9 Dynamische Programmierung (Tabellierung)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "9 Dynamische Programmierung (Tabellierung)"

Transkript

1 9 (Tabellierung) PrinzipºÊ ÙÖ ÓÒ ÒÑ Ø ĐÙ ÖÐ ÔÔ Ò ÒÌ Ð Ù ÒÛ Ö Ò 9.1 Grundlagen Ì ÐÐ ÖÙÒ Ö ÖÄĐÓ ÙÒ Ò Ù Û ÖØ Ø ÙÑÛ Ö ÓÐØ ÆÞ ÒØ Ö ÙÖ Ý Ø Ñ Ø ÙÖ Ð Ù Ò ÖÌ Ð Ù ÒÙÒ Ö ÒÙÒ ÒÞÙÚ ÖÑ Òº Ì ÐÐ Ò ĐÓÒÒ Ò Ø Ø Ø ÖÁÒ Ü Ö Þº º Ð µó Ö ÝÒ Ñ Ð Ø Ò ÖØ µóö Ò ÖØ Òº c B. Möller ß½ß Ö Ö Ø ÐĐÓ Ø ÒÌ Ð Ù Ò ÞÛº ÈÖĐÙ ÙÒ Ó Ò ÈÖÓ Ð Ñ Ð ØÞØ Ö ÑÎÓÖ Ò Ò ÆÞ ÒØ Ò Ø Ù ÖÙÒ Ì Ð Ù ÓÒ ÐĐÓ ØÛÙÖ º c B. Möller ß¾ß

2 Ö Ò ÖÊ Ò (0) (1) (2)Ù Ûº Beispiel (Die Fibonacci-Folge)ÍÑ (n)þù Ö Ò Ò À Ö ØÛ Ò ÖÊ ÙÖÖ ÒÞ Ù ÒÙÖÞÛ Ï ÖØ ÖÒ Ø Ò ÚÓÐÐ Ì ÐÐ fib[n+1]òđóø Ö ÒÞÛ Î Ö Ð Ò 1) ÒØ ÐØ Òº ÒÐ Ò ÖÚÓÐÐ ÒÌ ÐÐ ÐÓ Ò Òº Ï Ö Ò ÒÚ Ð ¹Ï ÖØ ÒĐÓØ Ø Ó ÒÒ (i 2)ÙÒ (i c B. Möller ß ß Gegeben: Ò ÒØ ÒÑ Ö ÖØ Ö Ö Ô GÑ ØÃÒÓØ ÒÑ Ò 9.2 Alle kürzesten Wege 1] Ö Ø ÐÐØ ÙÖ Þ ÒÞÑ ØÖ ÜA Ð Ó Eµº [0, n Vº A[i][j] = g(i, j), A[i][i] = 0, A[i][j] = ĐÙÖij / Å Øn¹Ñ Ð Ö ÒÛ Ò ÙÒ ØÖ ¹ Ð ÓÖ Ø ÑÙ ÒÒÑ Ò Gesucht: ÐÐ Ø ÒÞ Òd(i, ) ÖÖ Òº j)ñ Øi, j Ñ Ø Ø Ö Ò ÖÇÖ Ò Ø ÓÒ Ù Û Ò Ú Ö ÙÒ Òº Ø Ù Ö Ø Ö ÒO(n 3

3 ÚÓÒÃÏ ÒÙÖ ÙÖ ÃÒÓØ Ò Ò ÖÅ Ò OKÐ Ù Òº ØÖ Ð ÓÖ Ø ÑÙ ÒÒØ Ò ÑÁØ Ö Ø ÓÒ Ö ØØ ÄĐ Ò ĐÍ Ö Ö ØÑ Ò ÁÒ ÓÖÑ Ø ÓÒÒ Ø ÓÒ ÖÒØ ÐÐ ÖØ Ó Ö Đ ÐØÑ Ò ÒAlgorithmus j Ö ÑÁÒÒ Ö Ò º º Ù ÖiÙÒ j Ð Ø ÒÙÖÃÒÓØ Ò Ò [i][j] ÄĐ Ò Ò ÃÏÚÓÒiÒ von 1]Ú ÖÛ Ò Øº Idee ( ):Ì ÐÐ Ö ÒD µº [0, k Ñ Ø ØD 0 = A ÒÒ[0, = k 1] Floydº Ë Ò ÐÐ Ï ÚÓÒiÒ jđù Ö ÒÃÒÓØ ÒkÐĐ Ò Ö Ð ØÖ Ø ÒÙÒ Ò ÒÃÏ ĐÙÖD k+1 [i][j] Ò kùò kò jº ÒÒ ÐØ Ö Ò Ó ÐØD k+1 Ò ÖÒ ÐÐ ØÞØ ÒÃÏĐÙ ÖkÞÙ ÑÑ Ò Ù ÃÏÚÓÒi [i, j] = D k [i][j]º D k+1 [i][j] = D k [i][k] + D k [k][j]

4 ÁÒË Ð Ò ÓÖÑ D[0] = A ;\\ for (k = 0 ; k < n ; k++) for (i = 0 ; i < n ; i++) for (j = 1 ; j < n ; j++) D[k+1][i][j] = min(d[k][i][j], D[k][i][k]+D[k][k][j]) ; kþù ÑÑ ÒÐ Ò Ã ÒÒÑ ÒÌ Ð ÖD lñ Ø Ö ÒĐÙ ÒÞÛ Å ØÖ Þ Ò ĐÙÖ Ú Ö Ò Ò D D¹Î Ö ÓÒ Òº Ò Ù Ö Ò ÐÝ ÐÐ Ï ÞÙÖ Ø ÑÑÙÒ ÚÓÒ k+1 Đ Ò ØÒÙÖÚÓÒD k ÙÒ Ò ØÚÓÒ ÖĐÙ Ö ÒD ÓÒ ØÐĐ ÒØÖ Ú Ð ÖÏ ÞÛº Ö ÒÏ ÚÓÖµº [i][k] Ò Ò ÒØ ÐØ Ò ÒÃÒÓØ ÒkÒ Ø ÑÁÒÒ Ö Ò D k+1 ÙÒ Ð Ó ÐØÛ Ò( ) D k+1 [i][k] = D k [i][k] D l < kº k+1 [k][j] = D k [k][j].

5 [i][j]û Ö ÒÙÖ Ò ÖËØ ÐÐ ÙÖ Ö ÒÙÒ ÚÓÒD k+1 [i][j] Ö Ù ØÑ Ò Ð ÓD ĐÙ Ö Ò Ø ÑÑ Òº ÖÚÓÖ ÒÁØ Ö Ø ÓÒ ÙÒ D k Ö Ù ØµÙÒ ÞÛ Ï ÖØ ĐÙÖ D Ò Ñ Ò ÒĐÓØ Ø ÓÑ ØÒÙÖ Ò Å ØÖ Ü ĐÙÖDº kùò D k+1 ÑÈÐ ØÞ Ñ Ø ÒÒ ÖĐÍ Ö Ò ÚÓÒD kþùd k [i][j] Ù ÖÅ ØÖ Ü ÒØÖ path[i][j] ØÞÙi,j Ò Ò Û Ò ÒÓØ Ò Implementierung Ù Ò ÑÃÏÚÓÒiÒ j Òº Ì ÐÛ ÚÓÒiÞÙÑ Û Ò ÒÓØ ÒÙÒ ÚÓÒ ÓÖØÒ jº ÖÚÓÐÐ ØĐ Ò Ï Ö Ø ÙÖ Ö ÙÖ Ú Î Ö ÓÐ Ò Ö c B. Möller ß½¼ß

6 c B. Möller ß½½ß for (i = 0 ; i < n ; i++) for (j = 1 ; j < n ; j++) { D[i][j] = A[i][j] ; path[i][j] = -1 ; } for (k = 0 ; k < n ; k++) for (i = 0 ; i < n ; i++) for (j = 1 ; j < n ; j++) if (D[i][k] + D[k][j] < D[i][j]) { D[i][j] = D[i][k] + D[k][j] ; path[i][j] = k ; } Ö Ø Ø Ö Ô Ò ÓÖØ Ù ĐÙÖÒ Ø Ú Ã ÒØ Ò Û Ø Û ÒÒ ÐÓÝ Ð ÓÖ Ø ÑÙ ÙÒ Ø ÓÒ ÖØ Ù ĐÙÖ Ò Ö Ø Ø ÒµÃÖ Ñ ØÒ Ø Ú Ñ ÑØ Û Ø Ü Ø Ö Òº Bemerkung ÚÓÒ Ò Ò ÖÙÒ Đ Ò ÙÒ ĐÓÒÒ ÒÔ Ö ÐÐ Ð Ù ĐÙ ÖØÛ Ö Òº ÐÐ ÙÛ ÙÒ Ò Ò ÐÓÝ Ð ÓÖ Ø ÑÙ Ò Bemerkung c B. Möller ß½¾ß

7 ÐÐ Ã ÒØ Ò Û Ø Ò Ð º º Ð Ø ÒØÐ Ò Ein Spezialfall ÙÒ Û Ø Ø Ö Ö Ô ÚÓÖº ÙÒ Ø ÒÑ Ø0 Ø ØØÑ Ø Ó ÖØÛ Ö Òº Ø Ò Û Ø ĐÓÒÒ Ò ÒÒÞÙ1ÒÓÖÑ ÖØÙÒ ÒÒ ÒØ Ø Ø Ò ÓÓÐ Å ØÖ Üº Ï ÐĐ Ò Ò Ò Ú ÖÐÓÖ Òº c B. Möller ß½ ß ÃϹ Ù Û Ö ÒÒÞÙ Ò ÖÏ ¹ Ü Ø ÒÞ¹ Ù D[i][j] = 1 i j Ï ÚÓÒiÒ j k] Ü Ø ÖØ Û ÒÒ [0, Ò ÖÒ ÐÐ ÒÏ ÚÓÒiÒ kùò Ò ÖÚÓÒkÒ j Ò 1] Ü Ø ÖØÓ Ö Ò ÓÐ Ö ÓÒ Ò[0, 1] Ü Ø Ö Òº k [0, k Verfahren bei Hinzunahme von kº ÒÏ ÚÓÒiÒ j Ò Ù ÑÑ Ò D Ù 0/1¹Û ÖØ ÒÅ ØÖ Þ Ò k+1[i, j] = D k [i, j] (D[i, k] D[k, j]) D k+1 [i, j] =Ñ Ü(D k [i, j],ñ Ò(D À Ð Ö Ò ÖÖ Ö Ø ÒØ ÔÖ Ø Ö ¹ Ð ÙÒ º ÐÐ Ñ Ò ÖÀ ÒØ Ö ÖÙÒ ÃÐ Ò ¹ Ð Ö Ò ÞÛºÚÓÐÐ ØĐ Ò Î Ö Ö Ò ØAlgorithmus von k [i, k], D k [k, j])) Warshallº

8 9.3 Multiplikation mehrerer Matrizen s¹å ØÖ Üº r¹å ØÖ ÜÙÒ C Ò Ë A Ò p q¹å ØÖ Ü B Ò q r Ù Ö Ò Ò A Ï Ø ĐÙÒ Ø Ö B C Ð (A B) CÓ ÖA (B C)º 2º ĐÙÖ = 6, q = 10, r = 9, s = r¹å ØÖ Ü ÑÒ Ú Ò Beispiel 9.3.1Ë Òp ÅÙÐØ ÔÐ Ø ÓÒ Ò Öp B Ö Ù ØÑ Ò540ÅÙÐØ ÔÐ Ø ÓÒ Ò ÒØ Ø Ø Ò rë Ð ÖÑÙÐØ ÔÐ Ø ÓÒ ÒÒĐÓØ º Ð Ó q¹å ØÖ ÜÑ Ø Ò Öq Î Ö Ö Ò Ò p q ÅÙÐØ ÔÐ Ø ÓÒ ÒºËÙÑÑ 648ÅÙÐØ ÔÐ Ø ÓÒ Òº ĐÙÖA C Ò 180ÅÙÐØ ÔÐ Ø ÓÒ ÒÒĐÓØ º Ö Ø Ò 6 9¹Å ØÖ Üº ĐÙÖ(A C Ö Ù ØÑ ÒÒÓ Ñ Ð 108 ÅÙÐØ ÔÐ Ø ÓÒ ÒºÁÒ ÑØ Ò ÖÃÐ ÑÑ ÖÙÒ ÒÙÖ ĐÙÖB 300ÅÙÐØ ÔÐ Ø ÓÒ Ò Ö ÓÖ ÖÐ º 10 2¹Å ØÖ Ü Ð ÒÚÓÒA C) Ö Ù ØÒÓ Ñ Ð 120 C)Û ÒØÐ ÆÞ ÒØ Öº Ñ Ø Ø ÃÐ ÑÑ ÖÙÒ A (B B) (B

9 Ò Ò ÓÔØ Ñ Ð ÃÐ ÑÑ ÖÙÒ ÞÙÖ Ö ÒÙÒ ÚÓÒ Aufgabenstellung A 1  ÃÐ ÑÑ ÖÙÒ ĐÙ ÖØ Ù Ò ÖÙÔÔ ÖÙÒ nº A 2 A Á Ø ÓÔØ Ñ Ð ÓÑĐÙ Ò Ù ÃÐ ÑÑ ÖÙÒ ÒÚÓÒ (A 1 A i ) (A i+1 A n )Ñ Øi {1, n}º ĐÙÖ ÒÞ Ðk(n) ÖÑĐÓ Ð ÒÃÐ ÑÑ ÖÙÒ Ò ÐØ n Ö ÒÓÔØ Ñ Ð Òº A 1 A 1ÙÒ iùò A i+1 A k(1) = n 1 k(n) = k(i) k(n i). i=1 Ë Û Ò ÜÔÓÒ ÒØ ÐÐÑ Ønº Ð Ó ÓÐÐØ Ñ ÒÒ Ø ÐÐ Ò Ó º Ø Ð Ò Ò Ð Òk(n) ÃÐ ÑÑ ÖÙÒ ÑĐÓ Ð Ø ÒÙÒØ Ö Ù Òº = 1 Ì Ð Ù Ò Ò Ö Ð ÖØ ÒĐ ÑÐ ÃÐ ÑÑ Ö 1) ÓÐ Ì Ð Ù Òº jóôø Ñ Ðº ÈÖÓ Ù Ø Ö ÖØA i A ØÒÙÖn 2 (n n 1( 2n n )º

