)=(2 1 ( 2) 2) ( ) = 12 (Blockmatrix-Regel) Jede Zeile passend mit 1. Zeile addieren. Zeilentausch, 2. Zeile

Größe: px
Ab Seite anzeigen:

Download ")=(2 1 ( 2) 2) ( ) = 12 (Blockmatrix-Regel) Jede Zeile passend mit 1. Zeile addieren. Zeilentausch, 2. Zeile"

Transkript

1 Lineare Algebra Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 28/29 3. Präsenzblatt Lösungen Aufgabe P49 (erechnung von Determinanten). Sei n 2 N, n 2. Gegeben seien folgende Matrizen über Q: 2 3 A :=, A 2 A, A 3 2 A, s... A 4 := A, A 5 := A, A s 6 A, s wobei A 6 2 M(n n, Q). (a) erechnen Sie die Determinanten det(a i ), i =,...,6. Hinweis für A 6 : Addieren Sie zuerst alle Spalten (außer der ersten) einmal auf die erste Spalte. (b) erechnen Sie unter Nutzung der Ergebnisse aus (a) die Ausdrücke det(a 4 A t 5), det(a 2 + A 2 ), det(a 2 + A 3 ), det(2a 3 4) (c) Vervollständigen Sie die gegebenen Matrizen so, dass die Gleichungen stimmen: (i) det( )=3, (ii) det( )=, (iii) det( (a) det(a )= ( ) = 2 (Regel für 2 2-Matrizen) )=4. det(a 2 )= = (Regel von Sarrus. Alternativ: Die 3. Zeile ist Summe der ersten beiden Zeilen. Die Zeilen sind also linear abhängig und daher det(a 2 )=.) det(a 3 )=( 2) ( 4)+ ( ) ( ) 2 3 ( ) ( ) ( 2) ( 4) 2 =4 (Regel von Sarrus) det(a 4 )=det( 2 2) det( )=(2 ( 2) 2) (3 2 4 ) = 2 (lockmatrix-regel) 22 Jede Zeile passend mit. Zeile addieren det(a 5 ) det Zeilentausch, 2. Zeile = auf untere Zeilen addieren lockmatrix-regel 2 det( 74 42) = ( ( ) 2)( )) = 2

2 det(a 6 ) s +(n ) s +(n ) s +(n )... s A s +(n )... s s = (s +(n )) s A... s... s.... = (s +(n )) s A... s Jede Spalte auf. Spalte addieren Von jeder Zeile. Zeile abziehen obere Dreiecksmatrix = (s +(n )) (s ) n. (b) det(a 4 A t 5)=det(A 4 )det(a t 5)= det(a 4 ) det(a 5)= 6 det(a 3 + A 3 )=det(2a 3 )=2 3 det(a 3 )=2 3 4= det(a 2 + A 3 )=det =( ) 2 ( 3) ( ) ( 3) 2 2=6 (Regel von Sarrus) det(2a 3 4)=2 4 det(a 4 ) 3 = (c) Für dielösung dieser Aufgabe gibt es viele verschiedene Möglichkeiten. Wir präsentieren hier jeweils nur eine Möglichkeit. (i) Diese Matrix kann zu einer oberen Dreiecksmatrix ergänzt werden. Dann ist die Determinante das Produkt der Diagonalelemente. Wähle also das mittlere, noch zu füllende Diagonalelement x so, dass 2 3 x =3() x = 5) und der Rest Nullen (so dass obere Dreiecksmatrix): det( )=3. (ii) Da die Determinante sein soll, muss die Matrix einen Rang 3 besitzen (d.h. die Zeilen oder Spalten müssen linear abhängig sein). Ergänze die dritte Zeile so, dass sie ein Vielfaches der zweiten Zeile ist: det( )=. (iii) Wir können die Matrix nicht einfach mit Nullen au üllen (und dann die Regel für obere Dreiecksmatrizen verwenden), weil das Produkt der Diagonalelemente nicht 2

3 den angegebenen Determinantenwert 4 ergibt. Ausweg: Verwende die lockmatrix- Regel, d.h. fülle den 2 2-lock unten links in der Matrix mit Nullen auf. Dann gilt: 4 =det(! )=det det Wähle nun zum eispiel die fehlenden Stellen... so, dass das Produkt 4 = 4 entsteht (hier gibt es aber unendlich viele Möglichkeiten). Dies erreichen wir mit... = 2 in der ersten Matrix und... = 5 in der zweiten Matrix. Die Ausgangsmatrix lautet also: det( Aufgabe P5 (Determinante als Hilfsmittel). Für 2 Q definieren wir 3 2 v A, v A, v 3 A, := A 2 M(4 4, Q) (a) erechnen Sie det(a), wobei A := (v,v 2,v 3 )dievektorenv,v 2,v 3 als Spalten hat. =4. (b) Für welche 2 Q bilden (v,v 2,v 3 )eineasisdesq-vektorraums Q 3? (c) erechnen Sie det(). (d) Für welche 2 Q ist invertierbar? (a) Es ist A 2 +2 A Damit: det(a) = ( 3) 2 +2 A Z$Z3 = ( 3) 2 +2 A ( )Z+Z2!Z2, ( )Z+Z3!Z3 = ( 3) +2 A Sarrus = ( 3)( +2)( +). Alternativ kann man auch an jeder beliebigen Stelle obiger Umformungen die Regel von Sarrus oder andere Methoden (lockmatrixregel, Laplace-Entwicklung) nutzen. Der Vorteil der Erzeugung von Nullen mit elementaren Zeilen/Spaltenumformungen liegt darin, dass die Regel von Sarrus dann weniger Summanden ungleich ergibt und man oft bereits automatisch eine Faktorisierung des Ergebnisses im unbekannten Parameter, hier, erhält. 3

