Kurs 1613 Einführung in die imperative Programmierung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kurs 1613 Einführung in die imperative Programmierung"

Transkript

1 Aufgabe 1 Gegeben sei die Prozedur BubbleSort: procedure BubbleSort(var iofeld:tfeld); { var hilf:integer; i:tindex; j:tindex; vertauscht:boolean; i:=1; repeat vertauscht := false; for j := 1 to N - i do if (iofeld[j]>iofeld[j+1]) then hilf:=iofeld[j]; iofeld[j]:=iofeld[j+1]; iofeld[j+1]:=hilf; vertauscht := true i := i + 1 until ((i=n) or (not vertauscht)) end } a) Überlegen Sie sich, was das Programm leistet und wie es dabei vorgeht. Ergänzen Sie in der Prozedur einen erklärenden Kommentar an der grau eingefärbten Stelle. b) Was ist die Zeitkomplexität des BubbleSort? Bester Fall Komplexität: Durchschnittlicher Fall Komplexität: Schlechtester Fall Komplexität: 1

2 Aufgabe 2 Schreiben Sie eine Pascal-Prozedur transponierematrix, die als Parameter eine quadratische Matrix von integer-werten erhält und diese Matrix transponiert, also die Zeilen und Spalten der Matrix vertauscht, wie im folgenden Beispiel gezeigt ist: Verwenden Sie dazu die folgenden Definitionen: const ZEILENSPALTENMAX = 5; tzeilespalte = 1..ZEILENSPALTENMAX; tmatrix = array [tzeilespalte, tzeilespalte] of integer; 2

3 Aufgabe 3 Gegeben seien die folgenden Typdefinitionen für Knoten eines binären Suchbaums und Elemente einer linearen Liste: trefbbknoten = ^tbbknoten; tbbknoten = record info:integer; links, rechts:trefbbknoten trefelement = ^telement; telement = record info:integer; next:trefelement Schreiben Sie eine Pascal-Funktion Baumpfad, welche einen nicht leeren Suchbaum sowie einen Suchwert übergeben bekommt und dazu alle Werte auf dem Suchpfad von der Wurzel des Suchbaums zum ersten Vorkommen des Suchwerts (jeweils inklusive) in einer Liste ablegt und diese zurückgibt. Ist der gesuchte Wert nicht im Baum enthalten, so soll eine leere Liste (also ein Zeiger mit Wert nil) zurückgegeben werden. Durchlaufen Sie dazu in Ihrer Funktion den Suchbaum iterativ und fügen Sie während des Durchlaufs die gefundenen Werte hinten an eine (neu zu erstellende) Liste an. Wird der Suchwert nicht gefunden, ist die aufgebaute Liste wieder komplett zu löschen. 3

4 Aufgabe 4 Gegeben seien die folgenden Typdefinitionen für Knoten eines Binärbaums in Pascal: trefbbknoten = ^tbbknoten; tbbknoten = record info:integer; links, rechts:trefbbknoten Gesucht ist eine rekursive Pascal-Prozedur, die einen übergebenen Binärbaum in inorder - Reihenfolge durchläuft (Links-Mitte-Rechts) und dabei eine bestimmte Folge von Zahlen auf die Standardausgabe schreibt: Bei jedem Knotenbesuch ist das Maximum der Knotenwerte aller bis dahin durchlaufenen Baumknoten (einschließlich des gerade besuchten) auszugeben. Für den im Folgenden abgebildeten Baum ergibt sich z.b. die Ausgabe:

5 Aufgabe 5 Eine Prozedur, die für eine natürliche Zahl bestimmt, ob diese durch 3 oder durch 9 teilbar ist, soll einem funktionsorientierten Test unterzogen werden. Bekannt seien die Typdefinitionen sowie der Prozedurkopf: tnatzahl=1..maxint; procedure divdreineun(inz:tnatzahl;var outdrei:boolean; var outneun:boolean); {ermittelt, ob die Eingabe inz durch die Zahlen 3 bzw. 9 teilbar ist.} Geben Sie eine für einen Black-Box-Test sinnvolle Zerlegung der Menge der zulässigen Eingabedaten in Äquivalenzklassen an. Geben Sie hierbei zu jeder Äquivalenzklasse jeweils ein Testdatum an. 5