10 9.3.2 Detaillierung Gegeben:Å ØÖ Þ ÒA 1 A nñ ØËÔ ÐØ Ò ÒÞ Ð Òc i Û Ð Ñ Ø ÈÖÓ Ù Ø Ð ØÛ Ö Ò ÒÒ ÑĐÙ Ò A 0 Ð Òº Gesucht: Å Ò Ñ ÐÞ ÐMÚÓÒË Ð ÖÑÙÐØ ÔÐ Ø ÓÒ Ò ĐÙÖ c i 1 Ð Ò Ò(i n ÛĐÓ ÒÐ ÖÅ ØÖ ÜÑÙÐØ ÔÐ Ø ÓÒº ÈÖÓ Ù ØA 1 A Lösung:Ë M ij Å Ò Ñ ÐÞ Ð ĐÙÖA 1nº ÐØ ÒÒ ØM = M = 2 n)ºa 1 c i 1 A jº ĐÙÖ ÒĐÓØ Ø ÒM¹Ï ÖØ ÐØ k i, j (k + 1) < j i =Ñ Ò M ij (M ik + M (k+1),j + c i 1 c k c j ) i<k<j c nº ij ÓÖ Ò ØÒ Ö Û Ò ÒÒÑ Ò n )Ï ÖØ Ñ Ø Ù Û Ò O(n) Ö Ò Ø 0º 2 1)Ï ÖØ M ÖĐÓ ÚÓÒj iø ÐÐ Ö Ò ÒÒ Ò Ñ Ø ÒM = Û Ö Ò Ð ÓΘ(n Ø Ù Ò ÄĐÓ ÙÒ ÒO(nÐÓ n) ÐÐ Ö Ò Û Ö Ö )º 2 º º Ö ÑØ Ù Û Ò Ð Ø ÒO(n 3 Ó Ò ÒĐÙ Ö Ø Òº Ù Û Ò ĐÙÖ ÒØÐ Å ØÖ ÜÑÙÐØ ÔÐ Ø ÓÒO(n 3 ii ) c B. Möller ß¾¼ß

11 Ì ÐÐ ÖÙÒ ÒÛ Ö Ò Ò Ö Ô ÖØÓ Ö 9.4 Schlußbemerkungen ÐĐÓ Øº Ï Ø Ö Ô Ð Ñ Ø ÖÌ ÐÐ ÖÙÒ Ø Ò ÙØÐĐÓ Ò Ð Ò Ò È Ð³ Ö ÞÙÖ Ö ÒÙÒ Ö ÒÓÑ Ð Ó ÆÞ ÒØ Ò Ø Ò¹Æ Ú ÐÐ ¹Ë Ñ Ó ¹Ã Ñ ¹ ÓÙÒ Ö¹ Ð ÓÖ Ø ÑÙ ÞÙÖËÝÒØ Ü ÝÒ ÐÝ ÓÒØ ÜØ Ö Ò Ö ÑÑ Ø Ò ÞÛºËÝÒØ Ü Ö ÑÑ Òº c B. Möller ß¾½ß

Verteilte Systeme/Sicherheit im Internet

Verteilte Systeme/Sicherheit im Internet ruhr-universität bochum Lehrstuhl für Datenverarbeitung Prof. Dr.-Ing. Dr.E.h. Wolfgang Weber Verteilte Systeme/Sicherheit im Internet Intrusion Detection und Intrusion Response Systeme (IDS & IRS) Seminar

Mehr

½ Ï ÐÐ ÓÑÑ Ò ÞÙÑ ËØÙ Ý Ù ÁÒ Ø ÐÐ Ø ÓÒ Ò ÓÒ ÙÖ Ø ÓÒ Á² ½µ ÖØ Þ ÖÙÒ º Ø Ö Ö Ø ÚÓÒ Ú Ö ÃÙÖ Ò ÞÙÑ Ë Ö Ä ÒÙÜ Ò ÆÍ ÖØ Ñ Ò ØÖ ØÓÖ Ä µº Ò Ö Ò Ö ÃÙÖ Ò ËÝ Ø Ñ Ñ Ò ØÖ Ø ÓÒ Ë ½µ Æ ØÛÓÖ Ò Æ Ì½µ ÙÒ Ë ÙÖ ¹ ØÝ Ë È½µº

Mehr

Ê Ê ÙÒ ÒØ ÖÖ Ý Ó ÁÒ Ô Ò ÒØ ÙØÓÖ ÖÒ Ö Ë Ñ Ø Å Øº ÆÖº ¾ à ÒÒÞº ½ ½ ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ÁÒ ÐØ Ú ÖÞ Ò ½ ÅÓØ Ú Ø ÓÒ ¾ Ì Ð Ò Ê ËÝ Ø Ñ ÖÖ Ý Å Ò Ñ ÒØ ËÓ ØÛ Ö Ê Ä Ú Ð º½ Ö «Ò Ø ÓÒ Ò ººººººººººººººººººººººººººººººº

Mehr

1 Die Invariantentechnik. Algorithmen mit Intervallen. s = 0; i = 0; // i <= M while (i < M) { s = s + f(i); i = i + 1 ; // i <= M.

1 Die Invariantentechnik. Algorithmen mit Intervallen. s = 0; i = 0; // i <= M while (i < M) { s = s + f(i); i = i + 1 ; // i <= M. ĐÍ ÖÐ Ò Û Ö Ó ÈÖÓ Ö ÑÑ Ò Ò Ù ÖÙÒ Ò ÒĐÙ Ø Û Öº ÐØ ÙÒ ÒÓ Ë ÐÙ ÞÙ ÖÙÒ º Ë Û Ö ÒÙÖ ÒÒ ÆÙÒ 1 Die Invariantentechnik Algorithmen mit Intervallen Ò Û Ø Å Ø Ó ÞÙÑ Ö Ø ÐÐ Ò Ö ÒØ ÖØ ÓÖÖ Ø Ö ÈÖÓ Ö ÑÑ Ø ÁÒÚ Ö ÒØ ÒØ

Mehr

= = = = =

= = = = = Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ Â Æ» ¾¼½ ½ ÎÓÖ ÙÐ ½ Ù ¹½½ Ù Ñ Ð Ò Û Ö Ê Ð Ñ Ø Ñ Ö Û Ö ÓÖÑØ Ò Òº Ø ÐÐ Ù Ø ÐÐØ Ò ËØ Ò Ñ Ö ÚÓÖ Ò Òº µ Ï Ú Ð Ú Ö Ò ÓÑÑ Ò ÚÓÖ µ Ï Ð Ø Ñ Ù Ø Ò Ú ÖØÖ Ø Ò µ Ï Ð Ø Ù Ñ ÐØ Ò Ø Ò ¾ À Ï Ò

Mehr

ÁÒ Ø ØÙØ ĐÙÖ ÁÒ ÓÖÑ Ø Ö Ì Ò Ò ÍÒ Ú Ö ØĐ Ø ÅĐÙÒ Ò À ÙÔØ Ñ Ò Ö Ñ ËÓÑÑ Ö Ñ Ø Ö ½ ÈÖÓ º Öº Àº º À Ö Ò Î ÖÞ Ò Ò Ø ÙÒ Ö ÒÛ Ò ÙÒ Ò Ñ Æ ØÞ¹ ÙÒ ËÝ Ø ÑÑ Ò Ñ ÒØ Ä È Ú Ä ØÛ Ø Ö ØÓÖÝ ÈÖÓØÓÓÐ Î Ö ÓÒ Ê Ö ÒØ Ò Ö Ë ÐÐÑ

Mehr

Peter Gienow Nr.11 Einfach heilen!

Peter Gienow Nr.11 Einfach heilen! Peter Gienow Nr.11 Einfach heilen! Reading excerpt Nr.11 Einfach heilen! of Peter Gienow Publisher: Irl Verlag http://www.narayana-verlag.com/b4091 In the Narayana webshop you can find all english books

Mehr

Þ ÒÞÙÒØ Ö Ù ÙÒ Ò Ò Ö ÎÓÖ Ð Ò ÙÒ Î ÖØ Ù Ò ¹Å Ø Ó Ö ÙÓÖ ÒÙÒ ÔÖÓ Ð Ñ ÔÐÓÑ Ö Ø Ñ ÁÒ ÓÖÑ Ø Ò º Ò ÓÖѺ Ê Ò Ö À ÖÖÐ Ö ØÖ Ù Ö ÈÖÓ º Öº Ö Ò ÈÙÔÔ Ôк ÁÒ ÓÖѺ Ù Ä Ö ØÙ Ð Ö Ã Ò ØÐ ÁÒØ ÐÐ ÒÞ ÙÒ Ò Û Ò Ø ÁÒ ÓÖÑ Ø ÍÒ

Mehr

Ò ĐÙ ÖÙÒ Ò ÒØÛ ÐÙÒ Ø Ò Ö ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ ÃÓÒÞ ÔØ Å Ø Ó Ò ÙÒ Ï Ö Þ Ù ÞÙÖ ÒØÛ ÐÙÒ ÒØ Ö ÖØ Ö ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ Ñ Ø Ò Ò ÍÑ Ð ß ÎÓÖÐ ÙÒ ÙÒØ ÖÐ Ò ß Öº Å ÖØ Ò Ò Ö ÙÒ Ó Ö ÁÒ Ø ØÙØ ĐÙÖ Ö ØÖ ÙÒ ¹ ÙØÓÑ Ø ÖÙÒ Å

Mehr

Ã Ô Ø Ð ¾ ØÙ ÐÐ Ö ËØ Ò ÙÒ Ì Ò ÒÞ Ò Ö Ã Þ¹ÁÒÒ ÒÖ ÙÑ ÖÛ ÙÒ ÁÒ ÐØ Ò ¾º½ ÅÓØ Ú Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾º¾ ÁÒÒ ÒÖ ÙÑ ÙØÞ Ñ Ã Þ¹ÁÒÒ ÒÖ ÙÑ º º º º º º º º º º º º º º

Mehr

Ò ĐÙ ÖÙÒ Ò ÒØÛ ÐÙÒ Ø Ò Ö ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ ÃÓÒÞ ÔØ Å Ø Ó Ò ÙÒ Ï Ö Þ Ù ÞÙÖ ÒØÛ ÐÙÒ ÒØ Ö ÖØ Ö ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ Ñ Ø Ò Ò ÍÑ Ð ß ÎÓÖÐ ÙÒ ÙÒØ ÖÐ Ò ß Öº Å ÖØ Ò Ò Ö ÙÒ Ó Ö ÁÒ Ø ØÙØ ĐÙÖ Ö ØÖ ÙÒ ¹ ÙØÓÑ Ø ÖÙÒ Å

Mehr

ÔÐÓÑ Ö Ø ÈÖÓ Ù Ø ÓÒ ÔÐ ÒÙÒ Ñ Ø À Ð ÚÓÒ ÅÙÐØ ÒØ Ò Ý Ø Ñ Ò Ë ÄĐÙ ÔÐÓÑ Ö Ø Ñ Ö ÁÒ ÓÖÑ Ø Ö ÍÒ Ú Ö ØĐ Ø ÓÖØÑÙÒ ½ º Ç ØÓ Ö ¾¼¼½ ØÖ Ù Ö ÈÖÓ º Öº Ã Ø Ö Ò ÅÓÖ Ôк ÁÒ ÓÖѺ ËØ Ò À Ù Ø Ò À ÖÑ Ø ØĐ Ø Ö Ø Ð Ø ØĐ Ò Ú

Mehr

: lim. f(x) = o(1) Ö x 0. f(x) = o(g(x)) Ö x. x 2 = lim. x 0 lim

: lim. f(x) = o(1) Ö x 0. f(x) = o(g(x)) Ö x. x 2 = lim. x 0 lim Ì Ð ÁÁ Ä Ò Ö Ð ÙÒ Ý Ø Ñ ¹ Ö Ø Å Ø Ó Ò Ä Ò Ù¹ËÝÑ ÓÐ Ä Ò Ù¹ËÝÑ ÓÐ Ð Ò Î Ö ÐØ Ò ÚÓÒ ÙÒ Ø ÓÒ Ò Ò Ò Ö ÍÑ ¹ ÙÒ ÚÓÒ Ø ÑÑØ Ò Ï ÖØ Ò ÞÙ Ð Þ Ö Òº Ò Ø ÓÒ º½º Ò f,g : D R R ÙÒ Ø ÓÒ Ò ÙÒ a D Ò ÀÙ ÙÒ ÔÙÒ Øº ÐØ f(x)

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ½º½ ÅÓØ Ú Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ à ÖÞ Ø ¹Ï ¹ Ð ÓÖ Ø Ñ Ò º º

ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ½º½ ÅÓØ Ú Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ à ÖÞ Ø ¹Ï ¹ Ð ÓÖ Ø Ñ Ò º º Ö ÒÙÒ ÖÞ Ø Ö È ÙÒØ Ö ØÙÒ ÚÓÒ Ú Ö ÓØ Ò Ã Ö ÐÐ Å ÐÐ Ö ËØÙ Ò Ö Ø Ñ ÁÒ Ø ØÙØ Ö Ì ÓÖ Ø ÁÒ ÓÖÑ Ø Ä Ö ØÙ Ð ÈÖÓ º Öº ÓÖÓØ Ï Ò Ö ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ÙÐØØ Ö ÁÒ ÓÖÑ Ø ¾ º Ç ØÓ Ö ¾¼¼ ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ½º½ ÅÓØ Ú

Mehr

Ø Ò Ö Ù Ò Â ÓÚ Ò Ò Ò ÀÒ Ò Ò Ï ØØÙÖÑ ÙÒ ÖÛ Ø Ò Û ÖÛ ÒØ Ö Ð Ò Óº Å Ö Ð Ù Ù Ö Û ÒÐ Ø Ò ÒÞ ÐÔ Ö ÓÒ Ö Ù Ò Â ÓÚ Ö Ð Ò Ò Ð ËØ ÐÐ Ø ÐÐØ ÙÒ Â ÓÚ ÓØ Ø Ò Ø Øº Å

Ø Ò Ö Ù Ò Â ÓÚ Ò Ò Ò ÀÒ Ò Ò Ï ØØÙÖÑ ÙÒ ÖÛ Ø Ò Û ÖÛ ÒØ Ö Ð Ò Óº Å Ö Ð Ù Ù Ö Û ÒÐ Ø Ò ÒÞ ÐÔ Ö ÓÒ Ö Ù Ò Â ÓÚ Ö Ð Ò Ò Ð ËØ ÐÐ Ø ÐÐØ ÙÒ Â ÓÚ ÓØ Ø Ò Ø Øº Å Å Ò ÂÙ Ò Ò Ù Ò Â ÓÚ Ò Ù Ø Ö Ò Ö Ø Ø Ø Ö Ö ÏÓ Ò Ö Ð Ö ÙÒ Û ÐØ Ò ÙÐ Ö ÜØÖ Ñ ÑÙ Ö Ò Ò¹ Ò Ò Ñ Ò Û Ö Ì Ö Ì Ò Ò Æ Ö Ø Ò Ò ÙÒ Ö Ò Ó Ö Ò Ö ØÙÒ Ð Òº Ò Ò Û Ö ÒÙÖ ÒÑ Ð Ò Ö Ò ÖÙÒ ÙÑ Ò ½½º Ë ÔØ Ñ Ö ¾¼¼½ Ó Ö Ö Ð Ë ØÙ

Mehr

Ë ÑÑÐÙÒ ÙÒ ÆÙØÞÙÒ Ö Ö Ê ÓÙÖ Ò Ò Ï ØÚ Ö Ö Ò ØÞ Ò Å Ð Å Ý ÁÒ Ø ØÙØ ĐÙÖ ÁÒ ÓÖÑ Ø Ë ÑÑÐÙÒ ÙÒ ÆÙØÞÙÒ Ö Ö Ê ÓÙÖ Ò Ò Ï ØÚ Ö Ö Ò ØÞ Ò Å Ð Å Ý ÎÓÐÐ ØĐ Ò Ö ÖÙ Ö ÚÓÒ Ö ÙÐØĐ Ø ĐÙÖ ÁÒ ÓÖÑ Ø Ö Ì Ò Ò ÍÒ Ú Ö ØĐ Ø ÅĐÙÒ

Mehr

Stefan Michaelis E S. Lehrstuhl für Elektronische Systeme und Vermittlungstechnik. Lehrstuhl für Künstliche Intelligenz

Stefan Michaelis E S. Lehrstuhl für Elektronische Systeme und Vermittlungstechnik. Lehrstuhl für Künstliche Intelligenz ß ÔÐÓÑ Ö Ø ß Ì Ò Ò Ø Å Ò Ò ÞÙÖ Ò ÐÝ ÚÓÒ Ì Ð ÓÑÑÙÒ Ø ÓÒ Ò ØÞÛ Ö Ò Stefan Michaelis Þ Ñ Ö ¾¼¼¼ E S V Lehrstuhl für Künstliche Intelligenz Lehrstuhl für Elektronische Systeme und Vermittlungstechnik Prof.