4 (b) Es gilt: det(a) 6= () Rang(A) =3 v,v 2,v 3 2Q 3 () (v,v 2,v 3 )asis Fall : 2{3, 2, }: Dannistdet(A) =,d.h.(v,v 2,v 3 )bildenkeineasisvonq 3. Fall 2: 2 Q\{3, 2, }: Dannistdet(A) 6=,d.h.(v,v 2,v 3 )bildenasisvonq 3. (c) Es gilt det() A A A A A 5 S4$S Zeile geeignet auf Zeilen darunter add. Z2$Z3 ( 2)Z2+Z3!Z3 Z3+Z4!Z4 Obere Dreiecksmatrix = ( 2) ( 3) ( 5) = 6( 5). (d) Es gilt det() 6= () invertierbar. Daher: Fall =5: nicht invertierbar. Fall 2 Q\{5}: invertierbar. Aufgabe P5 (Anwendung des Laplace schen Entwicklungssatzes). Entwicklungssatz von Laplace: Sei A =(a ij ) 2 M(n n, K) eine Matrix über einem Körper K. Dann gilt für i, j 2{,...,n}: det(a) = = nx ( ) i+j a ij det(a ij) j= nx ( ) i+j a ij det(a ij) i= Entwicklung nach i-ter Zeile Entwicklung nach j-ter Spalte, wobei A ij die (n ) (n )-Matrix ist, welche durch Streichen der i-ten Zeile und der j-ten Spalte aus A hervorgeht. 4

5 Für s 2 Q und n 2 N,n 3 definieren wir die Matrizen s A := 2 2 s 4 A 2 M(4 4, Q), n := M(n n, Q). 2 A s (a) erechnen Sie det(a) in Abhängigkeit von s 2 Q. (b) Für welche s 2 Q besitzt das LGS A x = keine, nur eine oder unendlich viele Lösungen? (c) Zeigen Sie, dass n folgende Rekursionsgleichung für n det( n )=x det( n )+. 4erfüllt: Hinweis: Nutzen Sie den Laplace schen Entwicklungssatz angewandt auf die erste Spalte. (d) Leiten Sie mittels (c) eine explizite Formel für det( n ), n diese mit vollständiger Induktion. 3herundbeweisenSie (a) Es gilt: det(a). Zeile passend = auf jede weitere Zeile addieren Entw.. Spalte ( s 2 2 det( s 5 s 3 2 s 2 2 s 7 s 3 ) Entw. 3. Zeile = (s 3) det( 2 s 2 s ) = (s 3)(2 (s )( s 2)) = (s 3)(s )(s +2) ) (b) Fall : s 2 Q \ { 2,, 3}. Danngiltdet(A) 6=. =) Rang(A) =4 =) dim Q Lös(A, ) = 4 Rang(A) = =) dim Q Lös(A, ) = {}, d.h.a x = hat nur die triviale Lösung. Fall 2: s 2 { 2,, 3}. =) det(a) = =) Rang(A) < 4 =) dim Q Lös(A, ) = 4 Rang(A) > =) dim Q Lös(A, ) hat unendlich viele Elemente (da Grundkörper Q unendlich viele Elemente hat), d.h. A x =hatunendlichvielelösungen. (Es gibt keinen Fall, indem das LGS keine Lösungen hat). (c) det( n ) s = s det ( ) n+ A. A... s s 2M((n ) (n ),Q) = n 2M((n ) (n ),Q) Laplace. Spalte obere Dreiecksmatrix = s det( n )+( ) n+ ( ) n = s det( n )+. 5

