - = 3 Minuend Subtrhend Differenz In Aussgen mit Vriblen lssen sich nur gleiche Vriblen ddieren bzw. subtrhieren.

Mehr

Algebra - Lineare Abbildungen

Algebra - Lineare Abbildungen Algebr - Linere Abbildungen oger Burkhrdt (roger.burkhrdt@fhnw.ch) 8 Hochschule für Technik . Der Vektorrum Hochschule für Technik Hochschule für Technik 4 Vektorrum Definition: Ein Vektorrum über einen

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:

Mehr

a Z1 a 1 a 1,2 Diese Matrix hat genau dann Rang 2, ist also genau dann invertierbar, wenn a 2,2 a 1,2a 2,1

a Z1 a 1 a 1,2 Diese Matrix hat genau dann Rang 2, ist also genau dann invertierbar, wenn a 2,2 a 1,2a 2,1 18 Determinnten 207 18 Determinnten Nchdem wir nun schon recht usführlich Mtrizen und linere Gleichungssysteme studiert hben, wollen wir jetzt die sogennnten Determinnten einführen, die beim Rechnen mit

Mehr

BINOMISCHE FORMELN FRANZ LEMMERMEYER

BINOMISCHE FORMELN FRANZ LEMMERMEYER BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c

Mehr

Aufgaben: 1. Gib eine Gleichung der Ebene E an, die durch A in Richtung von u und v verläuft.

Aufgaben: 1. Gib eine Gleichung der Ebene E an, die durch A in Richtung von u und v verläuft. Prmeergleichung und Koordinenform einer Ebene Prmeergleichung und Koordinenform einer Ebene Die Lge einer Ebene E im Rum is durch drei Größen eindeuig fesgeleg: X. Einen Punk A, durch den die Ebene verläuf..

Mehr

Kapitel 1 : Mathematische Grundlagen und Stöchiometrie

Kapitel 1 : Mathematische Grundlagen und Stöchiometrie pitel : Mthemtische Grundlgen und Stöchiometrie Elementre Rechenumformungen. Dreistzrechnung : Immer dnn, wenn zwei Meßgrößen zueinnder proportionl bzw. indirekt proportionl (d.h. die eine proportionl

Mehr

G2 Grundlagen der Vektorrechnung

G2 Grundlagen der Vektorrechnung G Grundlgen der Vektorrechnung G Grundlgen der Vektorrechnung G. Die Vektorräume R und R Vektoren Beispiel: Physiklische Größen wie Krft und Geschwindigkeit werden nicht nur durch ihre Mßzhl und ihre Einheit,

Mehr

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf:

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf: Aufgbe : ) Lösen Sie die folgenden Gleichungen nch uf: = kein Problem einfch die Wurel iehen und ds ± nicht vergessen.. = = ±, b) + 5 = 0 Hier hben wir bei jedem Ausdruck ein, lso können wir usklmmern:

Mehr

1. Stegreifaufgabe aus der Physik Lösungshinweise

1. Stegreifaufgabe aus der Physik Lösungshinweise . Stegreifufgbe us der Physik Lösungshinweise Gruppe A Aufgbe Ds.Newtonsche Gesetz lässt sich zum Beispiel so formulieren: Wirkt uf einen Körper keine Krft (oder ist die Summe ller Kräfte null) so bleibt

Mehr

2. Funktionen in der Ökonomie

2. Funktionen in der Ökonomie FHW, ZSEBY, ANALYSIS - - Funktionen in der Ökonomie Beispiele: qudrtische Funktionen, Eponentilfunktion Qudrtische Funktionen Einfchste qudrtische Funktion: y = Allgemeine qudrtische Funktion: y = + b

Mehr

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren.