Mehr

Ź Ö ÑÑ Ø ÑÓ ÐÐ ÖØ Ù Ö Á ÝÒØ Ø ÇÔ Ö Ø ÓÒ Ò Ð Ð Ñ ØØ Ð ØÖ Ø Ö ÑÓÖÔ Ó ÝÒØ Ø Ö Å Ö Ñ Ð ÙÒ Ø ÓÒ Ö Òº È ÓÒÓÐÓ ÙÒ Ö ØÖÖ Ð Ü Ð µ ÁÒ ÓÖÑ Ø ÓÒ Û Ö Ö Ø ÔØ Ò Ö Ë

Ź Ö ÑÑ Ø ÑÓ ÐÐ ÖØ Ù Ö Á ÝÒØ Ø ÇÔ Ö Ø ÓÒ Ò Ð Ð Ñ ØØ Ð ØÖ Ø Ö ÑÓÖÔ Ó ÝÒØ Ø Ö Å Ö Ñ Ð ÙÒ Ø ÓÒ Ö Òº È ÓÒÓÐÓ ÙÒ Ö ØÖÖ Ð Ü Ð µ ÁÒ ÓÖÑ Ø ÓÒ Û Ö Ö Ø ÔØ Ò Ö Ë ÈÓ Ø ÝÒØ Ø ÇÔ Ö Ø ÓÒ Ò Á È Ð ÔÔ Ï Ö ÍÒ Ú Ö ØØ Ä ÔÞ Ô Ð ÔÔºÛ ÖÙÒ ¹Ð ÔÞ º Ô Ð ÔÔÛ Öº ½ º ÔÖ Ð ¾¼½ ½» Ź Ö ÑÑ Ø ÑÓ ÐÐ ÖØ Ù Ö Á ÝÒØ Ø ÇÔ Ö Ø ÓÒ Ò Ð Ð Ñ ØØ Ð ØÖ Ø Ö ÑÓÖÔ Ó ÝÒØ Ø Ö Å Ö Ñ Ð ÙÒ Ø ÓÒ Ö Òº È ÓÒÓÐÓ

Mehr

15+9 = 24 8 = 41 6 = 44+4 = 45 5 = = = = = 26 7 = 13 6 = = 27+6 = = =

15+9 = 24 8 = 41 6 = 44+4 = 45 5 = = = = = 26 7 = 13 6 = = 27+6 = = = Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ Ë ÈÌ»ÇÃÌ ¾¼½¾ ½ ÎÓÖ ÙÐ ½ Ù ¹½½ Ï Ú Ð Ö ÒÒ Ø Ù Ò Ö ÙÖ ÒØ Ò Ù ¹½¾ Ù Ô Ø Ö ÊØ ÐÖ Ø Ö ÙØ Å Ù Ò ÙÒ Ò Ã Ø Ö ÍÒ ÒÒ Ö Ò Ø Ù Û Ò Û ÐØ ÛÓ Ð Ò Ò Ò ÏÓ Òµ À ÒÛ ÙÒ Ò Û Ð Ò Ò Ð Ò Ò ÈÙÒ Ø ÙÒØ

Mehr

Å Ø Ò Ñ ÙÒ Ö Å Þ Ò Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ Å Ò Ò Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº Ê Ö ÚÓÒ ÃÖ ¾º Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº ØÐ ÃÙÒÞ Å Ø Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº À Ò ¹È Ø Ö Ë Û

Å Ø Ò Ñ ÙÒ Ö Å Þ Ò Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ Å Ò Ò Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº Ê Ö ÚÓÒ ÃÖ ¾º Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº ØÐ ÃÙÒÞ Å Ø Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº À Ò ¹È Ø Ö Ë Û Ù Ñ ÁÒ Ø ØÙØ Ö ËÓÞ Ð È ØÖ ÙÒ ÂÙ Ò Ñ Þ Ò Ö ÄÙ Û ¹Å Ü Ñ Ð Ò ¹ÍÒ Ú Ö ØØ Å Ò Ò ÎÓÖ Ø Ò ÃÓÑÑ Ö Ö Ä Ø Öµ ÈÖÓ º Öº Ê Ö ÚÓÒ ÃÖ Ê Ó ØÓÖ Ò Ö Ò Ð ÔÓ Ø ÍÒØ Ö Ð Ø ÒÓÖÑ Ð¹ ÙÒ Ö Û Ø Ò Ã Ò ÖÒ ÖØ Ø ÓÒ ÞÙÑ ÖÛ Ö Ó ØÓÖ Ö

Mehr

±0, 1m 2 m 3..m 53 2 e 10e 9..e

±0, 1m 2 m 3..m 53 2 e 10e 9..e Ê Ò Ò Ï ÖÙÑ Ð Ö Ö Ò Ò Ø Ó ÓÑÔÙØ Ö Ì ÐÒ Ñ Ö Ö Ø Ò Ö Ö ÒÒ Å Ò È ØÖ Å ÙØ Ò Ö ÊÓÞ È ØÖ ÃÐ ØÞ Ö ØÓÔ Ö Ë Ñ Ø ÊÓ ÖØ Ë ÐÑ ÒÒ Ò Ö ¹Ç Ö ÙÐ À ÒÖ ¹À ÖØÞ¹Ç Ö ÙÐ ÁÑÑ Ò٠йà ÒØ¹Ç Ö ÙÐ À Ö Ö¹Ç Ö ÙÐ Ò Ö ¹Ç Ö ÙÐ ÁÑÑ ÒÙ

Mehr

α : Σ γ Σ α γ : Σ α Σ γ

α : Σ γ Σ α γ : Σ α Σ γ Ë Ñ Ò Ö Ö Ø ØÖ Ø ÁÒØ ÖÔÖ Ø Ø ÓÒ Á È Ò ½¼º ÂÙÐ ¾¼¼ ÄÙ Û ¹Å Ü Ñ Ð Ò ¹ÍÒ Ú Ö ØØ Å Ò Ò ÁÒ Ø ØÙØ Ö ÁÒ ÓÖÑ Ø Ä Ö¹ ÙÒ ÓÖ ÙÒ Ò Ø Ì ÓÖ Ø ÁÒ ÓÖÑ Ø ØØ Ò Ò ØÖ ¹ ¼ Å Ò Ò Î Ö Ö ÓÞ ÒØ ØÖ Ù Ö Æ Þ Å ÝÐÓÚ ÈÖÓ º Å ÖØ Ò ÀÓ

Mehr

(t M (x)) 1/k L(M) = A. µ(x) c. Prob µ [M( x,1 m ) χ A (x)] < 1 m. x 1

(t M (x)) 1/k L(M) = A. µ(x) c. Prob µ [M( x,1 m ) χ A (x)] < 1 m. x 1 T U M Á Æ Ë Ì Á Ì Í Ì Ê Á Æ Ç Ê Å Ì Á à ¼º ÏÓÖ ÓÔ Ö ÃÓÑÔÐ Ü ØØ Ø ÓÖ Ø Ò ØÖÙ ØÙÖ Ò ÙÒ Þ ÒØ Ð ÓÖ Ø Ñ Ò ÖÒ Ø Ïº Å ÝÖ ËÚ Ò ÃÓ Ù ÀÖ ºµ ÀÁ ÃÄÅÆÇ ÌÍŹÁ¼ ¼ ÅÖÞ ¾¼¼ Ì À Æ Á Ë À Í Æ Á Î Ê Ë Á Ì Ì Å Æ À Æ ÌÍŹÁÆ

Mehr

ÎÓÖÖØÙÒ ÑØÖÐ ĐÙÖ Ò ËØÙÙÑ Ò Ò ĐÖÒ ÅØÑØ ÙÒ ÁÒÓÖÑØ Ò Ö ÍÒÚÖ ØĐØ ÄÔÞ ÀÖÙ Ò ÚÓÑ ËØÙÒÒ Ö ÙÐØĐØ ĐÙÖ ÅØÑØ ÙÒ ÁÒÓÖÑØ ÏÖÙÑ Ò ÌÙØÓÖÙÑ ÅØÑØ ÁÒ ÐÐÒ ÚÓÒ ÙÒ ÖÖ ÙÐØĐØ ÒÓØÒÒ ËØÙÒĐÒÒ Ø ĐØÙÒ ÑØ ÑØÑØ Ò ËÚÖÐØÒ Ð ØÚÖ ØĐÒк

Mehr

R ψ = {λ ψ, λ 0}. P ψ P H

R ψ = {λ ψ, λ 0}. P ψ P H Ã Ô Ø Ð Ç ÖÚ Ð Ù ØÒ ÙÒ ÍÒ Ø ÑÑØ Ø ÒØ Ò ÐÐ Ò Ö Ö ØØÐ Ò Ñ ÙÒ Ò ººº Ò Û Ö Ø ¹ Ø Ø Ö Ø Ö Ö È ¹ ÙÒ Ø ÓÒ ÙÒ Ñ Ø Ö Æ ØÙÖ ØÞ ººº Ò ËØ Ð Ö ØÞ Û Ò Ø Ò Ö Ò Â Ö ÙÒ ÖØ Ø ÑÑ Ò Û Ö ººº ÎÓÒ Ò Ñ Ï ÞÙÖ ÞÙ ØÖÙÑ Ò ÞÙÖ ÞÙÑ

Mehr

ÃÔØÐ ÒÓÑÑÒ ¹ ÙÒ ËÙ ØØÙØÓÒ «Ø ËÐÙØÞݹÐÙÒ ÙÒ ËÐÙØ ÞµÝ ¼¹µ Ö ÏÐ ÎÓÖÞÒ Òººº Òкºº Þ Ð ß Ü Ü Ô Ô ßÞÐ ÃÖÙÞÔÖ «Ø ÞÛº ÒÒØ ÑÐ ĐÒÖÙÒÒ Þ Ð ß Ü Ü Ô Ô ÈÖ ĐÒÖÙÒ Ô ¼µØÞÛ «Ø º ĐÒÖÙÒ Ö ÖÐØÚÒ ÈÖ ËÙ ØØÙØÓÒ «Ø ¾º ĐÒÖÙÒ Ö

Mehr

ËÓÖØ ÖÔÖÓ Ð Ñ ËÙ ÔÖÓ Ð Ñ ÃÓÑÔÐ Ü ØØ Ö Ò Ï ÖÙÑ Ø ÒØ Ö ÒØ Ï ÖÙÑ Ø Û Ø Ì Ð Á Ò ÖÙÒ ÂÓ ÒÒ Ë ÐÙÑ Ö Ö ËÓÖØ Ö Ò ÙÒ ËÙ Ò ¾»½

ËÓÖØ ÖÔÖÓ Ð Ñ ËÙ ÔÖÓ Ð Ñ ÃÓÑÔÐ Ü ØØ Ö Ò Ï ÖÙÑ Ø ÒØ Ö ÒØ Ï ÖÙÑ Ø Û Ø Ì Ð Á Ò ÖÙÒ ÂÓ ÒÒ Ë ÐÙÑ Ö Ö ËÓÖØ Ö Ò ÙÒ ËÙ Ò ¾»½ ËÓÖØ Ö Ò ÙÒ ËÙ Ò ÎÓÖØÖ Ñ À ÙÔØ Ñ Ò Ö À ÐÐÓ Ï ÐØ ÂÓ ÒÒ Ë ÐÙÑ Ö Ö Ô Ð Ôº Ò ÓÖÑ Ø ºÙÒ ¹ ÖÐ Ò Òº Ö Ö ¹ Ð Ü Ò Ö¹ÍÒ Ú Ö ØØ ÖÐ Ò Ò»Æ ÖÒ Ö ½º Å ¾¼¼ ÂÓ ÒÒ Ë ÐÙÑ Ö Ö ËÓÖØ Ö Ò ÙÒ ËÙ Ò ½»½ ËÓÖØ ÖÔÖÓ Ð Ñ ËÙ ÔÖÓ Ð Ñ

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½ ÂÓ ÒÒ Ö ÌĐ Ù Ö ½ ¼ ½ º½ÂÓ ÒÒ Û Ö Æ ÖĐ Ö ½ º¾ Ö ÌÓ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ¼ º º º º º º

ÁÒ ÐØ Ú ÖÞ Ò ½ ÂÓ ÒÒ Ö ÌĐ Ù Ö ½ ¼ ½ º½ÂÓ ÒÒ Û Ö Æ ÖĐ Ö ½ º¾ Ö ÌÓ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ¼ º º º º º º ÍÖ ÒØ Ù ½ ¹ ÂÓ ÒÒ Ö ÌĐ Ù Ö Á ÁÁ ÁÁÁ ÁÎ ÒØÖ ÐÙÒ Ú Ö ÙÑ ÙÒ ËÙÔ ÖÙÒ Ú Ö Ò ÄÓ ÐÙÒ Ú Ö ÙÑ Ø ÍÖ ÒØ Ä Ò ÙÒ Ä Ö Ò Â Ù ÛÛÛºÙÖ ÒØ ºÓÖ ½ ÛÛÛºØÖÙØ ÓÓ ºÓÑ ¾ ½ ÁÒØ ÖÒ Ø ØØÔ»»ÛÛÛºÙÖ ÒØ ºÓÖ» º ¾ ÁÒØ ÖÒ Ø ØØÔ»»ÛÛÛºØÖÙØ

Mehr

ÌĹËÝ Ø Ñ ¾

ÌĹËÝ Ø Ñ ¾ Ê Ú Ö Ò Ò Ö Ò ÞÙÖ ÈÖÓ Ö ÑÑ ÖÛ Ø ÖÙÒ ÎÓÑ Ò Ö ÖÛ Ø ÖØ Ò Ë Ö ÔØ ÔÖ Ò Ò Ñ Ê Ð ÖÙÒ ËÓ ØÛ Ö ¹ ÐØ Ý Ø Ñ ÞÙÖ ÃÖ Ø ÐÐ Ò ÐÝ Ú ÑÑ ÂÙÐÝ ¾¼¼ ½ ÌĹËÝ Ø Ñ ¾ ÅÓØ Ú Ø ÓÒ ÙÒ Ù Ò Ø ÐÐÙÒ ÙÒ Ø ÓÒ Ð ÙÒ ÓÑ ÓÖØ Ð À Ð Ñ ØØ Ð Ò

Mehr

ÖÖ Ö Ø ÚÓÒ ÓÑÔÙØ Ö Ý Ø Ñ Ò Ë Ö ÔØ ÞÙÑ Ë Ñ Ò Ö ËÓÑÑ Ö Ñ Ø Ö ½ À Ö Ù Ö Å Ò Ö Ã Ö Ö Ü Ð ÈÖĐ Ð Ò Ö ÁÒ ÓÖÑ Ø ÍÒ Ú Ö ØĐ Ø Ã Ö Ð ÙØ ÖÒ ¹ ¼ Ã Ö Ð ÙØ ÖÒ Ï Ø ÖÑ ÒÝ ÁÒ ÐØ Á Ø Ò ÙØÞ ½ Ø Ò ÙØÞ ß Ö ØÐ Ä ½º½ ÏÓ Ö ÓÑÑØ