6 (d) Wir berechnen zunächst det( 3 )(darüber gibt die Rekursionsformel aus (c)) keine Auskunft): det( 3 ) Sarrus = s 3 +s. ( ) Vermutung für allgemeine Formel: Xn 2 det( n )=s n + s k. k= (immer das Monom mit dem zweithöchsten Grad fehlt). eweis mit vollständiger Induktion: Induktionsanfang n =3:Siehe(*). Induktionsschritt: Die Aussage gelte für n (IV). Wir zeigen die Aussage für n: det( n ) (c) Xn 3 = s det( n )+ IV = s s n + s k + Xn 3 = s n + k= s k+ = P n 2 k= sk + {z} =s = P n 2 k= sk k= n 2 X = s n + s k. k= Aufgabe P52 (Determinanten von linearen Abbildungen). Für einen Vektorraum V über einem Körper K mit dim K (V ) < und asis definiert man für f 2 End K (V ): det(f) :=det(m (f)). Dies ist unabhängig von der Wahl der asis. Sei P 2 wie aus Aufgabe A4. Definiere folgende lineare Abbildungen zwischen Vektorräumen über R: f : P 2! P 2, p 7! [x 7! p(2x +2) 2 p(x)], 2 g : M(2 2, R)! M(2 2, R), A 7! A, 3 4 x h : R 4! R 4, x = 7! (a) erechnen Sie die Determinanten det(f), det(g) unddet(h). x 2 x 3 x 4 x 2 2x +8x 2 +x 3 x 4 3x 2 +x 4 x +4x 2 +2x 3 +3x 4 (b) Entscheiden Sie jeweils auf asis von (a), ob f,g,h Isomorphismen sind. Hinweis: Sie dürfen den Laplace schen Entwicklungssatz aus P5 verwenden. (a) Wir bestimmen die Darstellungsmatrizen der jeweiligen linearen Abbildungen bzgl. der Standardbasis. (i) Wir bestimmen zuerst die ilder der asis P := (p,p,p 2 )unterf und stellen sie in der asis P dar. (f(p ))(x) = 2 = =) f(p )= p (f(p ))(x) = 2x +2 2 x =2 =) f(p )=2p (f(p 2 ))(x) = (2x +2) 2 2x 2 =2x 2 +8x +4 =) f(p 2 )=4p +8p +2p 2 6.

7 =) MP P 24 (f) = 8 2 Die 2. und 3. Zeile sind linear abhängig. Daher folgt sofort det(f) (M P P (f)) =. (ii) Wir bestimmen zuerst die ilder der asis E := (E,E 2,E 2,E 22 )unterg und stellen sie in der asis E dar. g(e ) = E ( 2 34)=E +2E 2 g(e 2 ) = E 2 ( 2 34)=3E +4E 2 g(e 2 ) = E 2 ( 2 34)=E 2 +2E 22 g(e 22 ) = E 22 ( 2 34)=3E 2 +4E 22 =) ME E (g) = Damit erhalten wir zwei Matrizenblöcke und berechnen det(g) =det(m E E (g)) (( 3 24)) det(( 3 24)) = ( 4 2 3) 2 =4. (iii) Direktes Ablesen liefert M S S (h) = Wir entwickeln nach der. Zeile und bekommen det(h) (M S S (h)) = ( Entwicklung nach der 2. Zeile liefert ) +2 det det(h) =( ) 2+3 ( ) det (( 2 2)) = (2 2 ) = (b) Für alle 3 Aufgaben nutzen wir folgende Argumentation für f : V! V mit dim(v )=n und M (f) 2 M(n n, R): det(m P44 (f)) 6= () Rang(f) =Rang(M (f)) = {z} n =dim(ild(f)) UVR =dim(v ) ild(f) V () ild(f) =V () f surjektiv f:v!v linear () f bijektiv. Das bedeutet: det(f) 6= () f Isomorphismus (i) det(f) = ) f kein Isomorphismus (ii) det(g) 6= ) f Isomorphismus (iii) det(h) 6= ) f Isomorphismus Dieses latt ist nicht abzugeben und wird in den Übungsgruppen besprochen. Homepage der Vorlesung: 7

13. Abgabeblatt Lösungen. Aufgabe 49 Aufgabe 50 Aufgabe 51 Aufgabe 52 Summe:

13. Abgabeblatt Lösungen. Aufgabe 49 Aufgabe 50 Aufgabe 51 Aufgabe 52 Summe: Lineare Algebra Prof Dr R Dahlhaus Dr S Richter, N Phandoidaen Wintersemester 8/9 3 Abgabeblatt Lösungen Aufgabe 9 Aufgabe Aufgabe Aufgabe Summe: Übungsgruppe: Namen: Tutor(in): Aufgabe 9 (erechnung von

Mehr

(p). (g). C A 7! a 0p 0 + a 1 p 1 + a 2 p 2 + a 3 p 3 a 3. Ba 1. a 2

(p). (g). C A 7! a 0p 0 + a 1 p 1 + a 2 p 2 + a 3 p 3 a 3. Ba 1. a 2 Lineare Algebra Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 8/9. Präsenzblatt Lösungen Aufgabe P4 (Darstellungsmatrix für Abbildungen zwischen Polynomräumen). Für D N betrachten

Mehr

Lineare Algebra. Wintersemester 2018/19. Berechnen Sie die Determinanten der folgenden Matrizen mit Einträgen in R: 4 2 = = 18.