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren. .. Orthogonle Bsen und Schmistsche Orthogonlisierungsverfhren. Definition.. Eine Bsis B = { b, b,..., b n } heit orthogonl, wenn die Vektoren b i, i =,,..., n, prweise orthogonl sind, d.h. bi b j = fur

Mehr

5 Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren

5 Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren 5 Linere Ahängigeit und linere Unhängigeit von Vetoren 5 Linere Ahängigeit und linere Unhängigeit von Vetoren 5.1 Linere Ahängigeit/Unhängigeit von Vetoren Eine esondere Rolle in der nlytischen Geometrie

Mehr

Brüche gleichnamig machen

Brüche gleichnamig machen Brüche gleichnmig mchen L Ds Erweitern von Brüchen (siehe L ) ist lediglich ein Instrument, ds vorwiegend eingesetzt wird, um Brüche mit unterschiedlichem Divisor gleichnmig zu mchen. Brüche gleichnmig

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

(3) a x a x a x... a x b n n 1. (2) a x a x a x... a x b n n n n (m) a x a x a x...

(3) a x a x a x... a x b n n 1. (2) a x a x a x... a x b n n n n (m) a x a x a x... LINEARE GLEICHUNGSSYSTEME () x x x... x b n n () x x x... x b n n () x x x... x b n n.............. (m) x x x... x b m m m mn n m Inhltsverzeichnis Kpitel Inhlt Seite Bestimmung von Funktionstermen Ds

Mehr

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Mthemtik: Mg Schmid Wolfgng Arbeitsbltt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Bisher hben wir die Lge von Punkten und Gerden lediglich in der Ebene betrchtet. Nun wollen wir die Lge dieser

Mehr

Die Zufallsvariable und ihre Verteilung

Die Zufallsvariable und ihre Verteilung Die Zufllsvrible und ihre Verteilung Die Zufllsvrible In der Whrscheinlichkeitstheorie bzw. Sttistik betrchtet mn Zufllsvriblen. Eine Zufllsvrible ist eine Funktion, die Ergebnissen eines Zufllsexperimentes

Mehr

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer!

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer! hben Freunde Deine Zähne sind wie deine sportmnnschft und du bist der Triner! Und jeder Triner weiß, wie wichtig jeder einzelne Spieler ist eine wichtige und schöne Aufgbe! Drum sei nett zu deinen Zähnen

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Probeklausur Mathematik für Ingenieure C3

Probeklausur Mathematik für Ingenieure C3 Deprtment Mthemtik Dr. rer. nt. Lrs Schewe Mthis Sirvent Wintersemester 013/014 Probeklusur Mthemtik für Ingenieure C3 Anmerkungen zur Klusur: Die Arbeitszeit wird 90 Minuten betrgen. Sie können sämtliche

Mehr

Wie beschreibt man Prozesse? Wie beschreibt man Prozesse? Nicht nur eine Matrix, sondern viele Matrizen 0,5 0, 2 0,3 A 0, 2 0,7 0,1

Wie beschreibt man Prozesse? Wie beschreibt man Prozesse? Nicht nur eine Matrix, sondern viele Matrizen 0,5 0, 2 0,3 A 0, 2 0,7 0,1 25.11.2014 Nicht nur eine Mtrix, sondern viele Mtrizen 0,5 0, 2 0,3 A 0, 2 0,7 0,1 015 0,15 0,75 075 01 0,1 Wie beschreibt mn Prozesse? Mkov-Modell Modell Mrkov- Prozess Mrkov-Kette ber keine Mtrize und

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Lernumgebungen zu den binomischen Formeln

Lernumgebungen zu den binomischen Formeln Lernumgebungen zu den binomischen Formeln Die Fchmittelschule des Kntons Bsel-Lnd ist ein dreijähriger Bildungsgng der zum Fchmittelschulzeugnis führt. Dbei entspricht die 1.FMS dem 10. Schuljhr. Zu Beginn

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

FK03 Mathematik I: Übungsblatt 1; Lösungen

FK03 Mathematik I: Übungsblatt 1; Lösungen FK03 Mthemtik I: Übungsbltt 1; Lösungen Verständnisfrgen: 1. Woher stmmen die Objekte in einer Menge? Die Objekte einer Menge entstmmen unserer Anschuung und unserem Denken. 2. Welche Drstellungen von