Mehr

= 27

= 27 Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ ÇÃÌ»ÆÇÎ ¾¼½½ ½ ÎÓÖ ÙÐ ½ Ù ¹½½ ÁÒ ÂÙÐ Ë Ù Ö Ò Ø Ò Ö È Ö Ë Ù º Ë Ò ÑÑØ Ñ ÙÒ ÐÒ Ú Ö ÒÞ ÐÒ Ë Ù Ö Ù º Á Ø Ò ÞÙ ÑÑ Ò Ö Ò È Ö Ù ¹½¾ Û ÚÓÒ Ò Ð Ö Ò Ò Ú ÐÐ Ð º Ï Ð Ò ¾ À Ï Ò ÐÚÓ ÛÛÛº Ð

Mehr

δ x := x x ε x := x x

δ x := x x ε x := x x Ì Ð Á Ð ÖØ ÓÖ ½ Ð Ö ÖØ Ò Ò Ø ÓÒ ½º½º Ò Ð ÓÖ Ø ÑÙ Ø Ò Ö Ò Ñ Ð Ò ÐÐ Ò¹ ÙØ Ø Ð Ø ÓÐ ÚÓÒ Ð Ñ ÒØ Ö Ò Ê ÒÓÔ Ö Ø ÓÒ Ò ÙÒØ Ö Ò Þ ÙÒ Ñ Ø Ñ Ø Ö ÙÒ Ø ÓÒ Ò ÙÒ Ò ÙÒ Òº Ð Ñ ÒØ Ö Ê ÒÓÔ Ö Ø ÓÒ Ò Ò ÖÙÒ Ö Ò ÖØ Ò ÐÓ ÇÔ

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½¾ ÂĐÙÒ Ð Ò Ö ½ ¼ ½¾ º½ Ë Þ ÒØ Â Ö ½¼ Òº Öºµ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ¼ ½¾ º¾ Ë Þ ÒØ Â Ö ½½ Òº Öºµ º º

ÁÒ ÐØ Ú ÖÞ Ò ½¾ ÂĐÙÒ Ð Ò Ö ½ ¼ ½¾ º½ Ë Þ ÒØ Â Ö ½¼ Òº Öºµ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ¼ ½¾ º¾ Ë Þ ÒØ Â Ö ½½ Òº Öºµ º º ÍÖ ÒØ Ù ½¾ ¹ ÂĐÙÒ Ð Ò Ö Á ÁÁ ÁÁÁ ÁÎ ÒØÖ ÐÙÒ Ú Ö ÙÑ ÙÒ ËÙÔ ÖÙÒ Ú Ö Ò ÄÓ ÐÙÒ Ú Ö ÙÑ Ø ÍÖ ÒØ Ä Ò ÙÒ Ä Ö Ò Â Ù ÛÛÛºÙÖ ÒØ ºÓÖ ½ ÛÛÛºØÖÙØ ÓÓ ºÓÑ ¾ ½ ÁÒØ ÖÒ Ø ØØÔ»»ÛÛÛºÙÖ ÒØ ºÓÖ» º ¾ ÁÒØ ÖÒ Ø ØØÔ»»ÛÛÛºØÖÙØ ÓÓ

Mehr

ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ÌÀµ Ê Ù Ø ÙÒØ Ö Ù ÙÒ ÙÒ Æ ÒÓ ØÖÙ ØÙÖ ÖÙÒ Ñ Ø Ñ Ê Ø Ö Ö ØÑ ÖÓ ÓÔ ÜÔ Ö Ñ ÒØ ÙÒ Ð Ò ÐÝ Ò ÔÐÓÑ Ö Ø ÚÓÖ Ð Ø ÚÓÒ ËÚ Ò È ÙÐÙ ÁÒ Ø ØÙØ Ö Ò Û Ò Ø È Ý ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ¼º ÆÓÚ Ñ Ö ½ Ö Ø ÙØ Ø Ö

Mehr

Ò Ì Ò Ú º ÓÖ Ò ØÓÖ Ë Ö Ø Ô Ð ÇÖ Ò ØÓÖ Ö Ë Ö Ø Ñ Ò Ñ Ò Ë Ö Ø Ñ Ò Ñ ÒØÔÖÓÞ Ë ÙÖ Øݵ ÈÓÐ È ¹ÅÓ ÐÐ ËØ Ò Ö ÙÒ ÆÓÖÑ Ò ÞÙ ÁÌ¹Ë Ö Ø Ë Ö Ø ÓÒÞ ÔØ Ä Ø Ö ØÙÖ ¾»

Ò Ì Ò Ú º ÓÖ Ò ØÓÖ Ë Ö Ø Ô Ð ÇÖ Ò ØÓÖ Ö Ë Ö Ø Ñ Ò Ñ Ò Ë Ö Ø Ñ Ò Ñ ÒØÔÖÓÞ Ë ÙÖ Øݵ ÈÓÐ È ¹ÅÓ ÐÐ ËØ Ò Ö ÙÒ ÆÓÖÑ Ò ÞÙ ÁÌ¹Ë Ö Ø Ë Ö Ø ÓÒÞ ÔØ Ä Ø Ö ØÙÖ ¾» ØÓ Ë ÙÖ ØÝ ÎÇ ÁÒØÖÓ ÙØ ÓÒ Ë Ö Ø»Ë Ö Ø Ñ Ò Ñ ÒØ ÇÖ Ò ØÓÖ ÁÒ Ù ØÖ Ð ËÓ ØÛ Ö ÁÆËÇ Ö Ê Ò Ö Ø ØÞØ ÙØÓÑ Ø ÓÒ ÙÐØØ Ö ÁÒ ÓÖÑ Ø Ì Ò ÍÒ Ú Ö ØØ Ï Ò ÁÒ Ø ØÙØ ÐÓÖ Ò Ò Ù Ö Ö ÒÞ Å Ö Ó Ö Ò Ì Ò Ú º ÓÖ Ò ØÓÖ Ë Ö Ø Ô Ð ÇÖ

Mehr

ß Ð ¹ ÓÜ¹Ï ÖÚ ÖÛ Ò ÙÒ Î Ö ĐÙ Ö Ø ÚÓÒ Ú Ö Ò Ò Ö Ø ÒÙØÞ Ö ÃÐ Ò ÞÙÖ ÁÒ Ø ÒØ ÖÙÒ ÖĐ Ò Ø ÅĐÓ Ð Ø Ò ÞÙÖ ÒÔ ÙÒ Ö Ò Ö Ú ÖÛ Ò Ö ß Ï ÖÚ ÖÛ Ò ÙÒ ÚÓÒ ÃÓÑÔÓÒ ÒØ Ò Ò ÃÓÑÔÓÒ ÒØ Ò Ô Þ ÐÐ ËÛ¹Ì Ð Ò Ô Þ Î Ö ÐØ Ò Ù ¹ Û Ò

Mehr

ÖÓÒÐÝ ÒÙÒ ÎÖÖÒ ÞÙÖ ÈÁƹÖÒÙÒ ÙÒ ÈÁƹÈÖĐÙÙÒ ĐÙÖ ¹ÃÖØÒ ÖÓÒÐÝ ÒÙ ÈÁƹÎÖÖÒ ½ ÁÒÐØ ÚÖÞÒ ½ Ù ÑÑÒ ÙÒ Ö Ê ÙÐØØ ¾ ¾ ÒÙ ÎÖÖÒ ¾º½ ÈÁƹÒÖÖÙÒ º º º º º º º º º º º º º º º º º º º º º º º º º ¾º½º½ ÈÁƹÒÖÖÙÒ Ù ÃÖØÒÒÓÖÑØÓÒÒ

Mehr

Ë ÑÙÐ Ø Ú ÍÒØ Ö Ù ÙÒ À Ò ÓÚ Ö Î Ö ÐØ Ò ÚÓÒ ÅÓ Ð ÁÈ ÞÙ Đ ØÞÐ Ñ ÃÓÒØ ÜØØÖ Ò Ö ËØ Ò Ê Ò ÓÖ ÙÒ ¹ ÙÒ Ä Ö Ò Ø ÁÒ ÓÖÑ Ø ÎÁÁÁ ÈÖÓ º Öº Â Ò Ê Ò Ö ÓÑÑÙÒ Ø ÓÒ Å Ò ÐÐ Ù Ø ÓÒ Ë ÑÙÐ Ø Ú ÍÒØ Ö Ù ÙÒ À Ò ÓÚ Ö Î Ö ÐØ Ò

Mehr

ËØ Ø Ø Ò ÐÝ ÚÓÒ Î Ö Ö Ø Ò ÙÒ ÅÓ ÐÐ ÖÙÒ ÚÓÒ Î Ö Ö Ù Ñ ØØ Ð Þ ÐÐÙÐ Ö Ö ÙØÓÑ Ø Ò ÎÓÑ Ö È Ý ß Ì ÒÓÐÓ Ö Ö Ö ¹Å Ö ØÓÖ¹ÍÒ Ú Ö ØĐ Ø Ù ÙÖ ÞÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö Ò Ó ØÓÖ Ö Æ ØÙÖÛ Ò Ø Ò Ò Ñ Ø ÖØ Ø ÓÒ ÚÓÒ ÄÙØÞ Æ Ù ÖØ Ù

Mehr

Ò Á Ò Ò ÃÓÐÐ Ò Ê Ò Ö Ë Ñ ÐÞ¹ ÖÙÒ Ê Ò Ö Ë Ñ Ø ÙÒ ÊÙ Ë Ñ Ö Ù ÖÓÖ ÒØÐ Ð Ö Ä Ø Ö ØÙÖ ÒÛ Ò Ö Ñ Ö Ò Ò Ö Ò Ù Ò ÞÙ Ñ Ö ÙÒÚ ÖØÖ ÙØ Ò Þ ÔÐ Ò Ò ÖÑ Ð Ø Òº

Ò Á Ò Ò ÃÓÐÐ Ò Ê Ò Ö Ë Ñ ÐÞ¹ ÖÙÒ Ê Ò Ö Ë Ñ Ø ÙÒ ÊÙ Ë Ñ Ö Ù ÖÓÖ ÒØÐ Ð Ö Ä Ø Ö ØÙÖ ÒÛ Ò Ö Ñ Ö Ò Ò Ö Ò Ù Ò ÞÙ Ñ Ö ÙÒÚ ÖØÖ ÙØ Ò Þ ÔÐ Ò Ò ÖÑ Ð Ø Òº Ö Å Ò Ò Ò Á Ò Ò ÃÓÐÐ Ò Ê Ò Ö Ë Ñ ÐÞ¹ ÖÙÒ Ê Ò Ö Ë Ñ Ø ÙÒ ÊÙ Ë Ñ Ö Ù ÖÓÖ ÒØÐ Ð Ö Ä Ø Ö ØÙÖ ÒÛ Ò Ö Ñ Ö Ò Ò Ö Ò Ù Ò ÞÙ Ñ Ö ÙÒÚ ÖØÖ ÙØ Ò Þ ÔÐ Ò Ò ÖÑ Ð Ø Òº ÁÒ ÐØ Ú ÖÞ Ò Ù Ò ÔÙÒ Ø ½ ½ ÖÔ ÖÐ ¹ Ø ½º½ Ö Û ÙÒ ÔÔ

Mehr

Ð ÖØ Ø ÓÒ Ò Ñ Ø ÚÓÒ Ò Æ ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ò Ö ÍÒ Ú Ö¹ ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ÎÓÖ ØÞ Ò Ö Ö ÈÖÓÑÓØ ÓÒ ÓÑÑ ÓÒ Ö Ø Ö Ø Ö Ø ØØ Ö Û Ø Ö Ø Ö Ø ØØ

Ð ÖØ Ø ÓÒ Ò Ñ Ø ÚÓÒ Ò Æ ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ò Ö ÍÒ Ú Ö¹ ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ÎÓÖ ØÞ Ò Ö Ö ÈÖÓÑÓØ ÓÒ ÓÑÑ ÓÒ Ö Ø Ö Ø Ö Ø ØØ Ö Û Ø Ö Ø Ö Ø ØØ Ò Ò Ø Ó ÍÒØ Ö Ù ÙÒ Ö Ð ØÖÓÒ Ò ÄÓ Ð ÖÙÒ Ò Ò Ö Ñ Ò ÓÒ Ð Ò À Ð Ð Ø Ö ØÖÙ ØÙÖ Ò Ñ Ø Ï ÐÛ Ö ÙÒ ÙÒ ÍÒÓÖ ÒÙÒ Ò Ò ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ò Ö Ö Ö ¹ Ð Ü Ò Ö¹ÍÒ Ú Ö ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö ÚÓÖ Ð Ø ÚÓÒ Å Ö

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ½¼ ½º½ ÎÓÖÛÓÖØ ÚÓÒ Ñ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½¼ ½º¾ ÎÓÖÛÓÖØ ÚÓÒ ÓÑ Ò ÕÙ º º º º º º º

ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ½¼ ½º½ ÎÓÖÛÓÖØ ÚÓÒ Ñ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½¼ ½º¾ ÎÓÖÛÓÖØ ÚÓÒ ÓÑ Ò ÕÙ º º º º º º º ÎÓÖ Ö ØÙÒ Ö Î ÖØ ÙÒ ÔÖ ÙÒ Ã Ò ØÐ ÁÒØ ÐÐ ÒÞ Ï Ò Ö ÔÖ ÒØ Ø ÓÒ ÙÒ Ø Ò Ò Ò Ò Ö ÏÓÖØÑ ÒÒ Ò Ö ºÛÓÖØÑ ÒÒÖÛØ ¹ Òº µ Ö Ò Ù Ò ÎÓÖ Ö ØÙÒ Ò ÚÓÒ ÓÑ Ò ÕÙ ÐÑ Ý Ö ÓÑ Ò ÕÙ ºÞ ÐÑ Ý ÖÖÛØ ¹ Òº µ ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ½¼ ½º½

Mehr

ÒØÛ ÐÙÒ ÚÓÒ Å ØÖ Ò Ö ÅĹ Ó ÙÑ ÒØ ÓÐÐ Ø ÓÒ Ò ÔÐÓÑ Ö Ø ÍÒ Ú Ö ØØ ÊÓ ØÓ Ö ÁÒ ÓÖÑ Ø ÚÓÖ Ð Ø ÚÓÒ ÓÖ Ò Ñ Ä Ö Ë Ò Ö ¾½º ÔÖ Ð ½ Ò ÊÓ ØÓ ØÖ Ù Ö ÈÖÓ º Öº Ò Ö À Ù Ö ÈÖÓ º Öº Ð Ñ Ò Ô Öº¹ÁÒ º Å ÃÐ ØØ ØÙÑ ¾ º Þ Ñ Ö