Lineare Algebra. Wintersemester 2018/19. Berechnen Sie die Determinanten der folgenden Matrizen mit Einträgen in R: 4 2 = = 18. Goethe-Universität Frankfurt Institut für Mathematik Lineare Algebra Wintersemester 218/19 Prof Dr Jakob Stix Martin Lüdtke Übungsblatt 11 15 Januar 219 Aufgabe 1 (5=1+1+1,5+1,5 Punkte) Berechnen Sie die

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF 07032016-11032016 Inhaltsverzeichnis Inhaltsverzeichnis 1 Lineare Abbildungen 2 11 Homomorphismus 2 12 Kern

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

Übungsklausur Lineare Algebra

Übungsklausur Lineare Algebra Übungsklausur Lineare Algebra Sommersemester 2010 Johannes Gutenberg-Universität Mainz Diese Übungsklausur ist sehr lang (gut zum Üben). In der richtigen Klausur finden Sie eine Multiple Choice aufgabe

Mehr

Die Determinante einer Matrix

Die Determinante einer Matrix Chr.Nelius, Lineare Algebra II (SS 2005) 6 Die Determinante einer Matrix Wir betrachten im folgenden Determinantenformen auf dem Vektorraum V = K n. Eine solche Form ist eine Abbildung von n Spaltenvektoren

Mehr

3 Determinanten, Eigenwerte, Normalformen

3 Determinanten, Eigenwerte, Normalformen Determinanten, Eigenwerte, Normalformen.1 Determinanten Beispiel. Betrachte folgendes Parallelogramm in der Ebene R 2 : y (a + c, b + d) (c, d) (a, b) x Man rechnet leicht nach, dass die Fläche F dieses

Mehr

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Klausur: voraussichtlich Mittwoch,

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Klausur: voraussichtlich Mittwoch, Lineare Algebra I - 2. Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Klausur: voraussichtlich Mittwoch, 4.2. 4:3 Uhr, A3 A 2 Mat(n, n; K) Dann ist 7 A : Mat(n, ; K)! Mat(n, ; K) b! A b ein Endomorphismus.

Mehr

1 C C 6. 3 A, v 4 =

1 C C 6. 3 A, v 4 = Lineare Algebra Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 8/9. Präsenzblatt - Lösungen Aufgabe P (Dimensionen von Vektorräumen über verschiedenen Körpern). Für einen Körper K

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66

6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66 6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66 6 Determinanten 6.1 Symmetrische Gruppe Definition: Eine bijektive Abbildung von einer Menge X auf sich selbst heisst eine Permutation von X. Satz-Definition:

Mehr

Aufgabe P33 (Nachrechnen von Eigenschaften linearer Abbildungen des K n ). Gegeben seien folgende Vektoren im R 4 :

Aufgabe P33 (Nachrechnen von Eigenschaften linearer Abbildungen des K n ). Gegeben seien folgende Vektoren im R 4 : Lineare Algebra Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 8/9 9. Präsenzblatt Lösungen Aufgabe P (Nachrechnen von Eigenschaften linearer Abbildungen des K n ). Gegeben seien folgende

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14.5.218 (Teil 2) 9. Mai 218 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 218 Steven Köhler 9. Mai 218 3 c 218

Mehr

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Kapitel 4 Determinante Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Was ist eine Determinante? Wir wollen messen, ob n Vektoren im R n linear abhängig sind bzw. wie weit sie davon entfernt

Mehr

4. Übungsblatt zur Mathematik II für Inf, WInf

4. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof Dr Streicher Dr Sergiy Nesenenko Pavol Safarik SS 010 11 15 Mai 4 Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G13 (Basistransformation) ( ) 15 05 Die lineare

Mehr

, Uhr Dr. Thorsten Weist. Name Vorname Matrikelnummer. Geburtsort Geburtsdatum Studiengang

, Uhr Dr. Thorsten Weist. Name Vorname Matrikelnummer. Geburtsort Geburtsdatum Studiengang Nachklausur zur Linearen Algebra I - Nr. 1 Bergische Universität Wuppertal Sommersemester 2011 Prof. Dr. Markus Reineke 06.10.2011, 10-12 Uhr Dr. Thorsten Weist Bitte tragen Sie die folgenden Daten leserlich

Mehr

Klausur zur Vorlesung Lineare Algebra und Geometrie I

Klausur zur Vorlesung Lineare Algebra und Geometrie I Klausur zur Vorlesung Lineare Algebra und Geometrie I Ruhr-Universität Bochum Prof. Dr. Peter Eichelsbacher 3. April 2007, 9.00-13.00 Uhr, 240 Minuten Name und Geburtsdatum: Matrikelnummer: Hinweise: Überprüfen

Mehr

Wir verallgemeinern jetzt den Begriff bilinear zu multilinear. Unser Ziel ist dabei insbesondere die Einführung der sogenannten Determinante.