Mehr

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen Die ntürlichen Zhlen (zusmmen mit der Addition und der Multipliktion) wurden in Kpitel 3 xiomtisch eingeführt. Aus den ntürlichen Zhlen knn mn nun die gnzen Zhlen Z = {..., 2, 1, 0, 1, 2,...} die rtionlen

Mehr

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2 Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes

Mehr

7.9A. Nullstellensuche nach Newton

7.9A. Nullstellensuche nach Newton 7.9A. Nullstellensuche nch Newton Wir hben früher bemerkt, dß zur Auffindung von Nullstellen einer gegebenen Funktion oft nur Näherungsverfhren helfen. Eine lte, ber wirkungsvolle Methode ist ds Newton-Verfhren

Mehr

x usw., wie oben unter 1.) behauptet.]

x usw., wie oben unter 1.) behauptet.] [Anmerkung zur Berechnung im Beispiel: Ersetzen wir die Zhlen der AzM durch die Koeffizienten, 2, 2 und 22, so lässt sich die Rechnung sowohl für ) ls uch b) gnz nlog durchführen, und es ergibt sich z.

Mehr

Lineare Algebra I 5. Tutorium mit Lösungshinweisen

Lineare Algebra I 5. Tutorium mit Lösungshinweisen Fchbereich Mthemtik Prof Dr JH Bruinier Mrtin Fuchssteiner Ky Schwieger TECHNISCHE UNIVERSITÄT DARMSTADT AWS 07/08 0607 (T ) Linere Algebr I 5 Tutorium mit Lösungshinweisen Welche Gruppen kennen Sie? Welche

Mehr

Geodäten. Mathias Michaelis. 28. Januar 2004

Geodäten. Mathias Michaelis. 28. Januar 2004 Geodäten Mthis Michelis 28. Jnur 2004 1 Vektorfelder Definition 1.1 Sei S 3 eine reguläre Fläche. Ein Vektorfeld uf S ist eine Abbildung v : S 3 so, dss v(p) T n S für lle p S. Ein Vektorfeld ordnet lso

Mehr

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3 Übungen zur Vorlesung Physiklische Chemie I Lösungsvorschlg zu Bltt 3 Prof. Dr. Norbert Hmpp 1. Aufgbe ) Die gegebene Verteilung besteht nur us diskreten Werten! Die durchgezogene Linie würde nur bei einer

Mehr

von f im Punkt P ( 2 4) x x x Hilfsmittelfreier Teil. Beispielaufgabe 1 zur Analysis Gegeben ist die Funktion f mit der Gleichung

von f im Punkt P ( 2 4) x x x Hilfsmittelfreier Teil. Beispielaufgabe 1 zur Analysis Gegeben ist die Funktion f mit der Gleichung Hilfsmittelfreier Teil. Beispielufgbe zur Anlysis Gegeben ist die Funktion f mit der Gleichung f ( x ) = x + x x. Die zeigt den Grphen der Funktion f. () Berechnen ie lle Nullstellen der Funktion f. ()

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

Übungsaufgaben zu Mathematik 2

Übungsaufgaben zu Mathematik 2 Ü F-Studiengng Angewndte lektronik SS 8 Üungsufgen zu Mthemtik Vektor- und Mtrizenrechnung 9 Die ckpunkte des Dreiecks ABC seien durch ihre Ortsvektoren OA ( ) OB (7) und OC (8) gegeen Berechnen Sie die

Mehr

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich!