Mehr

ÁÈÄÇÅ Ê ÁÌ Î Ö Ð Ú Ö Ò Ö ÊÓØÓÖ ØÖÙ ØÙÖ Ò Ò Ô Þ Ø Ú Ò Ö ÑÓÑ ÒØ Ò ÓÖ Ù ĐÙ ÖØ Ñ ÁÒ Ø ØÙØ ĐÙÖ Ò Û Ò Ø Ð ØÖÓÒ ÙÒ ÉÙ ÒØ Ò Ð ØÖÓÒ Ö Ì Ò Ò ÍÒ Ú Ö ØĐ Ø Ï Ò ÙÒØ Ö ÒÐ ØÙÒ ÚÓÒ ÍÒ ÚºÈÖÓ º Ôк¹ÁÒ º ÖºØ Òº ÓÖ Ö ÙÖ Ôк¹ÁÒ

Mehr

Î ÖÞ Ò Ö ÖÞÙÒ Ò ÔÛº Ô Ð Û Ôغ ÓÔØÖ Ò ÁÇÄ ÁÒØÖ Ó ÙÐ ÖÐ Ò Ä ËÁÃ Ä Ö Ò Ë ØÙ Ã Ö ØÓÑ Ð Ù ÑÑ Å ÐÐ Ñ Ø Ö µm Å ÖÓÑ Ø Ö ÈÊÃ È ÓØÓÖ Ö Ø Ú Ã Ö Ø ØÓÑ ÊÅË ÊÓÓØ Å

Î ÖÞ Ò Ö ÖÞÙÒ Ò ÔÛº Ô Ð Û Ôغ ÓÔØÖ Ò ÁÇÄ ÁÒØÖ Ó ÙÐ ÖÐ Ò Ä ËÁÃ Ä Ö Ò Ë ØÙ Ã Ö ØÓÑ Ð Ù ÑÑ Å ÐÐ Ñ Ø Ö µm Å ÖÓÑ Ø Ö ÈÊÃ È ÓØÓÖ Ö Ø Ú Ã Ö Ø ØÓÑ ÊÅË ÊÓÓØ Å Ò Ù ÚÓÒ È ÒÝÐ Ô Ö Ò ÙÒ ÌÖÓÔ Ñ Ù Ï ÐÐ Ò ÖÓÒØ ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö ÓØÓÖ Ñ Ò Öº Ñ ºµ ÚÓÖ Ð Ø Ñ Ê Ø Ö Å Þ Ò Ò ÙÐØØ Ö Ö Ö ¹Ë ÐÐ Ö¹ÍÒ Ú Ö ØØ Â Ò ÚÓÒ Ø Ò ÄÓÓ Ö ÓÖ Ò Ñ ¼¾º Ç ØÓ Ö ½ Ò Ç Ö Ù Ò ¾º ÔÖ Ð ¾¼¼ Î

Mehr

Ë Ö Ø ÒĐÙ ÖØÖ ÙÒ ĐÙ Ö ÁÒØ ÖÒ Ø Ñ ØØ Ð ÁÈË ËØÙ Ò Ö Ø ÎÓÖ Ð Ø ÚÓÒ Ì ÐÓ ÊÙ ÞÙÖ ÙØ ØÙÒ ÙÖ ÈÖÓ º Öº ÃÐ Ù ÖÙÒÒ Ø Ò ½ º Þ Ñ Ö ½ ÍÒ Ú Ö ØĐ Ø À Ñ ÙÖ Ö ÁÒ ÓÖÑ Ø Ö Ø Ö ÒÛ Ò ÙÒ Ò Ö ÁÒ ÓÖÑ Ø Ò Ø ¹ ÙÒ Æ ØÙÖÛ Ò Ø Ò ÁÒ

Mehr

Ò Ê Ö ÒØ ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Ñ º ÖØ ÅÙ Ö ÈÖÓ º Öº Ñ º Ã Ö Ø Ò Ë Ñ Ö ÈÖ Úº ÓÞº Öº Ñ º ËØ Ô Ò Ö Ò Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ¾ º½½º¾¼¼

Ò Ê Ö ÒØ ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Ñ º ÖØ ÅÙ Ö ÈÖÓ º Öº Ñ º Ã Ö Ø Ò Ë Ñ Ö ÈÖ Úº ÓÞº Öº Ñ º ËØ Ô Ò Ö Ò Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ¾ º½½º¾¼¼ Ù Ö Æ ÙÖÓ ÖÙÖ Ò ÃÐ Ò ÃÒ ÔÔ Ø Ö Ò Ò Ù Ó ÙÑ¹Ä Ò Ò Ö Ö ¹ ÍÒ Ú Ö ØØ Ð Ò ¹ Ö ÊÙ Ö¹ÍÒ Ú Ö ØØ Ó ÙÑ Ö ØÓÖ ÈÖÓ º Öº Ñ º º À Ö Ö Ê ØÖ ÖÙÒ ÚÓÒ ¹ÍÐØÖ Ðй ÙÒ Ì¹ Ø Ò Ö Ä Ò ÒÛ Ö Ð ÙÐ ÞÙÖ ÍÒØ Ö Ø ØÞÙÒ Ò Ú ÖØ Ö È Ð Ö Ù

Mehr

Ð ÖÙÒ ½ ÁÒØ ÖÔÓÐ Ø ÓÒ ÔÓÐÝÒÓÑ Ð ËÔÐ Ò ¾ ÆÙÑ Ö ÁÒØ Ö Ø ÓÒ ÃÐ Æ ÛØÓÒ¹ ÓØ Ï Ø Ö ÉÙ Ö ØÙÖ ÓÖÑ ÐÒ ¾» ¾

Ð ÖÙÒ ½ ÁÒØ ÖÔÓÐ Ø ÓÒ ÔÓÐÝÒÓÑ Ð ËÔÐ Ò ¾ ÆÙÑ Ö ÁÒØ Ö Ø ÓÒ ÃÐ Æ ÛØÓÒ¹ ÓØ Ï Ø Ö ÉÙ Ö ØÙÖ ÓÖÑ ÐÒ ¾» ¾ ÁÒØ ÖÔÓÐ Ø ÓÒ ÒÙÑ Ö ÁÒØ Ö Ø ÓÒ º ÎÓÖÐ ÙÒ ½ ¼ ¼¼ ÆÙÑ Ö Å Ø Ó Ò Á º Ö Ò ÙÒ º À Ù Ò Ð ¾ º Å ¾¼½ ½» ¾ Ð ÖÙÒ ½ ÁÒØ ÖÔÓÐ Ø ÓÒ ÔÓÐÝÒÓÑ Ð ËÔÐ Ò ¾ ÆÙÑ Ö ÁÒØ Ö Ø ÓÒ ÃÐ Æ ÛØÓÒ¹ ÓØ Ï Ø Ö ÉÙ Ö ØÙÖ ÓÖÑ ÐÒ ¾» ¾ ÁÒØ ÖÔÓÐ

Mehr

Ê Ñ Ò¹ËÔ ØÖÓ ÓÔ Ò Ò Ö Ñ Ò ÓÒ Ð Ò Ð ØÖÓÒ Ò Ý Ø Ñ Ò ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö Ö È Ý Ö ÍÒ Ú Ö ØĐ Ø À Ñ ÙÖ ÚÓÖ Ð Ø ÚÓÒ Þ Ö ÍÐÖ Ù À Ñ ÙÖ À Ñ ÙÖ ¾¼¼¼ ÙØ Ø Ö Ö ÖØ Ø ÓÒ ÙØ Ø Ö Ö ÔÙØ Ø ÓÒ ØÙÑ Ö ÔÙØ Ø ÓÒ ËÔÖ Ö

Mehr

Ò Ö Ø Ö ÙØ Ø Ö Û Ø Ö ÙØ Ø Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ Ì Ö ÈÖÓÑÓØ ÓÒ ÈÖÓ ÓÖ Öº ƺ Ë Ñ ØÞ ÈÖÓ ÓÖ Öº Ϻ º Ë ØØ Ö ÈÖÓ ÓÖ Öº Àº Ö ¾ º¼ º ¾ º¼ º

Ò Ö Ø Ö ÙØ Ø Ö Û Ø Ö ÙØ Ø Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ Ì Ö ÈÖÓÑÓØ ÓÒ ÈÖÓ ÓÖ Öº ƺ Ë Ñ ØÞ ÈÖÓ ÓÖ Öº Ϻ º Ë ØØ Ö ÈÖÓ ÓÖ Öº Àº Ö ¾ º¼ º ¾ º¼ º ËÌÊÇÆÇÅÁ ÆÙØÞÙÒ ØÖÓÒÓÑ Ö ÈÐ ØØ Ò Ö Ú ÁÒ Ù ÙÖ Ð ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö Ö Æ ØÙÖÛ Ò Ø Ò Ñ Ö È Ý Ö Å Ø Ñ Ø Æ ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ö Ï Ø Ð Ò Ï Ð ÐÑ ÍÒ Ú Ö ØØ Å Ò Ø Ö ÚÓÖ Ð Ø ÚÓÒ Ê Ò Ø Ù ÐÐ Ù ÓØØÖÓÔ ½ Ò Ö Ø

Mehr

ÙÐØĐ Ø ĐÙÖ È Ý ÙÒ ØÖÓÒÓÑ ÊÙÔÖ Øßà ÖÐ ßÍÒ Ú Ö ØĐ Ø À Ð Ö ÔÐÓÑ Ö Ø Ñ ËØÙ Ò Ò È Ý ÚÓÖ Ð Ø ÚÓÒ Ö Ø Ò Å Ö Ù ÄÙ Ó»ÊÙÑĐ Ò Ò ½ Æ ¹ÁÒ Ö ÖÓØ È ÓØÓÑ ØÖ ÚÓÒ ÉÙ Ö Ò Ñ Ø Þ ÔÐÓÑ Ö Ø ÛÙÖ ÚÓÒ Ö Ø Ò Å Ö Ù ĐÙ ÖØ Ò Ö Ä Ò

Mehr

x y x+y x+15 y 4 x+y 7

x y x+y x+15 y 4 x+y 7 Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¼ ¹ Â Æ» ¾¼½ ½ ½ ÎÓÖ ÙÐ Ä ÙÒ ¼¹½½ Î ¾ Ï ¾ Ä ÙÒ ¼¹½¾ È Ö Ö Ö Ò ÓÖ Ò Ø Ò ÅÓÓÒ Ñ Ù ÊÓÑ Ó Ä Ë ÒØÓ ÄÓ Ä Ó Ð Ò Ø Ö Ø Ä ÙÒ ¼¹½ Ä ÙÒ ¼¹½ ¹¾ ¹ ¹½ ¹ Ä ÙÒ ¼¹½ Ò Ã Ò Öº Ë Ñ Ò ½ ¾ ÙÒ Ó Ò ØÖÓ

Mehr

ËÓÑÑ Ö Ñ Ø Ö ¾¼¼½ ÝÒ Ñ ËÝ Ø Ñ ¾ ÎÓÖÐ ÙÒ Ö ÔØ Ñ Ø ÄĐÓ ÙÒ Òµ Í Ó Ù Þ ÒØÖ Ð Ò ËÝ Ø Ñ Ö ÎÓÖÐ ÙÒ Å Ò Ð ÖÓØÑ Ò ÂÙÐ Ñ Ò ÙÒ ÒÞÙ Ø ÈÓ Ð³ Ò Ê Ñ Ø ÍÒÛÙ Ø ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ÁÒ ÐØ Ú ÖÞ Ò ÒÐ Ò Ä ÖÒÞ Ð Ú ½ ½ º ÔÖ Ð ¾¼¼½

Mehr

Wirtschaftlichkeit und optimaler Betrieb von KWK-Anlagen unter den neuen energiewirtschaftlichen Rahmenbedingungen

Wirtschaftlichkeit und optimaler Betrieb von KWK-Anlagen unter den neuen energiewirtschaftlichen Rahmenbedingungen Wirtschaftlichkeit und optimaler Betrieb von KWK-Anlagen unter den neuen energiewirtschaftlichen Rahmenbedingungen Bearbeitet durch Lambert Schneider Berlin, März 2000 Geschäftsstelle Freiburg Büro Berlin

Mehr

Ø ØØÐ Ö ÐÖÙÒ À ÖÑ Ø Ú Ö Ö ÚÓÖÐ Ò ÔÐÓÑ Ö Ø Ó Ò À Ð Ö ØØ Ö ÙÒ ÒÙÖ Ñ Ø Ò Ò Ò Ò ÉÙ ÐÐ Ò ÙÒ À Ð Ñ ØØ ÐÒ Ò ÖØ Ø º Ö Ø Ø Ò Ð Ö Ó Ö ÒÐ Ö ÓÖÑ ÒÓ Ò Ö ÈÖ ÙÒ Ö ÚÓ

Ø ØØÐ Ö ÐÖÙÒ À ÖÑ Ø Ú Ö Ö ÚÓÖÐ Ò ÔÐÓÑ Ö Ø Ó Ò À Ð Ö ØØ Ö ÙÒ ÒÙÖ Ñ Ø Ò Ò Ò Ò ÉÙ ÐÐ Ò ÙÒ À Ð Ñ ØØ ÐÒ Ò ÖØ Ø º Ö Ø Ø Ò Ð Ö Ó Ö ÒÐ Ö ÓÖÑ ÒÓ Ò Ö ÈÖ ÙÒ Ö ÚÓ Ö ÁÒ ÓÖÑ Ø Ø Ë Ö Ø Ò Ö ÁÒ ÓÖÑ Ø ÓÒ Ø Ò Ö ÙÒ Ó Ö¹ÁÒ Ø ØÙØ Ö Ë Ö ÁÒ ÓÖÑ Ø ÓÒ Ø ÒÓÐÓ ËÁÌ ÈÖÓ º Öº Ð Ù ÖØ Ì Ò ÍÒ Ú Ö ØØ ÖÑ Ø Ø ÔÐÓÑ Ö Ø Ë Ö ÐÙ ØÓÓØ ¹ÃÓÑÑÙÒ Ø ÓÒ Ò ¹ Ó¹ËÞ Ò Ö Ò ÂÙÐ Ò Ë ØØ ¾º ÅÖÞ ¾¼¼ ØÖ Ù Ö

Mehr

½º ÒÐ ØÙÒ ¾º Î Ö Ð Ò Ð Ø ÓÒ Ð Ò Ö Ö Ê Ö ÓÒ º ÍÒ Ú Ö Ø ÒÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ º Ø ÒØÖ Ò ÓÖÑ Ø ÓÒ º ÊÓ Ù Ø Ë ØÞÙÒ º Ø Ú Ñ Ô Ö Ñ ØÖ Ê Ö ÓÒ ½

½º ÒÐ ØÙÒ ¾º Î Ö Ð Ò Ð Ø ÓÒ Ð Ò Ö Ö Ê Ö ÓÒ º ÍÒ Ú Ö Ø ÒÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ º Ø ÒØÖ Ò ÓÖÑ Ø ÓÒ º ÊÓ Ù Ø Ë ØÞÙÒ º Ø Ú Ñ Ô Ö Ñ ØÖ Ê Ö ÓÒ ½ ÆÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ ÙÒØ Ö Î ÖÛ Ò ÙÒ Ý Ò Ö Î Ö Ð Ò Ð Ø ÓÒ ¹ źËÑ Ø ² ʺÃÓ Ò ¹ ½º ÒÐ ØÙÒ ¾º Î Ö Ð Ò Ð Ø ÓÒ Ð Ò Ö Ö Ê Ö ÓÒ º ÍÒ Ú Ö Ø ÒÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ º Ø ÒØÖ Ò ÓÖÑ Ø ÓÒ º ÊÓ Ù Ø Ë ØÞÙÒ º Ø Ú Ñ Ô Ö Ñ ØÖ