Wir verallgemeinern jetzt den Begriff bilinear zu multilinear. Unser Ziel ist dabei insbesondere die Einführung der sogenannten Determinante. 118 36 Determinanten Wir verallgemeinern jetzt den Begriff bilinear zu multilinear Unser Ziel ist dabei insbesondere die Einführung der sogenannten Determinante 361 Definition (alternierend, symmetrisch,

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie D-MAVT Lineare Algebra I HS 7 Prof. Dr. N. Hungerbühler Lösungen Serie 4: Ferienserie . Finden Sie ein Erzeugendensystem des Lösungsraums L R 5 des Systems x + x x 3 + 3x 4 x 5 = 3x x + 4x 3 x 4 + 5x 5

Mehr

Klausur Lineare Algebra I am Es sind insgesamt 60 Punkte bei der Klausur zu erreichen.

Klausur Lineare Algebra I am Es sind insgesamt 60 Punkte bei der Klausur zu erreichen. Klausur Lineare Algebra I am 03.02.10 Es sind insgesamt 60 Punkte bei der Klausur zu erreichen. Aufgabe 1. (6 Punkte insgesamt) a.) (3P) Definieren Sie, was eine abelsche Gruppe ist. b.) (3P) Definieren

Mehr

Lineare Algebra I. 2. Ist n = 4k für ein k N, so ist die

Lineare Algebra I. 2. Ist n = 4k für ein k N, so ist die Universität Konstanz Wintersemester 009/010 Fachbereich Mathematik und Statistik Lösungsblatt 1 Prof Dr Markus Schweighofer 100010 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 11: Voraussetzung:

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11 D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Serie 11 1. Wir betrachten das überbestimmte Gleichungssystem Ax = y mit 1 1 1 1 A := 1 1 0 1 0 1, y := 2 3 0 0 1 4 Berechnen Sie die

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2 2

Mehr

Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I Lösungsvorschlag

Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner WS 207/8 Blatt 5 20207 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I Lösungsvorschlag 7 Der Nachweis, daß (M, ) und (N,

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 0 Olga Holtz MA 378 Sprechstunde Fr 4-6 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do -4 und nv jokar@mathtu-berlinde Kapitel Die Determinante

Mehr

5.4 Basis, Lineare Abhängigkeit

5.4 Basis, Lineare Abhängigkeit die allgemeine Lösung des homogenen Systems. Wieder ist 2 0 L i = L h + 0 1 Wir fassen noch einmal zusammen: Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbekannten hat n Rang(A)

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

Lineare Algebra Weihnachtszettel

Lineare Algebra Weihnachtszettel Lineare Algebra Weihnachtszettel 0..08 Die Aufgaben auf diesem Zettel sind zum Üben während der Weihnachtspause gedacht, sie dienen der freiwilligen Selbstkontrolle. Die Aufgaben müssen nicht bearbeitet

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Lineare Algebra 2013 Lösungen für Test und Zusatzfragen

Lineare Algebra 2013 Lösungen für Test und Zusatzfragen Lineare Algebra 3 Lösungen für Test und Zusatzfragen Test Multiple Choice. Seien Für die Lösung x x x x 3 A, b des Systems Ax b gilt x 3 5 x 3 x 3 3 x 3 / Mit elementaren Zeilenoperationen erhalten wir

Mehr

a 1 a 1 A = a n . det = λ det a i

a 1 a 1 A = a n . det = λ det a i 49 Determinanten Für gegebene Vektoren a 1,,a n K n, betrachte die Matrix deren Zeilenvektoren a 1,,a n sind, also A = Ab sofort benutzen wir diese bequeme Schreibweise Definition Sei M : K n K }{{ n K

Mehr

Lineare Algebra 1 Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 2018/ Präsenzblatt - Lösungen

Lineare Algebra 1 Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 2018/ Präsenzblatt - Lösungen Lineare Algebra Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 208/209 5. Präsenzblatt - Lösungen Aufgabe P7 (Lineare Unabhängigkeit in verschiedenen Vektorräumen). Untersuchen Sie

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

Lineare Algebra 2. Lösung zu Aufgabe 7.2:

Lineare Algebra 2. Lösung zu Aufgabe 7.2: Technische Universität Dortmund Sommersemester 2017 Fakultät für Mathematik Übungsblatt 7 Prof. Dr. Detlev Hoffmann 15. Juni 2017 Marco Sobiech/ Nico Lorenz Lineare Algebra 2 Lösung zu Aufgabe 7.1: (a)

Mehr

Lineare Algebra I. Prof. Dr. Daniel Roggenkamp Vorlesung -

Lineare Algebra I. Prof. Dr. Daniel Roggenkamp Vorlesung - Lineare Algebra I Prof. Dr. Daniel Roggenkamp - 21.Vorlesung - Entwicklung nach Zeilen bzw. Spalten Definition 6.22. Für eine Matrix A 2 Mat(n, n; K) bezeichneta[i, j] die(n 1) (n 1)- Matrix, die aus A

Mehr

Lineare Algebra I - Prüfung Winter 2019

Lineare Algebra I - Prüfung Winter 2019 Lineare Algebra I - Prüfung Winter 209. (20 Punkte) Kreuzen Sie auf dem Abgabeblatt ihre Antwort an. Pro Teilaufgabe ist genau eine der vier Antwortmöglichkeiten richtig. Für jede richtig beantwortete