6 Aufgabe 6 Die Funktion aus Aufgabe 5 benutzt für die Tests auf Teilbarkeit die Quersumme der eingegebenen Zahl. Für die Berechnung der Quersumme bieten wir als Lösung folgendes Programm an: program QuersummeF (input, output); { soll die Quersumme einer nicht-negativen integer-zahl berechnen } tnatzahl = 0..maxint; var Quer, Rest : tnatzahl; readln (Rest); Quer := 0; while Rest > 0 do Quer := Rest mod 10; Rest := Rest div 10 writeln (Quer) end. { QuersummeF } a) Zeichnen Sie den kompakten Kontrollflussgraphen zum Programm QuersummeF. b) Geben Sie Pfade im Kontrollflussgraphen für einen Zweigüberdeckungstest an. Geben Sie je ein entsprechendes Testdatum an. c) Wie unterscheidet sich der boundary interior-pfadtest (interior-test mit n=2) für das Programm QuersummeF vom Zweigüberdeckungstest aus Teil b) dieser Aufgabe? Geben Sie falls nötig weitere Testdaten an. Ist es möglich, dass auch dieses Testverfahren den Fehler im Programm nicht aufdeckt? Begründen Sie Ihre Antwort. 6

Kurs 1613 Einführung in die imperative Programmierung

Kurs 1613 Einführung in die imperative Programmierung Aufgabe 1 Gegeben sei die Prozedur BubbleSort: procedure BubbleSort(var iofeld:tfeld); { Programm sortiert das Eingabefeld iofeld aufsteigend var hilf:integer; i:tindex; j:tindex; vertauscht:boolean; i:=1;

Mehr

Kurs 1613 Einführung in die imperative Programmierung Lösungen der Aufgaben zum Studientag

Kurs 1613 Einführung in die imperative Programmierung Lösungen der Aufgaben zum Studientag Aufgabe 1 Gegeben sei die Prozedur BubbleSort: procedure BubbleSort(var iofeld:tfeld); { Programm sortiert das Eingabefeld iofeld aufsteigend var hilf:integer; i:tindex; j:tindex; vertauscht:boolean; i:=1;

Mehr

Kurs 1612 Konzepte imperativer Programmierung Kurs 1613 Einführung in die imperative Programmierung

Kurs 1612 Konzepte imperativer Programmierung Kurs 1613 Einführung in die imperative Programmierung Aufgaben Aufgabe 1 Schreiben Sie eine PASCAL-Prozedur transponierematrix, die als Parameter eine quadratische Matrix von integer-werten erhält und diese Matrix transponiert, also die Zeilen und Spalten

Mehr

Wintersemester 2010/2011 Hinweise zur Bearbeitung der Klausur zum Kurs 1613 Einführung in die imperative Programmierung

Wintersemester 2010/2011 Hinweise zur Bearbeitung der Klausur zum Kurs 1613 Einführung in die imperative Programmierung Name: Matrikelnr.: Wintersemester 2010/2011 Hinweise zur Bearbeitung der Klausur zum Kurs 1613 Einführung in die imperative Programmierung Wir begrüßen Sie zur Klausur Einführung in die imperative Programmierung.

Mehr

Hinweise zur Bearbeitung der Klausur zum Kurs Einführung in die imperative Programmierung

Hinweise zur Bearbeitung der Klausur zum Kurs Einführung in die imperative Programmierung Name: Matrikelnr.: Hinweise zur Bearbeitung der Klausur zum Kurs 01613 Einführung in die imperative Programmierung 1. Prüfen Sie die Vollständigkeit Ihrer Unterlagen. Die Klausur umfasst: 2 Deckblätter

Mehr

Kurs 1613 Einführung in die imperative Programmierung

Kurs 1613 Einführung in die imperative Programmierung 1 Wintersemester 2002/2003 Hinweise zur Bearbeitung der Klausur zum Kurs 1613 Einführung in die imperative Programmierung Wir begrüßen Sie zur Klausur "Konzepte imperativer Programmierung". Lesen Sie sich

Mehr

Kurs 1613 Einführung in die imperative Programmierung Musterlösung zur Nachklausur am

Kurs 1613 Einführung in die imperative Programmierung Musterlösung zur Nachklausur am 1 Aufgabe 1 Analysiert man das Verfahren anhand des angegebenen Beispiels, ist schnell zu erkennen, dass das erste Element von infeld2 nach outfeld an Index 2 kopiert wird, das zweite den Index 4 bekommt,

Mehr

Kurs 1575, Musterlösung zur Winter Klausur 2002/03

Kurs 1575, Musterlösung zur Winter Klausur 2002/03 1 0 Kurs 1575, Musterlösung zur Klausur im Wintersemester 2002/03 1 Kurs 1575, Musterlösung zur Winter Klausur 2002/03 Aufgabe 1: Warteschlange Wer kennt das Problem nicht? Sie wollen noch schnell im Supermarkt