Mehr

PTBS Belastung unterschiedlicher Populationen

PTBS Belastung unterschiedlicher Populationen Ù Ö È Ý ÓØÖ ÙÑ ØÓÐÓ ËØ Ø ÓÒ Ö ÃÐ Ò Ëغ ÁÖÑ Ò Ö Ò Ö ÖÙÒ Ö Ø Ä ÓÒ Ö ÃÖ ØÞ Ö Ö ÒÞ È ØÞ Ö È Ø Ö À ÒÞ È Ý ÓØÖ ÙÑ ØÓÐÓ ËØ Ø ÓÒ Ö ÃÐ Ò Ëغ ÁÖÑ Ò Ö ÈÖ Ò Ñ Ñ È Ý ÓØ Ö Ô ÓÖ ÙÒ Ö ÃÐ Ò ÙÒ ÈÓÐ Ð Ò Ö È Ý ØÖ ÙÒ È Ý ÓØ

Mehr

BS Registers/Home Network HLR/AuC

BS Registers/Home Network HLR/AuC Ë Ö Ø Ñ ÅÓ Ð ÓÑÑÙÒ Ø ÓÒ Ò ØÞ Ö º Ò Ö Ø ÓÒ ÍÅÌ˵ ÃÐ Ù ÚÓÒ Ö À Ý ¾¼¼¾¹¼ ¹¾ ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ¾ ½º½ Ï ÖÙÑ Ö ÙÔØ Ë Ö Ø ÓÒÞ ÔØ ÑÓ Ð Ö ÃÓÑÑÙÒ ¹ Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º

Mehr

¾ ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË º ÜÔÙÒ Ø Ñ ÒØ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾¼ º º½ Æ Ø¹ ØÖ Ø ÜÔÙÒ Ø Ñ ÒØ º º º º º º º º º º º º º º

¾ ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË º ÜÔÙÒ Ø Ñ ÒØ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾¼ º º½ Æ Ø¹ ØÖ Ø ÜÔÙÒ Ø Ñ ÒØ º º º º º º º º º º º º º º ÙÒ Ø ÓÒ Ð ÈÖÓ Ö ÑÑ ÖÙÒ ÈÖÓ º Öº ú ÁÒ ÖÑ Ö Ä Ö ØÙ Ð ĐÙÖ ÁÒ ÓÖÑ Ø ÁÁ Ê Ò ¹Ï Ø Đ Ð Ì Ò ÀÓ ÙÐ Ò ÓÖÒ ØÖ ¾¼ ¾ Ò ÏÏÏ ØØÔ»»ÛÛÛ¹ ¾º Ò ÓÖÑ Ø ºÖÛØ ¹ Òº» È» ÏË ½» Ë Ö ÔØ ½ ß½ À Ò ¹ ÓÖ Ö ÊÓ ÖÑÓÒ Ö ËØÖº ¾ ¾¼ ¾ Ò º

Mehr

arxiv:math/ v1 [math.ho] 29 Sep 2004 ǫ = 180 (α+β +γ) = C F.

arxiv:math/ v1 [math.ho] 29 Sep 2004 ǫ = 180 (α+β +γ) = C F. º º Ù³ ÈÖÞ ÓÒ Ñ ÙÒ Ò Ø ÖÖ ØÖ Ö Ö ÙÒ Ò ÖÐ ÙÒ Ò ÞÙÖ ÑÔ Ö Ò ÙÒ ÖÙÒ Ö ÓÑ ØÖ Ò Ò ½ ¾¼ Ö Â Ö Ò Ö Ö Ë ÓÐÞ ÏÙÔÔ ÖØ Ð ½ arxiv:math/0409578v1 [math.ho] 29 Sep 2004 Ù ÑÑ Ò ÙÒ ÁÒ Ø ØÓÖ Ð Ð Ø Ö ØÙÖ Ø Ö Ò Ò ÜØ Ò Ù ÓÒ

Mehr

¾ Ê Ö ÒØ ÈÖÓ º Öº ÏÓÐ Ò ÖØÑ Ö ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Ã Ö Ø Ò ÒÞÑ ÒÒ Ì Ö ÈÖÓÑÓØ ÓÒ ¾ º ÆÓÚ Ñ Ö ¾¼¼

¾ Ê Ö ÒØ ÈÖÓ º Öº ÏÓÐ Ò ÖØÑ Ö ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Ã Ö Ø Ò ÒÞÑ ÒÒ Ì Ö ÈÖÓÑÓØ ÓÒ ¾ º ÆÓÚ Ñ Ö ¾¼¼ Ó ÒÐ Ö Ñ Ø À ÖØÞ¹Ä Ò Ò Ö Ø ĐÙÖ Ò ÓÔØ Ð Ùѹ Ö ÕÙ ÒÞÒÓÖÑ Ð ÎÓÑ Ö È Ý Ö ÍÒ Ú Ö ØĐ Ø À ÒÒÓÚ Ö ÞÙÖ ÖÐ Ò ÙÒ Ö Ó ØÓÖ Ö Æ ØÙÖÛ Ò Ø Ò Öº Ö Öº Ò Øº Ò Ñ Ø ÖØ Ø ÓÒ ÚÓÒ Ôк¹È Ý º À Ö Ó ËØÓ Ö ÓÖ Ò Ñ ½ º¼ º½ ½ Ò À Ð

Mehr

Betriebssysteme (BTS)

Betriebssysteme (BTS) Ä ÙÒ ÞÞ Ò ÞÙÖ ÐÙ Ð Ù ÙÖ ØÖ Ý Ø Ñ Ì˵ º ÂÙÐ ¾¼½½ Æ Ñ ÎÓÖÒ Ñ Å ØÖ ÐÒÙÑÑ Ö ËØÙ Ò Ò À ÒÛ ÌÖ Ò Ë ÞÙ Ö Ø Ù ÐÐ Ò ÐØØ ÖÒ Ò Ð Ð Ð ØØ µ Á Ö Ò Æ Ñ Ò Á Ö Ò ÎÓÖÒ Ñ Ò ÙÒ Á Ö Å ØÖ ÐÒÙÑÑ Ö Òº Ä ÙÒ Ò Ó Ò Ò Ò ÒÒ Ò Ò Ø Û

Mehr

ÔÐÓÑ Ö Ø Ú ÀÓÖÒ Ö ½ ÌÀ ÖÑ Ø Ø Ö ÁÒ ÓÖÑ Ø ØÖ Ù Ö ÈÖÓ º Ϻ À Ò ÔÐ ÁÒ ÓÖÑ Ø ÈÖÓ º ĺ ÈÓÒ Ö ØÞ ÈĐ Ó Öº ź À Ö À ÖÙÒ ÞĐÙ Ö ÁÒ ÓÖÑ Ø Á ß Ø Ò ÐÝ ĐÍ ÙÒ ØÖ ß ÒÖ ÙÒ Ò ÞÙÖ Æ Ù ÓÒÞ ÔØ ÓÒº Ú ÖĐÓ«ÒØÐ Ø Ð À ¹ Ö Ø Ö Ø

Mehr

Ò Ù Ù Ò Ë ØÞÚ ÒØ Ð Ó Ò ÖÓ ÐÛ Ö ÙÒ µ ÙÒ ÃÓÐ ÒÚ Ò¹ Ø Ð Ñ Ø ÖÓ ÐÛ Ö ÙÒ µ B A B A ØØ ÙÒ Ö Ø ÙÖ Ñ Ò Ð ØÖÓÑ Ò Ø Ý Ö ÙÐ Ó Ö ÔÒ ÙÑ Ø ËØ ÐÐ Ò Ø Ò Ò Ö Ø ÙÖ Ý Ö

Ò Ù Ù Ò Ë ØÞÚ ÒØ Ð Ó Ò ÖÓ ÐÛ Ö ÙÒ µ ÙÒ ÃÓÐ ÒÚ Ò¹ Ø Ð Ñ Ø ÖÓ ÐÛ Ö ÙÒ µ B A B A ØØ ÙÒ Ö Ø ÙÖ Ñ Ò Ð ØÖÓÑ Ò Ø Ý Ö ÙÐ Ó Ö ÔÒ ÙÑ Ø ËØ ÐÐ Ò Ø Ò Ò Ö Ø ÙÖ Ý Ö ËÔ ÖÖÚ ÒØ Ð Ø ÑÑØ ÎÓÐÙÑ Ò ØÖÓÑÖ ØÙÒ ËÔ ÖÖ Òµ ÖÙ Ú ÒØ Ð Ø ÑÑØ Ð Ø ÖÙ Ñ ËÝ Ø Ñ Ö Ò¹ Å Ò ÖÒ Ù ÐØ Òµ Þ Ò ËØÖÓÑÚ ÒØ Ð Ø ÑÑØ ÎÓÐÙÑ Ò ØÖÓÑ Ñ ËÝ Ø Ñ ÖÓ ÐÒ Î ÒØ Ð Ä ØÙÒ Ù ÙÖ Ò Ù ÙÒ ÚÓÒ p ËØ Ù ÖÙÒ ÙÒ ËØÖ ÑÙÒ Ö ØÙÒ

Mehr

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG Å ÙÖ ØØÐ Ö ÃÓÒÞ ÔØÓÔØ Ñ ÖÙÒ ÙÒ ÒØÛ ÐÙÒ Ò Ö Ó ÒØ Ö ÖØ Ò Ä Ø ÖÔÐ ØØ ÔÐÓÑ Ö Ø À ¹ÃÁȹ½¼¹ KIRCHHOFF-INSTITUT FÜR PHYSIK ÙÐØÝ Ó È Ý Ò ØÖÓÒÓÑÝ ÍÒ Ú Ö ØÝ Ó À Ð Ö ÔÐÓÑ Ø

Mehr

Ê Ö ÒØ ÈÖÓ º Öº ÏÓÐ Ò ÖØÑ Ö ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Â Ò ÖÐØ Ì Ö ÈÖÓÑÓØ ÓÒ ½ º ¼ º ¾¼¼

Ê Ö ÒØ ÈÖÓ º Öº ÏÓÐ Ò ÖØÑ Ö ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Â Ò ÖÐØ Ì Ö ÈÖÓÑÓØ ÓÒ ½ º ¼ º ¾¼¼ ÍÐØÖ ÐØ Ø ÖÓÒÙ Ð Ö ¹ÅÓÐ Ð ÎÓÒ Ö ÙÐØØ Ö Å Ø Ñ Ø ÙÒ È Ý Ö ÓØØ Ö Ï Ð ÐÑ Ä Ò Þ ÍÒ Ú Ö ØØ À ÒÒÓÚ Ö ÞÙÖ ÖÐ Ò ÙÒ Ö Ó ØÓÖ Ö Æ ØÙÖÛ Ò Ø Ò ¹ Öº Ö Öº Ò Øº ¹ Ò Ñ Ø ÖØ Ø ÓÒ ÚÓÒ Ôк¹È Ý º Ì ÓÖ Ø Ò À ÒÒ Ò Ö ÓÖ Ò Ñ ¾

Mehr

Elektrische Feldstärke [a.u.] THz-Puls Delay [ps] Pump-Probe Delay [ps]

Elektrische Feldstärke [a.u.] THz-Puls Delay [ps] Pump-Probe Delay [ps] È ÓÒÓÒ ÒÔÖÓÞ ÙÒ Ä ÙÒ ØÖĐ Ö ÝÒ Ñ Ò À Ð Ð Ø ÖÒ ÙÒØ Ö Ù Ø Ñ Ø À Ð Ö Ø Ø Ò ÙÒ Þ Ø Ù ÐĐÓ Ø Ò Ì Ö ÖØÞ Ì Ñ ¹ ÓÑ Ò ËÔ ØÖÓ ÓÔÝ 10 Elektrische Feldstärke [a.u.] 5 0-5 3 4 5 THz-Puls Delay [ps] 6 7-1 0 1 2 3 Pump-Probe

Mehr

= S 11 + S 21S 12 r L 1 S 22 r L

= S 11 + S 21S 12 r L 1 S 22 r L ÈÖ Ø ÙÑ Ö ÀÓ Ö ÕÙ ÒÞØ Ò Ö ËØÙ ÒØ Ò Ö Ð ØÖÓØ Ò Ä Ò Ö Ö Ö Ù ÖÑ Ö Ë ¹Î Ö ØÖ Ö Î Ö ÓÒ ½º º Å ¾¼½¾ Ó ÙÐ Ò Ð ØÖÓØ Ò ÙÒ ÁÒ ÓÖÑ Ø ÓÒ Ø Ò Ä Ö Ø ÀÓ ¹ ÙÒ À Ø Ö ÕÙ ÒÞØ Ò ÈÖÓ º Öº¹ÁÒ º Àº À Ù ÖÑ ÒÒ ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË

Mehr

TUM INSTITUT FÜR INFORMATIK. Internet -Buchhandel Eine Fallstudie für die Anwendung von Softwareentwicklungstechniken mit der UML

TUM INSTITUT FÜR INFORMATIK. Internet -Buchhandel Eine Fallstudie für die Anwendung von Softwareentwicklungstechniken mit der UML TUM INSTITUT FÜR INFORMATIK Internet -Buchhandel Eine Fallstudie für die Anwendung von Softwareentwicklungstechniken mit der UML Gerhard Popp, Franz Huber, Ingolf Krüger, Bernhard Rumpe, Wolfgang Schwerin

Mehr

Ò Ò Ò Ë ÖÒ ½ ¾ Ö ÁÒØ ÖÒ Ø¹ Šع Ö ÙÒ ÙÒ ÐØ ÒØÒÓÑÑ Ò Ò Ö Ñ ØÑ Ø Å Ø Ø ÙÒ ÒØ Ö ÖØ Ã ÒÖ ØÐ Òº ÀÖ Ù ÓÒÖ Ò ØÙ ÙÒ ÃÐ Ò ÙÒ º Þ Ø ÃÓÒ Ø Ò Ñ Ø Ö Ë ÙÐ ÚÓÖÞÙÙÒ Ò

Ò Ò Ò Ë ÖÒ ½ ¾ Ö ÁÒØ ÖÒ Ø¹ Šع Ö ÙÒ ÙÒ ÐØ ÒØÒÓÑÑ Ò Ò Ö Ñ ØÑ Ø Å Ø Ø ÙÒ ÒØ Ö ÖØ Ã ÒÖ ØÐ Òº ÀÖ Ù ÓÒÖ Ò ØÙ ÙÒ ÃÐ Ò ÙÒ º Þ Ø ÃÓÒ Ø Ò Ñ Ø Ö Ë ÙÐ ÚÓÖÞÙÙÒ Ò ÁÒÐØ Ö ÖÓ Ö ÙÒØ ÖÐÒ Ö ÖØ Ú ÓÑÑÓÒ ÙÒØ Ö ÐÒ Ò ÙÒÒ º¼ ÍÒ¹ Æ Ñ Ò Ò ÒÒÙÒ ¹ÏØ Ö ÙØ Ø Ò Ó Ø ÒÐÓ Ù ÓÑÑ ÖÞÐÐ ÆÙØÞÙÒ ÓÐÒÒ Ò ÙÒÒ ÑÐ Ø ÙÒØ Ö Ð ÍÖÖ Ò Û Ö À Ï ÒÐÚÓ Ò ÒÒغ ÇÒÐ Ò ¹ÅÒ Û Ö Ö Ä Þ ÒÞØ ÜØ Ú ÖÐ Ò Øº ÐØ ÖÒ Ø