Mehr

3.9 Elementarmatrizen

3.9 Elementarmatrizen 90 Kapitel III: Vektorräume und Lineare Abbildungen 3.9 Elementarmatrizen Definition 9.1 Unter einer Elementarmatrix verstehen wir eine Matrix die aus einer n n-einheitsmatrix E n durch eine einzige elementare

Mehr

R 3 und U := [e 2, e 3 ] der von e 2, e 3 erzeugte

R 3 und U := [e 2, e 3 ] der von e 2, e 3 erzeugte Aufgabe ( Es seien e =, e = Untervektorraum (, e = ( R und U := [e, e ] der von e, e erzeugte Weiter sei G := {A GL(, R A e = e und A U U} (a Zeigen Sie, dass G eine Untergruppe von GL(, R ist (b Geben

Mehr

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Vierzehnte & Fünfzehnte Woche,

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Vierzehnte & Fünfzehnte Woche, Fakultät für Mathematik PD Dr Markus Perling Heinrich Heine-Universität Düsseldorf Sommersemester 2014 Lineare Algebra 1 Vierzehnte & Fünfzehnte Woche, 1672014 10 Determinanten (Schluß) Das folgende Resultat

Mehr

5. Abgabeblatt - Lösungen. Aufgabe 17 Aufgabe 18 Aufgabe 19 Aufgabe 20 Summe:

5. Abgabeblatt - Lösungen. Aufgabe 17 Aufgabe 18 Aufgabe 19 Aufgabe 20 Summe: Lineare Algebra Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 08/09 5. Abgabeblatt - Lösungen Aufgabe 7 Aufgabe 8 Aufgabe 9 Aufgabe 0 Summe: Übungsgruppe: Namen: Tutor(in): Aufgabe

Mehr

7. Abgabeblatt Lösungen. Aufgabe 25 Aufgabe 26 Aufgabe 27 Aufgabe 28 Summe:

7. Abgabeblatt Lösungen. Aufgabe 25 Aufgabe 26 Aufgabe 27 Aufgabe 28 Summe: Lineare lgebra Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester /9 7. bgabeblatt Lösungen ufgabe 5 ufgabe 6 ufgabe 7 ufgabe Summe: Übungsgruppe: Namen: Tutor(in): ufgabe 5 (Dimension

Mehr

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V.

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V. Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung falls und nur falls ist bijektiv, d.h. ihre Matrix ist invertierbar, (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

Die Determinante ist nur für beliebige quadratische Matrizen (n = m) definiert: a 11 a 12 a a 1n a 21 a 22. det. a nn.

Die Determinante ist nur für beliebige quadratische Matrizen (n = m) definiert: a 11 a 12 a a 1n a 21 a 22. det. a nn. Die Determinante ist nur für beliebige quadratische Matrizen (n = m) definiert: Definition 1.2 (Leibniz-Formel) Die Determinante einer n n-matrix ist a 11 a 12 a 13... a 1n a 11 a 12 a 13... a 1n a 21

Mehr

9. Abgabeblatt Lösungen. Aufgabe 33 Aufgabe 34 Aufgabe 35 Aufgabe 36 Summe:

9. Abgabeblatt Lösungen. Aufgabe 33 Aufgabe 34 Aufgabe 35 Aufgabe 36 Summe: Lineare Algebra Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 8/9 9. Abgabeblatt Lösungen Aufgabe Aufgabe 4 Aufgabe 5 Aufgabe 6 Summe: Übungsgruppe: Namen: Tutor(in): Aufgabe (Nachrechnen

Mehr

9 Determinanten. ax = b, so ist dies genau dann lösbar, wenn a 6= 0gilt. Daher definiert man als Determinante

9 Determinanten. ax = b, so ist dies genau dann lösbar, wenn a 6= 0gilt. Daher definiert man als Determinante 9 Determinanten Historisch von großer edeutung war die Fragestellung, ob ein gegebenes lineares Gleichungssystem eine Lösung besitzt Zu einer gegebenen Matrix ist man daran interessiert diese Lösbarkeit

Mehr

= [Entw. nach S1 ] 2 det = [Z2 Z 2 Z 1 ] 2 det = [Entw. nach Z1 ] 5 det = [Z1 Z 1 +Z 3 ] 5 det

= [Entw. nach S1 ] 2 det = [Z2 Z 2 Z 1 ] 2 det = [Entw. nach Z1 ] 5 det = [Z1 Z 1 +Z 3 ] 5 det Aufgabe 1 Wir wissen, dass sich die Determinante einer Matrix nicht verändert, wenn wir das Vielfache einer Spalte zu einer anderen Spalte bzw. das Vielfache einer Zeile zu einer anderen Zeile addieren.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Copyright, Page 1 of 5 Die Determinante