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich! Versuchsplnung 22 CRGRAPH www.crgrph.de Grundlgen Die Aufgbe ist es Versuche so zu kombinieren, dss die Zusmmenhänge einer Funktion oder eines Prozesses bestmöglich durch eine spätere Auswertung wiedergegeben

Mehr

1 Grundlagen der Mathematik Lösen Sie die nachfolgenden grundlegenden Aufgaben.

1 Grundlagen der Mathematik Lösen Sie die nachfolgenden grundlegenden Aufgaben. ALGEBRA GRUNDRECHENARTEN MULTIPLIZIEREN Grundlgen der Mthemtik Lösen Sie die nchfolgenden grundlegenden Aufgben. Beweisen Sie durch Ausrechnung, dss b ) b ist! ( Wichtige mthemtische Regeln: 0 = 0 = 0

Mehr

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse Elemente der Anlysis II: Zusmmenfssung der wichtigsten Definitionen und Ergebnisse J. Wengenroth Dies ist die einzige zugelssene Formelsmmlung, die bei der Klusur benutzt werden drf. Es dürfen Unterstreichungen

Mehr

Anforderungsniveau Prüfungsteil Sachgebiet digitales Hilfsmittel erhöht B Analysis CAS

Anforderungsniveau Prüfungsteil Sachgebiet digitales Hilfsmittel erhöht B Analysis CAS Gemeinsme Abiturufgbenpools der Länder Aufgbensmmlung Aufgbe für ds Fch Mthemtik Kurzbeschreibung Anforderungsniveu Prüfungsteil Schgebiet digitles Hilfsmittel erhöht B Anlysis CAS 1 Aufgbe 1 Gegeben ist

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Mathematik schriftlich

Mathematik schriftlich WS KV Chur Abschlussprüfungen 00 für die Berufsmtur kufmännische Richtung Mthemtik schriftlich LÖSUNGEN Kndidtennummer Nme Vornme Dtum der Prüfung Bewertung mögliche erteilte Punkte Punkte. Aufgbe 0. Aufgbe

Mehr

BRÜCKENKURS MATHEMATIK

BRÜCKENKURS MATHEMATIK Brückenkurs Linere Gleichungssysteme - Prof. r. M. Ludwig BRÜCKENKURS MATHEMATIK LINEARE GLEICHUNGSSYSTEME Schwerpunkte: Modellbildung Lösungsmethoden Geometrische Interprettion Prof. r. hbil. M. Ludwig

Mehr

ist ein Quotient ganzer Zahlen m,n Z und n = 0. Dabei heißt m Zähler und n Nenner. Wegen m 1 = m ist Z eine Teilmenge von Q. Zwei Brüche sind gleich:

ist ein Quotient ganzer Zahlen m,n Z und n = 0. Dabei heißt m Zähler und n Nenner. Wegen m 1 = m ist Z eine Teilmenge von Q. Zwei Brüche sind gleich: Vorlesung 4 Zhlenbereiche 4.1 Rtionle Zhlen Wir hben gesehen, dss nicht jedes Eleent us Z ein ultipliktives Inverses besitzt. Dies führt zur Einführung der rtionlen Zhlen Q, obei der Buchstbe Q für Quotient

Mehr

Schriftliche Abiturprüfung Grundkursfach Mathematik. - Nachtermin -

Schriftliche Abiturprüfung Grundkursfach Mathematik. - Nachtermin - Abschrift des Originlmterils vom Sächsischen Sttsministerium für Kultus Sächsisches Sttsministerium für Kultus Schuljhr 00/03 Geltungsbereich: - Allgemein bildendes Gymnsium - Abendgymnsium und Kolleg

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Mtrizen und eterminnten efinition einer Mtri: Ein us m Zeilen und n Splten bestehendes rechteckiges Zhlenschem heißt Mtri vom Typ (m; n) oder (m n)-mtri. m m m n n n mn izeileninde; jsplteninde Schreibweise:

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnbrück WS 2015/2016 Linere Algebr und nlytische Geometrie I Vorlesung 4 In der lineren Algebr wird stets ein Körper K zugrunde gelegt, wobei mn dbei grundsätzlich n die reellen Zhlen

Mehr

Abschlussprüfung Mathematik

Abschlussprüfung Mathematik Abschlussprüfung 0 Mthemtik 5. Mi 0, Klssen F08 und F08b Nme: Klsse: Hinweise: Zur Lösung der Aufgben stehen drei volle Stunden zur Verfügung. Als Hilfsmittel sind ein nicht lgebrfähiger und nicht grphikfähiger