Mehr

ÊÓ ÖØ Â Ò Ä Ø Ò ÓÖ ÈÖÓ Ù Ø ÓÒ Ö Ø Ö È ÓØÓÒ Ò Ò ÙÐØÖ Ö Ð Ø Ú Ø Ò Ù Ù ËØ Ò Ñ ÈÀ ÆÁ ¹ ÜÔ Ö Ñ ÒØ ¾¼¼ ÜÔ Ö Ñ ÒØ ÐÐ È Ý ÈÖÓ Ù Ø ÓÒ Ö Ø Ö È ÓØÓÒ Ò Ò ÙÐØÖ Ö Ð Ø Ú Ø Ò Ù Ù ËØ Ò Ñ ÈÀ ÆÁ ¹ ÜÔ Ö Ñ ÒØ ÔÐÓÑ Ö Ø ÚÓÒ

Mehr

ÅÓØ Ú Ø ÓÒ ÅÓØ Ú Ø ÓÒ ØÞØ ÐÐ ÒÞ Ð Ñ ÒØ Ö Ù Ø Ò ÆÙÒ À Ö Û Ö Ò Ö ÖÙÒ Û Ø Ò ÙÖ Ö µ ÌÓÓÐ ÒÙØÞÙÒ ÚÓÒ ËØ Ò Ö ÓÑÔÓÒ ÒØ Ò Ù ÒÑ Ö Ñ Ö Ù ËÓ ØÛ Ö Ø

ÅÓØ Ú Ø ÓÒ ÅÓØ Ú Ø ÓÒ ØÞØ ÐÐ ÒÞ Ð Ñ ÒØ Ö Ù Ø Ò ÆÙÒ À Ö Û Ö Ò Ö ÖÙÒ Û Ø Ò ÙÖ Ö µ ÌÓÓÐ ÒÙØÞÙÒ ÚÓÒ ËØ Ò Ö ÓÑÔÓÒ ÒØ Ò Ù ÒÑ Ö Ñ Ö Ù ËÓ ØÛ Ö Ø ËÓ Ø ÁÈ ÈÖÓÞ ÓÖ Ò ÙÒ Ò ØØ ËÝ Ø Ñ Ò ÖÙÒ ÈÖ Ø ÙÑ È Ö ÐÐ Ð Ê Ò Ö Ö Ø ØÙÖ Ò Ñ Û Ø ÐÐÙÐ Ö ÙØÓÑ Ø Å Ö Ê Ò Ä Ö ØÙ Ð Ö ÁÒ ÓÖÑ Ø Ê Ò Ö Ö Ø ØÙÖµ Ö Ö ¹ Ð Ü Ò Ö¹ÍÒ Ú Ö ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö ÏË ¾¼½¼»½½ ÅÓØ Ú Ø ÓÒ ÅÓØ Ú

Mehr

ÁÈÄÇÅ Ê ÁÌ Â ¹Ï Ðع ÒÒ Ñ Ò Ö ÄÓ ÔÖÓ Ö ÑÑ ÖÙÒ Ð È Ö Ñ ÞÙÖ Ï Ò Ú Ö Ö ØÙÒ Ö Ë Ñ ÒØ Ï ÚÓÒ ÌÓ Å ØÞÒ Ö Ò Ö Ø Ñ ½º Ë ÔØ Ñ Ö ¾¼¼ Ñ ÁÒ Ø ØÙØ Ö Ò Û Ò Ø ÁÒ ÓÖÑ Ø ÙÒ ÓÖÑ Ð Ö ÙÒ Ú Ö Ö Ò Ö ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ÌÀµ Ê Ö

Mehr

¾¼¼

¾¼¼ Ù Ù ÙÖ Å Ø Ñ Ø Å Ø Ó Ò ÙÒ Ô Ð ËÓÑÑ Ö Ñ Ø Ö ¾¼¼ ÂÓ Ä Ý ÓÐ Ô ÖØÑ ÒØ Ö ËØ Ø Ø ÙÒ Å Ø Ñ Ø Ö Ï ÖØ Ø ÙÒ Ú Ö ØØ Ï Ò ½ º ÂÙÒ ¾¼¼ ¾¼¼ Josef.Leydold@wu-wien.ac.at ÙÒ Ø ÓÒ Ò Ò Ñ Ö Ö Ò Î Ö Ð Ò ½º Ò Ø ÆÙØÞ Ò ÙÒ Ø ÓÒ

Mehr

Ð ØÛÓÖØ Ó ØÓÖÚ Ø Ö Ñ Î Ö Ð ÚÓÒ ÁÒ ÓÖÑ Ø ÓÒ ÕÙ ÐÐ Ò ÙÒ Đ Ò ÚÓÒ Ò Ò Ö ÒØÛ ÐØ ÛÙÖ Ò ØĐÓ Ø Ñ Ò ÑÑ Ö Û Ö Ù È Đ ÒÓÑ Ò Ø Ò Ò Ö ÁÒ ÓÖÑ Ø ÓÒ ÕÙ ÐÐ ÐØ Ò ÓÑÔ Ø Ð Ò Ñ Ø Ò Ò Ò Ö ÞÛ Ø Ò Ð Ø Û ÒÒ ÙÑ Ð ÒÛ Ò ÙÒ Ò Ðغ À

Mehr

)XQGDPHQWDOH &3$ /DVHU QP 6WHXHUXQJ 'DWHQDXIQDKPH 9HU] JHUXQJV VWUH NH /R N,Q :HL OL KWN YHWWH KURPDWRU 3KRWRGLRGH )LOWHU,) =HUKD NHU 0RQR 3UREH

)XQGDPHQWDOH &3$ /DVHU QP 6WHXHUXQJ 'DWHQDXIQDKPH 9HU] JHUXQJV VWUH NH /R N,Q :HL OL KWN YHWWH KURPDWRU 3KRWRGLRGH )LOWHU,) =HUKD NHU 0RQR 3UREH Ã Ô Ø Ð ¾ ÜÔ Ö Ñ ÒØ ÐÐ Å Ø Ó Ò ¾º½ ÒÐ ØÙÒ ÖÓÑÓÔÖÓØ Ò Û Ò Ò Ø Ù Ö ÓÐÓ Ê Ø ÓÒ ÙÖ Ä Ø¹ ÓÖÔØ ÓÒ ÒÞÙØÖ Òº Ù Ñ ÖÙÒ Û Ö Ò Ä Ø ØÖ Ð ÞÙÖ ÒÖ ÙÒ ÈÖÓØ Ò ÙÒ ÞÙÑ ËØ ÖØ Ö Ê Ø ÓÒ Ò Ø Øº Ñ Ø Ú Ö ÙÒ Ò Ò ÖÙÒ Ð ØÖÓÒ Ò Ù Ø

Mehr

Ä ÓÔÓÐ ¹ Ö ÒÞ Ò ¹ÍÒ Ú Ö ØØ ÁÒÒ ÖÙ ÁÒ Ø ØÙØ Ö ÁÒ ÓÖÑ Ø Ø Ò Ò Ò ÙÒ ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ ËÓ Ð¹Å ÃÓÒÞ ÔØ Ò È Ö ÓÒ Ð¹ÁÒ ÓÖÑ Ø ÓÒ¹Å Ò Ñ ÒعËÝ Ø Ñ Ò ÐÓÖ¹ Ö Ø ØÖ ÙØ ÚÓÒ ÏÓÐ Ò Ð Ö Ú Ò ÖÐ ÁÒÒ ÖÙ ½ º ÂÙÒ ¾¼½¾ Ù ÑÑ

Mehr

Sicher ist sicher: Backup und restore Einleitung Hallo Schatz, habe die Diskette gefunden,...... die du gestern so verzweifelt gesucht hast.

Sicher ist sicher: Backup und restore Einleitung Hallo Schatz, habe die Diskette gefunden,...... die du gestern so verzweifelt gesucht hast. Einleitung Hallo Schatz, habe die Diskette gefunden,...... die du gestern so verzweifelt gesucht hast. Ä ÒÙܹÁÒ Ó¹Ì Ù ÙÖ ¹¾ ºÅÖÞ¾¼¼ à ÖÐ ÙØ Á̹ÏÇÊÃ˺ Ǻ ̹ ÓÒ ÙÐØ Ò ²ËÓÐÙØ ÓÒ Einleitung Willkommen Karl

Mehr

Spaltung. Fusion. E/M [MeV/amu] 2 H. 1 10 100 Massenzahl M. 62 Ni 3 H 1 H

Spaltung. Fusion. E/M [MeV/amu] 2 H. 1 10 100 Massenzahl M. 62 Ni 3 H 1 H ÈÐ Ñ Ô Ý ÙÒ Ù ÓÒ ÓÖ ÙÒ Ì Ð ÁÁ Ù ÓÒ ÓÖ ÙÒ ÚÓÒ Ê ÐÔ ÙÜ ÍÒ Ú Ö ØĐ Ø Ù ÙÖ ËË ¾¼¼¾ Ë Ö ÔØ ÖØ Ù Ñ ÎÓÖÐ ÙÒ Ö ÔØ ÚÓÒ À ÖÖÒ À ÖØÑÙØ Ó Ñ ĐÙÖ Ò Ö ÙÒ Ð ÍÒØ Ö ØĐÙØÞÙÒ ÑĐÓ Ø Ñ Ù Ñ Ï Ò Òº Ã Ô Ø Ð Ø À ÖÖ ÊÙ ÓÐ Æ Ù ÞÙÖ

Mehr

½ Î Ê ÆÌÄÁ ÀÍÆ Æ ¾ º ʺ À ÔÔÐ Ö Àº Ë Û Ö ÙÒ ÀºÇº ÄÙØÞ È ÓØÓ Ð ØÖÓÒ¹ Ô ØÖÓ ÓÔÝ Ó ÅÙÐØ Ô ÓØÓÒ ÓÒ Þ Ø ÓÒ Ó Ê Ö Û Ø ÖÙÖ¹ Ð ÖÐÝ Ò Ð Ò ÖÐÝ ÔÓÐ Ö Þ Ð Ø Ø Ö Ø

½ Î Ê ÆÌÄÁ ÀÍÆ Æ ¾ º ʺ À ÔÔÐ Ö Àº Ë Û Ö ÙÒ ÀºÇº ÄÙØÞ È ÓØÓ Ð ØÖÓÒ¹ Ô ØÖÓ ÓÔÝ Ó ÅÙÐØ Ô ÓØÓÒ ÓÒ Þ Ø ÓÒ Ó Ê Ö Û Ø ÖÙÖ¹ Ð ÖÐÝ Ò Ð Ò ÖÐÝ ÔÓÐ Ö Þ Ð Ø Ø Ö Ø ÈÖÓ º Öº Ë Ö Â ØÞ Ä Ø Ö Î Ö ÒØÐ ÙÒ Ò ÎÓÖØÖ Ä ÖÚ Ö Ò Ø ÐØÙÒ Ò ÙÒ ÜÔÓÒ Ø Ù Ù Ø ¾¼½½ ½ ½º½ Î Ö ÒØÐ ÙÒ Ò Ø Ö Ø Ò ½º ʺ À ÔÔÐ Ö Àº¹Âº ÀÙÑÔ ÖØ Àº Ë Û Ö ÙÒ ÀºÇº ÄÙØÞ Ò ÙÐ Ö ØÖ ÙØ ÓÒ Ó Ô ÓØÓ Ð ØÖÓÒ ÖÓÑ ÑÙÐØ Ô

Mehr

f : N R a 1 = = 2 a 2 = = 1 a 3 = = 6 a 4 = = 13 a 5 = = 22

f : N R a 1 = = 2 a 2 = = 1 a 3 = = 6 a 4 = = 13 a 5 = = 22 Å Ø Ñ Ø º Ë Ñ Ø Ö ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ½ ÁÒ ÐØ Ú ÖÞ Ò ½ ÓÐ Ò Ä ½º½ Ö Ö Ö ÓÐ ½Ä º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ ÜÔÐ Þ Ø ÙÒ Ö ÙÖ Ú Ö ÙÒ ÚÓÒ ÓÐ Ò Ä º º º º º º º º º ½º ËÙÑÑ Ò¹ ÙÒ ÈÖÓ Ù

Mehr

Lehrstuhl und Institut für Strömungslehre

Lehrstuhl und Institut für Strömungslehre ÙÒ Ò ÞÙÑ È Ø ËØÖ ÑÙÒ Ð Ö Ö Ñ Ò Ò ÙÖÛ Ò ÙÒ Î Ö Ö Ò Ø Ò ½º Ù Ò Ð ØØ ËØÖ ÑÙÒ Ö ÀÝ ÖÓ Ø Ø Ù ½º½ ÙÒ Ù ËØÖ ÑÙÒ Ñ Ò Ù ¾º½º½µ º ½º½ ÃÖ Ø ÖÞ Ù ÙÑ ØÖ ÑÙÒ Ò ÃÖ Ø ÖÞ Ù Û Ö ÚÓÒ Ò Ö Ö ÙÒ Ö Ò È Ö ÐÐ Ð ØÖ ÑÙÒ Ö Û Ò Ø

Mehr

Räumliche Ortung und Separation von Geräuschquellen im Bereich der mobilen Servicerobotik

Räumliche Ortung und Separation von Geräuschquellen im Bereich der mobilen Servicerobotik L EHRSTUHL F ÜR REALZEIT-COMPUTERSYSTEME TECHNISCHE UNIVERSITÄT MÜNCHEN UNIV.-PROF. DR.-ING. G. FÄRBER Räumliche Ortung und Separation von Geräuschquellen im Bereich der mobilen Servicerobotik Robin Gruber

Mehr

t r+1 t ÓÖ : {P[1..q] 0 q m} {P[1..q] 0 q < m} { },

t r+1 t ÓÖ : {P[1..q] 0 q m} {P[1..q] 0 q < m} { }, Ã Ô Ø Ð Ì ÜØ Ð ÓÖ Ø Ñ Ò º½ º½º½ ÖÙÒ Ö ÈÖÓ Ð Ñ ÁÒ Ñ Ã Ô Ø Ð Ø ÙÑ ÈÖÓ Ð Ñ Ö Ì ÜØ Ù Ò Ðº Ô ØØ ÖÒ Ñ Ø Ò µº ÁÑ À ÒØ Ö ÖÙÒ Ø Ø ÑÑ Ö Ò ÐÔ Ø Σ Ñ Ø Σ 2 ÞÙÑ Ô Ð {0,1} ÒÖ ÐÔ Ø Ë ÁÁ ÐÔ Ø Ö ¾ Ë ÁÁ¹ Ù Ø Ò {0,1} 8 ÒÖ

Mehr

R = λ 1 f(r) = sf(x 1,x 2,...,x n ) ¾º µ

R = λ 1 f(r) = sf(x 1,x 2,...,x n ) ¾º µ Ë Ñ Ò Ö ÞÙÖ Ì ÓÖ Ö ØÓÑ Ã ÖÒ ÙÒ ÓÒ Ò ÖØ Ò Å Ø Ö Æ ØÞÐ Ì ÓÖ Ñ ÙÒ Ö ÒÛ Ò ÙÒ Ò Ö ÅÓÐ ÐÔ Ý Ä Ä Ò ¾ ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ¾ ÙÐ Ö¹Ì ÓÖ Ñ ¾º½ ÀÓÑÓ Ò ØØ Ò Ö ÙÒ Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º