Copyright, Page 1 of 5 Die Determinante wwwmathematik-netzde Copyright, Page 1 of 5 Die Determinante Determinanten sind ein äußerst wichtiges Instrument zur Untersuchung von Matrizen und linearen Abbildungen Außerhalb der linearen Algebra ist

Mehr

Lösung zu Serie 10. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 10. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 10 1. [Aufgabe] a) Sei V ein Unterraum eines K-Vektorraums V. Zeige, dass jede Linearform auf V eine Fortsetzung zu einer Linearform auf

Mehr

Ferienkurs Mathematik für Physiker I Skript Teil 3 ( )

Ferienkurs Mathematik für Physiker I Skript Teil 3 ( ) Ferienkurs Mathematik für Physiker I WS 2016/17 Ferienkurs Mathematik für Physiker I Skript Teil 3 (29032017) 1 Lineare Gleichungssysteme Oft hat man es in der Physik mit unbekannten Größen zu tun, für

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Lineare Gleichungssysteme und Determinanten. Lineare Gleichungssysteme.2 Determinanten 3 iii 2 LINEARE GLEIHUNGSSYSTEME UND DETERMINANTEN KAPITEL

Mehr

8. Abgabeblatt Lösungen. Aufgabe 29 Aufgabe 30 Aufgabe 31 Aufgabe 32 Summe:

8. Abgabeblatt Lösungen. Aufgabe 29 Aufgabe 30 Aufgabe 31 Aufgabe 32 Summe: Lineare Algebra Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 8/9 8. Abgabeblatt Lösungen Aufgabe 9 Aufgabe Aufgabe Aufgabe Summe: Übungsgruppe: Namen: Tutor(in): Aufgabe 9 (Nachweise

Mehr

D-CHAB Frühlingssemester 2018 A I = 1 2 A.

D-CHAB Frühlingssemester 2018 A I = 1 2 A. D-CHAB Frühlingssemester 08 Grundlagen der Mathematik II Dr. Marcel Dettling Lösung 5 ) Das Invertierungsverfahren für die Matrix A ergibt A I 0 0 0 0 0 0 0 0 und damit Für die Matrix B erhalten wir A

Mehr

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Lösung Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Um zu zeigen, dass es sich bei den gegebenen Vektoren um Basen handelt,

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 97 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Lineare : Einführung Beispiele linearer a) b) c) 2x 1 3x 2 = 1 x 1 + x 2 =

Mehr

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R. Käppeli L. Herrmann W. Wu Herbstsemester 2016 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 6 Aufgabe 6.1 Berechnen Sie die Determinanten der beiden

Mehr

Lineare Algebra I für Mathematiker Lösungen

Lineare Algebra I für Mathematiker Lösungen Lineare Algebra I für Mathematiker Lösungen Anonymous 24. April 2016 Aufgabe 1 Beantworten Sie bitte die folgenden Fragen. Jeder Vektorraum hat mindestens ein Element. Q ist ein R-Vektorraum (mit der Multiplikation

Mehr

6. Abgabeblatt - Lösungen. Aufgabe 21 Aufgabe 22 Aufgabe 23 Aufgabe 24 Summe:

6. Abgabeblatt - Lösungen. Aufgabe 21 Aufgabe 22 Aufgabe 23 Aufgabe 24 Summe: Lineare Algebra Prof. Dr. R. Dahlhaus Dr. S. Richter, N. Phandoidaen Wintersemester 8/9 6. Abgabeblatt - Lösungen Aufgabe Aufgabe Aufgabe Aufgabe 4 Summe: Übungsgruppe: Namen: Tutor(in): Aufgabe (Dimensionen

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: S. Hagh Shenas Noshari, 9. Gruppenübung zur Vorlesung S. Nitsche, C. Rösinger, A. Thumm, D. Zimmermann Höhere Mathematik Wintersemester 8/9 M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 33.

Mehr

3 Lineare Gleichungssysteme

3 Lineare Gleichungssysteme 3 Lineare Gleichungssysteme 3 Fortsetzung des Matrizenkalküls Als erstes beweisen wir einen einfachen Satz über den Rang von Matrizenprodukten Satz 3 (a) Für Matrizen A : Ã l m, B : Ã m n gilt rang AB

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) 1 Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 14: Vektorräume und lineare Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 6. Oktober 2009) Vektorräume

Mehr

Lineare Algebra. 12. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching

Lineare Algebra. 12. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching Lineare Algebra 12. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching December 14, 2017 1 Erinnerung: Determinanten, Orthogonale/unitäre Matrizen Sei A R 2 2, dann kann die Inverse

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 12 8. Juni 2010 Kapitel 10. Lineare Gleichungssysteme (Fortsetzung) Umformung auf obere Dreiecksgestalt Determinantenberechnung mit dem Gauß-Verfahren

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 3 und lineare Gleichungssysteme und

Mehr

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle.