Mehr

Darstellung von Ebenen

Darstellung von Ebenen Drstellung von Ebenen. Ebenengleichung in Prmeterform: Sei E eine Ebene. Dnn lässt sich die Ebene drstellen durch eine Gleichung der Form p u x = p + r v u + s v (r, s R). p u v Der Vektor p heißt Stützvektor

Mehr

STATUS DES WINDENERGIEAUSBAUS IN DEUTSCHLAND

STATUS DES WINDENERGIEAUSBAUS IN DEUTSCHLAND 1. Hlbjhr Im Auftrg von: Deutsche WindGurd GmbH - Oldenburger Strße 65-26316 Vrel 04451/95150 - info@windgurd.de - www.windgurd.de Onshore Offshore Gesmt 1. Hlbjhr WINDENERGIEAUSBAUS AM 30. JUNI Im ersten

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Nicht-Euklidische Geometrie (Weiss) WS Vorlesungsnotizen, Woche 4

Nicht-Euklidische Geometrie (Weiss) WS Vorlesungsnotizen, Woche 4 12.11.2015 Nicht-Euklidische Geometrie (Weiss) WS 2015-16 Vorlesungsnotizen, Woche 4 4.1. Die hyperbolische Ebene ls metrischer Rum Definition 4.1.1. Die hyperbolische Ebene ist H {x R 2 x 2 > 0} mit der

Mehr

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht Großübung u Kräften, omenten, Äuivlen und Gleichgewicht Der Körper Ein mterielles Teilgebiet des Universums beeichnet mn ls Körper. Im llgemeinen sind Körper deformierbr. Sonderfll strrer Körper (odellvorstellung)

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6. Vorbemerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Opertionen. Sie heben sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

Eine interessante Eigenschaft unseres Schreibpapiers

Eine interessante Eigenschaft unseres Schreibpapiers www.mthegmi.de September 2011 Eine interessnte Eigenschft unseres Schreibppiers ichel Schmitz Zusmmenfssung ällt mn von einer Ecke eines I 4 lttes ds Lot uf die igonle durch die benchbrten Eckpunkte, so

Mehr

Verbrauchswerte. 1. Umgang mit Verbrauchswerten

Verbrauchswerte. 1. Umgang mit Verbrauchswerten Verbruchswerte Dieses Unterkpitel ist speziell dem Them Energienlyse eines bestehenden Gebäudes nhnd von Verbruchswerten (Brennstoffverbräuche, Wrmwsserverbruch) gewidmet. BEISPIEL MFH: Ds Beispiel des

Mehr

Quadratische Funktionen und p-q-formel

Quadratische Funktionen und p-q-formel Arbeitsblätter zum Ausdrucken von softutor.com Qudrtische Funktionen und -q-formel Gib den Vorfktor und die Anzhl der Schnittstellen mit der -Achse n. x 3 Beschreibe die Reihenfolge beim Umformen einer

Mehr

Therapiebegleiter Kopfschmerztagebuch

Therapiebegleiter Kopfschmerztagebuch Vornme & Nchnme Therpieegleiter Kopfschmerztgeuch Liee Ptientin, lieer Ptient, Wie Können sie helfen? Bitte führen Sie regelmäßig euch m esten täglich. Trgen Sie in die Splten die jeweiligen Informtionen

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Prof. Dr.Ing. W. Scheideler Brückenkurs Mthemtik WS 0/ us und überrbeitet von B. Eng. Sevd Hppel und Dipl.Ing. Jun Rojs Prof. Dr.Ing. W. Scheideler Inhltsverzeichnis Brüche, Potenzen und Wurzeln. Brüche..