Mehr

Kurs 1575, Musterlösung zur Winter Klausur 2003/04

Kurs 1575, Musterlösung zur Winter Klausur 2003/04 Kurs 1575, Musterlösung zur Klausur im Wintersemester 2003/04 1 Kurs 1575, Musterlösung zur Winter Klausur 2003/04 Aufgabe 1: Römische Zahlen Wer kennt das Problem nicht: Sie stehen vor einer Inschrift,

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

FernUniversität -Gesamthochschule- in Hagen

FernUniversität -Gesamthochschule- in Hagen FernUniversität -Gesamthochschule- in Hagen Fachbereich Informatik Praktische Informatik III Prof. Dr. Hans-Werner Six Prof. Dr. H.-W. Six FernUniversität Postfach 940 D-58084 Hagen An die Teilnehmerinnen

Mehr

Kurs 1613 Einführung in die imperative Programmierung Musterlösung zur Klausur am

Kurs 1613 Einführung in die imperative Programmierung Musterlösung zur Klausur am Kurs 1613 Einführung in die imperative Programmierung 1 Aufgabe 1 procedure NachVorn( inwert: integer; var iorefanfang: trefelement); {Sucht das erste vorkommende Element mit inwert in der info-komponente

Mehr

Kurs 1613 Einführung in die imperative Programmierung

Kurs 1613 Einführung in die imperative Programmierung Kurs 1613 Einführung in die imperative Programmierung 1 Wintersemester 2009/2010 Hinweise zur Bearbeitung der Klausur zum Kurs 1613 Einführung in die imperative Programmierung Wir begrüßen Sie zur Klausur

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)

Mehr

Kurs 1613 Einführung in die imperative Programmierung

Kurs 1613 Einführung in die imperative Programmierung Kurs 1613 Einführung in die imperative Programmierung 1 Wintersemester 2009/2010 Hinweise zur Bearbeitung der Klausur zum Kurs 1613 Einführung in die imperative Programmierung Wir begrüßen Sie zur Klausur

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

Übungen 19.01.2012 Programmieren 1 Felix Rohrer. Übungen

Übungen 19.01.2012 Programmieren 1 Felix Rohrer. Übungen Übungen if / else / else if... 2... 2 Aufgabe 2:... 2 Aufgabe 3:... 2 Aufgabe 4:... 2 Aufgabe 5:... 2 Aufgabe 6:... 2 Aufgabe 7:... 3 Aufgabe 8:... 3 Aufgabe 9:... 3 Aufgabe 10:... 3 switch... 4... 4 Aufgabe

Mehr

Wintersemester 98/99 Hinweise zur Bearbeitung der Klausur zum Kurs 1612 Konzepte imperativer Programmierung

Wintersemester 98/99 Hinweise zur Bearbeitung der Klausur zum Kurs 1612 Konzepte imperativer Programmierung Klausur am 10.04.1999 1 Wintersemester 98/99 Hinweise zur Bearbeitung der Klausur zum Kurs 1612 Konzepte imperativer Programmierung Wir begrüßen Sie zur Klausur "Konzepte imperativer Programmierung". Lesen

Mehr

Kurs 1613 Einführung in die imperative Programmierung Musterlösung zur Klausur am

Kurs 1613 Einführung in die imperative Programmierung Musterlösung zur Klausur am 1 Aufgabe 1 a) procedure FeldMinMax(inFeld: tfeld; var outmin, outmax: integer); { Ermittelt den kleinsten sowie den größten aller Werte in infeld und gibt diese in den Ausgabeparametern outmin bzw. outmax

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

Übung Datenstrukturen. Bäume

Übung Datenstrukturen. Bäume Übung Datenstrukturen Bäume Übung Binärbaum 7 2 10 1 3 5 9 34 8 7 11 13 17 7 25 19 3 Aufgabe 1 Geben Sie die Reihenfolge der besuchten Knoten nach Prä-, In-, Post- und Levelorder an! Übung Binärbaum Aufgabe

Mehr

Bitte hier unbedingt Matrikelnummer und Adresse eintragen, sonst keine Bearbeitung möglich Einführung in die imperative Programmierung

Bitte hier unbedingt Matrikelnummer und Adresse eintragen, sonst keine Bearbeitung möglich Einführung in die imperative Programmierung FernUniversität in Hagen Bitte hier unbedingt Matrikelnummer und Adresse eintragen, sonst keine Bearbeitung möglich. FERNUNIVERSITÄT - Gesamthochschule - EINGANG Postanschrift: FernUniversität D - 58084

Mehr

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v) Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

Humboldt-Universität zu Berlin Berlin, den Institut für Informatik

Humboldt-Universität zu Berlin Berlin, den Institut für Informatik Humboldt-Universität zu Berlin Berlin, den 15.06.2015 Institut für Informatik Prof. Dr. Ulf Leser Übungen zur Vorlesung M. Bux, B. Grußien, J. Sürmeli, S. Wandelt Algorithmen und Datenstrukturen Übungsblatt