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle. Nachschlag:Transposition von Matrizen Sei Explizit: Def: "Transponierte v. A": (tausche Zeilen mit Spalten d.h., spiegle in der Diagonale) m Reihen, n Spalten n Reihen, m Spalten z.b. m=2,n=3: Eigenschaft:

Mehr

Wir stellen uns das Ziel, wesentliche Information über. Determinanten haben auch eine geometrische Bedeutung: Volumenbestimmung eines Parallelepipeds

Wir stellen uns das Ziel, wesentliche Information über. Determinanten haben auch eine geometrische Bedeutung: Volumenbestimmung eines Parallelepipeds 39 Determinanten 391 Motivation Wir stellen uns das Ziel, wesentliche Information über die Invertierbarkeit einer n n-matrix das Lösungsverhalten zugehöriger linearer Gleichungssysteme möglichst kompakt

Mehr

Aufgaben zur linearen Algebra und analytischen Geometrie I

Aufgaben zur linearen Algebra und analytischen Geometrie I Aufgaben zur linearen Algebra und analytischen Geometrie I Es werden folgende Themen behandelt:. Formale und logische Grundlagen 2. Algebraische Grundlagen 3. Vektorräume und LGS 4. Homomorphismen und

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Sommer 4 Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT. [ Punkte] Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in

Mehr

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1 Prof. Norbert Hungerbühler Serie Lineare Algebra II ETH Zürich - D-MAVT. a Welche der folgenden Vektoren sind Eigenvektoren der Matrix? i (,,. ii (,,. iii (,,. iv (, 3,. v (,,. Ein Vektor v ist Eigenvektor

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 4

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 4 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 4 4. (Frühjahr 27, Thema, Aufgabe ) Zeigen Sie, dass die beiden folgenden Unterräume des R 3 übereinstimmen:

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I Wintersemester 3/4 Aufgabenblatt 3 3. Januar

Mehr

4 Determinanten. 4.1 Eigenschaften der Determinante. ME Lineare Algebra HT

4 Determinanten. 4.1 Eigenschaften der Determinante. ME Lineare Algebra HT ME Lineare Algebra HT 2008 86 4 Determinanten 4. Eigenschaften der Determinante Anstatt die Determinante als eine Funktion IC n n IC durch eine explizite Formel zu definieren, bringen wir zunächst eine

Mehr

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung Technische Universität München Physik Department Pablo Cova Fariña, Claudia Nagel Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 207/8 Blatt 3 - Aufgabe : Darstellungsmatrizen Sei

Mehr

Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.2 Determinanten

Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.2 Determinanten Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.2 Determinanten Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 44 8. Lineare Algebra: 2. Determinanten Ein einführendes

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 8

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 8 D-INFK Lineare Algebra HS 27 Özlem Imamoglu Olga Sorkine-Hornung Musterlösung 8. Kern von A: Die Spalten der Matrix A sind Vielfache voneinander, also sind sie linear abhängig und A hat Rang. Somit hat

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 2016/

Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 2016/ Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 206/207 20.03.207 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

Musterlösung zur Klausur Lineare Algebra I

Musterlösung zur Klausur Lineare Algebra I Musterlösung zur Klausur Lineare Algebra I Aufgabe Version A 5 Punkte: Welche der folgenden Aussagen sind wahr bzw. falsch? Setzen Sie in jeder Zeile genau ein Kreuz. Für jede korrekte Antwort erhalten

Mehr

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Universität Karlsruhe (TH) Institut für Algebra und Geometrie Dr. Klaus Spitzmüller Dipl.-Inform. Wolfgang Globke Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Lösungen zum

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:

Mehr

7 Lineare Gleichungssysteme und Determinanten. Lineare Gleichungssysteme Gauß-Algorithmus Anwendungen Determinanten

7 Lineare Gleichungssysteme und Determinanten. Lineare Gleichungssysteme Gauß-Algorithmus Anwendungen Determinanten 7 Lineare Gleichungssysteme und Determinanten Lineare Gleichungssysteme Gauß-Algorithmus Anwendungen Determinanten 7.1 Dreiecks- und Diagonalmatrizen Linke untere bzw. rechte obere Dreiecksmatrizen sind

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1 D-MAVT Lineare Algebra II FS 8 Prof. Dr. N. Hungerbühler Lösungen Serie. Welche der folgenden Vektoren sind Eigenvektoren der Matrix? (a) (,, ). Ein Vektor v ist Eigenvektor von A :=, falls Av ein skalares

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Winter 6 Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT. Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende

Mehr

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt.

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. () In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. a) Es seien A und B beliebige n n-matrizen mit Einträgen in einem Körper K.

Mehr

Lineare Algebra I. Prof. Dr. Daniel Roggenkamp Vorlesung -

Lineare Algebra I. Prof. Dr. Daniel Roggenkamp Vorlesung - Lineare Algebra I Prof. Dr. Daniel Roggenkamp - 22.Vorlesung - Aus der letzten Vorlesung: Polynome K[t] (p 0, p,, p i K mit p i = 0 i > i 0 für ein i 0 = i 0 p i t i = p 0 + p t + p 2 t 2 + + p i0 t i

Mehr