Mehr

Übungsheft Mittlerer Schulabschluss Mathematik

Übungsheft Mittlerer Schulabschluss Mathematik Ministerium für Bildung und Kultur des Lndes Schleswig-Holstein Zentrle Abschlussrbeit 011 Übungsheft Mittlerer Schulbschluss Mthemtik Korrekturnweisung Impressum Herusgeber Ministerium für Bildung und

Mehr

Ein Kluger denkt so viel, dass er keine Zeit zum Reden hat. Ein Dummer redet so viel, dass er keine Zeit zum Denken hat. (Anonym)

Ein Kluger denkt so viel, dass er keine Zeit zum Reden hat. Ein Dummer redet so viel, dass er keine Zeit zum Denken hat. (Anonym) Ein Kluger dent so viel, dss er eine Zeit zum Reden ht. Ein Dummer redet so viel, dss er eine Zeit zum Denen ht. (Anonym) 6 Gnzrtionle Funtionen 6 Gnzrtionle Funtionen Wir wollen nun uch Funtionen betrchten,

Mehr

Ich kann den SdP anwenden, um Seitenlängen in rechtwinkligen Dreiecken zu berechnen.

Ich kann den SdP anwenden, um Seitenlängen in rechtwinkligen Dreiecken zu berechnen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.5.018 Themen: Stz des Pythgors, Qudrtische Gleichungen Checkliste Ws ich lles können soll Ich knn den Stz des Pythgors (SdP) in Worten formulieren.

Mehr

Höhere Mathematik für Ingenieure , Uhr

Höhere Mathematik für Ingenieure , Uhr Studiengng: Mtrikelnummer: 3 5 6 Z Punkte Note Prüfungsklusur zum Modul Höhere Mthemtik für Ingenieure 0. 7. 05, 8.00 -.00 Uhr Zugelssene Hilfsmittel: A-Blätter eigene, hndschriftliche Ausrbeitungen ber

Mehr

a) x 0, (Nichtnegativität) b) x = 0 x = 0, (Eindeutigkeit) c) αx = α x, (Skalierung)

a) x 0, (Nichtnegativität) b) x = 0 x = 0, (Eindeutigkeit) c) αx = α x, (Skalierung) Definition 1.20 Ein metrischer Rum besteht us einer Menge X und einer Abbildung d : X X R, die jedem geordneten Pr von Elementen us X eine reelle Zhl zuordnet, d.h. (x,y) X X d(x,y) R. Diese Abbildung

Mehr

Gebrochenrationale Funktionen (Einführung)

Gebrochenrationale Funktionen (Einführung) Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle

Mehr

Logarithmen zu speziellen und häufig gebrauchten Basen haben eigene Namen: Der Logarithmus zur Basis 10 heißt dekadischer oder Zehnerlogarithmus:

Logarithmen zu speziellen und häufig gebrauchten Basen haben eigene Namen: Der Logarithmus zur Basis 10 heißt dekadischer oder Zehnerlogarithmus: 0 Dr Andres M Seifert Sternstunden in Mthe, Physik und Technik wwwsternstunden-odenwldde Logrithmen Die Gleichung vom Typ b wird mit Hilfe des Logrithmus gelöst Der Logrithmus von zur Bsis b ist die Zhl,

Mehr

Einführung in die Vektorrechnung (GK)

Einführung in die Vektorrechnung (GK) Einführung in die Vektorrechnung (GK) Michel Spielmnn Inhltsverzeichnis Grundlegende Definitionen Geometrische Vernschulichung. Punkte..................................... Pfeile.....................................

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3 .6 Bruchterme Inhltsverzeichnis Einführung und Repetition 2 2 Multipliktion und Division von Bruchtermen 3 3 Die Addition von zwei Bruchtermen-Methode I 3 4 Doppelbrüche 5 5 Die Addition von zwei Bruchtermen

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Aufgben mit en Aufgbe G mit Der römische Brunnen Aufsteigt der Strhl und fllend gießt Er voll der Mrmorschle Rund, Die, sich verschleiernd, überfließt

Mehr

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration Integrieren Regeln (f() + g())d = f()d + g()d c f()d = c f()d b f()d = f()d b Einige Integrle die mn uswendig kennen sollte s d = s + s+ + C (für s ) d = ln + C cos d = sin + C sin d = cos + C sinh d =