Mehr

ÔÐÓÑ Ö Ø ÍÒ Ú Ö ØØ À Ñ ÙÖ Ö ÁÒ ÓÖÑ Ø Ö Ø Ö Æ ÒÛ Ò ÙÒ Ò Ö ÁÒ ÓÖÑ Ø Ò Ø ¹ ÙÒ Æ ØÙÖÛ Ò Ø Òµ Ò ÁÌ¹Ë Ö Ø ÓÒÞ ÔØ Ö Ò Û Ò ØÐ ÒÖ ØÙÒ Ñ Ô Ð Ö ÁÒ ÓÖÑ Ø Ö ÍÒ Ú Ö ØØ À Ñ ÙÖ Ì Ð ÁÁÁ ÖÐÙØ ÖÙÒ Ò Â Ò Æ ÓÒ Ö ØÖ ¾ ¾¾ ½

Mehr

Ä Ä Óµ Ö Ò Ð Ö Ä Óµ Ö Ò Ù Ò Ù Ò Û ÖØ Ò Ù Ä ÙÒ Òº ÆÙÖ ÅÙØ Ù Û ÒÒ Ù Ò Å Ø Ò Ò Ø Ù Ò Ò Ó Ø ÐØ Ø Ù ÞÙÖ Ä ÙÒ Ò Ø ÙÒ Ò Ø Ò Å Ø ¹ËØÓ Ö Ë ÙÐ Ö Ù Øº Î ÐÑ Ö Û Ö

Ä Ä Óµ Ö Ò Ð Ö Ä Óµ Ö Ò Ù Ò Ù Ò Û ÖØ Ò Ù Ä ÙÒ Òº ÆÙÖ ÅÙØ Ù Û ÒÒ Ù Ò Å Ø Ò Ò Ø Ù Ò Ò Ó Ø ÐØ Ø Ù ÞÙÖ Ä ÙÒ Ò Ø ÙÒ Ò Ø Ò Å Ø ¹ËØÓ Ö Ë ÙÐ Ö Ù Øº Î ÐÑ Ö Û Ö Â Ö Ò ¼ À Ø ½¼¾ ÂÙÒ ¾¼½¼ Ò Ñ Ø Ñ Ø Ø Ö Ø Ö Ë Ð Ö ÒÒ Òµ ÙÒ Ä Ö Ö ÒÒ Òµ ½ ¼ Ö Ò Ø ÚÓÒ Å ÖØ Ò Å ØØÐ Ö Ö Ù Ò ÚÓÑ ÁÒ Ø ØÙØ Ö Å Ø Ñ Ø Ò Ö ÂÓ ÒÒ ÙØ Ò Ö ¹ÍÒ Ú Ö ØØ ÞÙ Å ÒÞ JG U JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Mehr

ÎÓÒ Ö ÖÞ ÙÒ Û Ò ØÐ Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ ÞÙ Ã ÐÒ Ò ÒÓѹ Ñ Ò ÖØ Ø ÓÒº Ö Ø Ö ÙØ Ø Ö À ÖÖ ÈÖÓ º Öº ÊÓÐ È Ð Ø Ö Û Ø Ö ÙØ Ø Ö À ÖÖ È Öº Ò Ö À Ø Ù Ò Ö ØØ Ö ÙØ

ÎÓÒ Ö ÖÞ ÙÒ Û Ò ØÐ Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ ÞÙ Ã ÐÒ Ò ÒÓѹ Ñ Ò ÖØ Ø ÓÒº Ö Ø Ö ÙØ Ø Ö À ÖÖ ÈÖÓ º Öº ÊÓÐ È Ð Ø Ö Û Ø Ö ÙØ Ø Ö À ÖÖ È Öº Ò Ö À Ø Ù Ò Ö ØØ Ö ÙØ ÖÛ Ø ÖØ Å Ð Ø Ò Ö ÜÔ Ö Ñ ÒØ Ö Ò Ñ È Ý ÙÒØ ÖÖ Ø ÙÖ Ò Ò ØÞ Ò Ò Ù ÒØÛ ÐØ Ò Ò Ö Ù Ò Ò Ø ØÓÖ Ö Ê ÒØ Ò ØÖ Ð Ò ÁÒ Ù ÙÖ Ð ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö Ö ÖÞ ÙÒ Û Ò ØÐ Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ ÞÙ Ã ÐÒ ÚÓÖ Ð Ø ÚÓÒ ÖØ Ñ

Mehr

Ø ÑÑÙÒ Ö Ä Ò Ö ØØ ÙÒ Ò Ö Ù ÙÒ ÚÓÒ Ð Ð ÑÓ ÙÐ Ò Ñ Ð ØÖÓÑ Ò Ø Ò Ã ÐÓÖ Ñ Ø Ö Ñ ÇÅÈ Ë˹ ÜÔ Ö Ñ ÒØ ÔÐÓÑ Ö Ø ÚÓÒ ÓÑ Ó ¹Å Ö Ó ÓØ ÁÒ Ø ØÙØ Ö Ã ÖÒÔ Ý ÂÓ ÒÒ ÙØ Ò Ö ¹ÍÒ Ú Ö ØØ Å ÒÞ ¼º ÔÖ Ð ¾¼¼ ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ

Mehr

Abschlussklausur Grundlagen der Informatik (GDI) Dr. Christian Baun

Abschlussklausur Grundlagen der Informatik (GDI) Dr. Christian Baun Ä ÙÒ ÞÞ Ò ÞÙÖ ÐÙ Ð Ù ÙÖ ÖÙÒ Ð Ò Ö ÁÒ ÓÖÑ Ø Áµ º ÖÙ Ö ¾¼½¾ Æ Ñ ÎÓÖÒ Ñ Å ØÖ ÐÒÙÑÑ Ö ËØÙ Ò Ò À ÒÛ ÌÖ Ò Ë ÞÙ Ö Ø Ù ÐÐ Ò ÐØØ ÖÒ Ò Ð Ð Ð ØØ µ Á Ö Ò Æ Ñ Ò Á Ö Ò ÎÓÖÒ Ñ Ò ÙÒ Á Ö Å ØÖ ÐÒÙÑÑ Ö Òº Ä ÙÒ Ò Ó Ò Ò Ò

Mehr

Superharte, unterschiedlich gradierte PVD-Kohlenstoffschichten mit und ohne Zusätze von Titan und Silizium

Superharte, unterschiedlich gradierte PVD-Kohlenstoffschichten mit und ohne Zusätze von Titan und Silizium Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Wissenschaftliche Berichte FZKA 6740 Superharte, unterschiedlich gradierte PVD-Kohlenstoffschichten mit und ohne Zusätze von Titan und Silizium

Mehr

Ò Ö Ò Ð Ò Ö º Ä Ð ØÖÓÒ ÐÙÒ Ñ ØØ Ð Ñ ÁÒØ ÖÒ Ø ĐÍ Ö Ø ÙÒ Û ÖØÙÒ ØÙ ÐÐ Ö Î Ö Ö Ò ÙÒØ Ö ÖĐÙ Ø ÙÒ ÚÓÒ ÃÖ Ø Ö Ò Ö Ë Ö Ø ÙÒ ÙÒ Ø ÓÒ Ð ØĐ Ø ËØÙ Ò Ö Ø ÎÓÖ Ð Ø ÞÙÖ ÙØ ØÙÒ ÙÖ Ã Ø Ö Ò Ë Ö Þ Ñ Ö ½ ÍÆÁÎ ÊËÁÌ Đ Ì À Å

Mehr

Grundtypen von Lägern

Grundtypen von Lägern º Ä Ö Ý Ø Ñ Ñ Ö Î Á¹Ê ØÐ Ò ¾ ½½ Ø Ä ÖÒ ÔÐ ÒØ Ä Ò Ö Ø ¹ Ò Ø Ò Ñ Å Ø Ö Ð Ù º Ä Ö Ø Ò Ê ÙÑ ÞÛº Ò Ð ÞÙÑ Ù Û Ö Ò ÚÓÒ ËØ ¹ ÙÒ»Ó Ö Ë ØØ ÙØ Ò ÓÖÑ ÚÓÒ ÊÓ ØÓ Ò Û ¹ ÒÔÖÓ Ù Ø Ò Ó Ö ÖØ Û Ö Ò Ñ Ò Ò¹ ÙÒ»Ó Ö Û ÖØÑ Ö Ø

Mehr

Ò ÓÖ ÖÙÒ Ò Ò ÑÓ ÖÒ ÖÓÛ Ö¹ Ö Ò Ï ¹ ÔÔÐ Ø ÓÒ Ò ËØ Ò Ê Ù Ð ÅĐ ÖÞ ¾¼¼½ ÔÐÓÑ Ö Ø Ò Ì Ð Ñ Ø ÙÖ ĐÙ ÖØ Ñ ÁÒ Ø ØÙØ ĐÙÖ ÁÒ ÓÖÑ Ø ÓÒ Ú Ö Ö ØÙÒ ÙÒ ÓÑÔÙØ Ö ØĐÙØÞØ Æ Ù Å Ò Ö Ì Ò Ò ÍÒ Ú Ö ØĐ Ø Ö Þ ÙØ Ø Ö ØÖ Ù Ö ÇºÍÒ

Mehr

ËÚ Ò Æ ÙÑ ÒÒ À Ò Ä Ò Ö È Ö Ò Ò Ò ĐÙ ÖÙÒ Ò Ñ Ò ÐÐ Ò ÐÝ Ò ØĐÙÖÐ Ö ËÔÖ Ú ÎÓÖÛÓÖØ Ð Û Ö Ò Ö ¼ Ö Â Ö ÞÙÑ Ö Ø ÒÑ Ð Ä ÖÚ Ö Ò Ø ÐØÙÒ Ò ÚÓÖ Ö Ø Ø Ò Ò Ò ĐÍ Ö Ð ĐÙ Ö Ù Ë Ø Ö ÓÑÔÙØ ÖÐ Ò Ù Ø Û Ø Ø Ò È Ö¹ Ò Ð ÓÖ Ø Ñ

Mehr

ÐÙÑ Ò ÙÑÒ ØÖ ¹Ë ÙØÞ Ø Ò Ù ÐÐ ÙÑÒ ØÖ À Ö Ø ÐÐÙÒ ÙÒ Ö Ø Ö ÖÙÒ ÚÓÒ Å ÐØ Ã Ö ÔÐÓÑ Ö Ø Ò È Ý Ò ÖØ Ø Ñ ÁÒ Ø ØÙØ ĐÙÖ ËØÖ Ð Ò¹ ÙÒ Ã ÖÒÔ Ý ÚÓÖ Ð Ø Ö Å Ø Ñ Ø ¹Æ ØÙÖÛ Ò ØÐ Ò ÙÐØĐ Ø Ö Ê Ò Ò Ö Ö ¹Ï Ð ÐÑ ¹ÍÒ Ú Ö ØĐ

Mehr

Ð ÀÐØ ÐÐ ØØÖ Ù Ñ ÐÒ ÄÚÐ ÙÒ ÔÖ ØÒ Ò Ò ÐØØÖÒº ÞÙ ÖÐÙ ÑÖ Ð ÒÒ ËÐ Ð Ò ÒÑ ÒÒÖÒ ÃÒÓØÒ ÞÙ ÔÖÒº ÀØ Ò ÒÒÖÖ ÃÒÓØÒ x ÒÙ m ÃÒÖ Ó ÒÐØØ x ÒÙ m ËРк ËÐ Ð Ò ÒÑ ÌÐÙÑ

Ð ÀÐØ ÐÐ ØØÖ Ù Ñ ÐÒ ÄÚÐ ÙÒ ÔÖ ØÒ Ò Ò ÐØØÖÒº ÞÙ ÖÐÙ ÑÖ Ð ÒÒ ËÐ Ð Ò ÒÑ ÒÒÖÒ ÃÒÓØÒ ÞÙ ÔÖÒº ÀØ Ò ÒÒÖÖ ÃÒÓØÒ x ÒÙ m ÃÒÖ Ó ÒÐØØ x ÒÙ m ËРк ËÐ Ð Ò ÒÑ ÌÐÙÑ º ËÙÚÖÖÒ º (a,b) ¹ ÙÑ º ÂÙÒ Ð ÀÐØ ÐÐ ØØÖ Ù Ñ ÐÒ ÄÚÐ ÙÒ ÔÖ ØÒ Ò Ò ÐØØÖÒº ÞÙ ÖÐÙ ÑÖ Ð ÒÒ ËÐ Ð Ò ÒÑ ÒÒÖÒ ÃÒÓØÒ ÞÙ ÔÖÒº ÀØ Ò ÒÒÖÖ ÃÒÓØÒ x ÒÙ m ÃÒÖ Ó ÒÐØØ x ÒÙ m ËРк ËÐ Ð Ò ÒÑ ÌÐÙÑ T i ÔÖØ Ò Ò ÐÐ ÐÒÖ Ð Ù

Mehr

Strategische Standortplanung in Reverse-Logistik-Netzwerken - Eine empirische und modellgestützte Analyse

Strategische Standortplanung in Reverse-Logistik-Netzwerken - Eine empirische und modellgestützte Analyse Sven Mühlthaler Strategische Standortplanung in Reverse-Logistik-Netzwerken - Eine empirische und modellgestützte Analyse Dargestellt für die Amaturenaufarbeitung kassel university press Die vorliegende

Mehr

t r+1 t ÓÖ : {P[1..q] 0 q m} {P[1..q] 0 q < m} { },

t r+1 t ÓÖ : {P[1..q] 0 q m} {P[1..q] 0 q < m} { }, Ã Ô Ø Ð Ì ÜØ Ð ÓÖ Ø Ñ Ò º½ º½º½ ÖÙÒ Ö ÈÖÓ Ð Ñ ÁÒ Ñ Ã Ô Ø Ð Ø ÙÑ ÈÖÓ Ð Ñ Ö Ì ÜØ Ù Ò Ðº Ô ØØ ÖÒ Ñ Ø Ò µº ÁÑ À ÒØ Ö ÖÙÒ Ø Ø ÑÑ Ö Ò ÐÔ Ø Σ Ñ Ø Σ 2 ÞÙÑ Ô Ð {0,1} ÒÖ ÐÔ Ø {,,, Ì} ½ Ë ÁÁ Ò Ð Ö Ó Ñ Ø ½¾ Ò Ö ØÑ

Mehr

ÙÐØØ ÁÒ Ò ÙÖ Û Ò Ø Ò ÙÒ ÁÒ ÓÖÑ Ø ÔÐÓÑ Ö Ø Ö Ì Ñ ÃÓÒ ÓÐ ÖÙÒ Ò Á̹ËÝ Ø Ñ ÞÙÖ ÍÒØ Ö Ø ØÞÙÒ ÐÐ ÖØ Ö Ö Ö ËÓ ØÛ Ö Ò ØÐ ØÙÒ Ò ÚÓÖ Ð Ø ÙÖ ÌÓÖ Ø Ò ÁÖÐÒ Ö ¾¼¼ ÌÓÖ Ø Ò ÁÖÐÒ Ö ÓÑ Ö Ø Ö ÖÚ Ï Ö Ø ÙÒØ Ö Ö Ö Ø Ú ÓÑÑÓÒ

Mehr