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen

26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen 26. Mthemtik Olympide 2. Stufe (Kreisolympide) Klsse 7 Sison 986/987 Aufgben und Lösungen OJM 26. Mthemtik-Olympide 2. Stufe (Kreisolympide) Klsse 7 Aufgben Hinweis: Der Lösungsweg mit Begründungen und

Mehr

Thema 6. Ranglisten. von Matthias Glöckner

Thema 6. Ranglisten. von Matthias Glöckner Them 6 Rnglisten von Mtthis Glöckner Inhltsverzeichnis Einleitung Ds linere Verfhren Definition der Punktezhl Die Präferenzmtrix Perron-Frobenius Theorem Bewertung nch dem Spielergebnis und Verzerrungsfunktion

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie

Mathematik für Studierende der Biologie und des Lehramtes Chemie Verfhren Mthemtik für Studierende der Biologie und des Lehrmtes Chemie Dominik Shillo Universität des Srlndes 6. Vorlesung, 4..7 (Stnd: 4..7, 4:5 Uhr) Shreibe,,n.......... n, n,n Führe den Guÿlgorithmus

Mehr

Algebra-Training. Theorie & Aufgaben. Serie 3. Bruchrechnen. Theorie: Katharina Lapadula. Aufgaben: Bernhard Marugg. VSGYM / Volksschule Gymnasium

Algebra-Training. Theorie & Aufgaben. Serie 3. Bruchrechnen. Theorie: Katharina Lapadula. Aufgaben: Bernhard Marugg. VSGYM / Volksschule Gymnasium Algebr-Trining Theorie & Aufgben Serie Bruchrechnen Theorie: Kthrin Lpdul Aufgben: Bernhrd Mrugg VSGYM / Volksschule Gymnsium Liebe Schülerin, lieber Schüler Der Leitspruch «Übung mcht den Meister» gilt

Mehr

STATUS DES WINDENERGIEAUSBAUS AN LAND IN DEUTSCHLAND

STATUS DES WINDENERGIEAUSBAUS AN LAND IN DEUTSCHLAND Jhr STATUS DES WINDENERGIEAUSBAUS AN LAND Im Auftrg von: Deutsche WindGurd GmbH - Oldenburger Strße 65-26316 Vrel 4451/9515 - info@windgurd.de - www.windgurd.de jährlich zu- / bgebute Leistung kumulierte

Mehr

Übungen zu Wurzeln III

Übungen zu Wurzeln III A.Nenner rtionl mchen: Nenner ist Qudrtwurzel: 5 bc 1.).).).) 5.) 1 15 9 bc.).) 8.) 9.) 10.) 5 5 B.Nenner rtionl mchen: Nenner ist höhere Wurzel: 1 1 9 5 1 1.).).).) 5.).) 5 C.Nenner rtionl mchen: Nenner

Mehr

Präfixcodes und der Huffman Algorithmus

Präfixcodes und der Huffman Algorithmus Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben

Mehr

1 Räumliche Darstellung in Adobe Illustrator

1 Räumliche Darstellung in Adobe Illustrator Räumliche Drstellung in Adobe Illustrtor 1 1 Räumliche Drstellung in Adobe Illustrtor Dieses Tutoril gibt Tips und Hinweise zur räumlichen Drstellung von einfchen Objekten, insbesondere Bewegungspfeilen.

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 007 im Fch Mthemtik 30. Mi 007 Arbeitsbeginn: 10.00 Uhr Berbeitungszeit: 10 Minuten Zugelssene

Mehr

Numerische Integration

Numerische Integration Kpitel 4 Numerische Integrtion Problem: Berechne für gegebene Funktion f :[, b] R ds Riemnn-Integrl I(f) := Oft ist nur eine numerische Näherung möglich. f(x)dx. Beispiel 9. (i) Rechteckregel: Wir pproximieren

Mehr

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen.

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.1.017 Themen: Reelle Zhlen, Qudrtwurzeln LGS mit drei Unbeknnten Checkliste Ws ich lles können soll Ich knn LGS mit drei Gleichungen und drei Unbeknnten

Mehr