Mehr

368 4 Algorithmen und Datenstrukturen

368 4 Algorithmen und Datenstrukturen Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist

Mehr

Syntax der Sprache PASCAL

Syntax der Sprache PASCAL Syntax der Sprache PASCAL Buchstaben A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c d e f g h i j k l m n o p q r s t u v w x y z Ziffern 0 1 2 3 4 5 6 7 8 9 Sonderzeichen und Wortsymbole +

Mehr

Klausur Informatik B April Teil I: Informatik 3

Klausur Informatik B April Teil I: Informatik 3 Informatik 3 Seite 1 von 8 Klausur Informatik B April 1998 Teil I: Informatik 3 Informatik 3 Seite 2 von 8 Aufgabe 1: Fragekatalog (gesamt 5 ) Beantworten Sie folgende Fragen kurz in ein oder zwei Sätzen.

Mehr

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12 Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben

Mehr

Studientag zum Kurs 01613

Studientag zum Kurs 01613 Studientag zum Kurs 01613 Einführung in die imperative Programmierung Lehrgebiet Softwaretechnik und Theorie der Programmierung Studientag zum Kurs 01613 Einführung in die imperative Programmierung Algorithmen

Mehr

Relationen und DAGs, starker Zusammenhang

Relationen und DAGs, starker Zusammenhang Relationen und DAGs, starker Zusammenhang Anmerkung: Sei D = (V, E). Dann ist A V V eine Relation auf V. Sei andererseits R S S eine Relation auf S. Dann definiert D = (S, R) einen DAG. D.h. DAGs sind

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens aw@awilkens.com Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes

Mehr

Über Arrays und verkettete Listen Listen in Delphi

Über Arrays und verkettete Listen Listen in Delphi Über Arrays und verkettete Listen Listen in Delphi Michael Puff mail@michael-puff.de 2010-03-26 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 2 Arrays 4 3 Einfach verkettete Listen 7 4 Doppelt verkettete

Mehr

Aufgabe (Schreibtischtest, lexikographische Ordnung)

Aufgabe (Schreibtischtest, lexikographische Ordnung) Aufgabe (Schreibtischtest, lexikographische Ordnung) Führen Sie einen Schreibtischtest für den Algorithmus Bubblesort aus der VL für die folgenden Eingabe-Arrays durch. Geben Sie das Array S nach jedem

Mehr

Kurs 1613 Einführung in die imperative Programmierung Musterlösung zur Klausur am

Kurs 1613 Einführung in die imperative Programmierung Musterlösung zur Klausur am 1 Lösung 1 ( 4+4 Punkte) a) procedure VerschiebeZyklisch ( iofeld : tfeld); { verschiebt die Werte innerhalb eines Feldes eine Position nach rechts; der Wert iofeld[max] wird nach iofeld[1] übertragen

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda 1. Vorstellen des vierten Übungsblatts 2. Vorbereitende Aufgaben für das vierte Übungsblatt

Mehr

Binäre lineare Optimierung mit K*BMDs p.1/42

Binäre lineare Optimierung mit K*BMDs p.1/42 Binäre lineare Optimierung mit K*BMDs Ralf Wimmer wimmer@informatik.uni-freiburg.de Institut für Informatik Albert-Ludwigs-Universität Freiburg Binäre lineare Optimierung mit K*BMDs p.1/42 Grundlagen Binäre

Mehr

Programmierkurs Java

Programmierkurs Java Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen

Mehr

4.Grundsätzliche Programmentwicklungsmethoden

4.Grundsätzliche Programmentwicklungsmethoden 4.Grundsätzliche Programmentwicklungsmethoden 1.1 Grundlage strukturierter und objektorientierter Programmierung Begriff Software Engineering - umfaßt den gezielten Einsatz von Beschreibungsmitteln, Methoden

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

An die Teilnehmerinnen und Teilnehmer des Kurses 1613 Einführung in die imperative Programmierung im WS 05/06

An die Teilnehmerinnen und Teilnehmer des Kurses 1613 Einführung in die imperative Programmierung im WS 05/06 FACHBEREICH Informatik Lehrgebiet Software Engineering Prof. Dr. H.-W. Six FernUniversität in Hagen 58084 Hagen An die Teilnehmerinnen und Teilnehmer des Kurses 1613 Einführung in die imperative Programmierung

Mehr

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl:

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: AVL-Bäume Analyse (Folie 85, Seite 39 im Skript) Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: 0 falls n = 0 F n = 1 falls

Mehr

Methodische Grundlagen des Software Engineering - Übung 9

Methodische Grundlagen des Software Engineering - Übung 9 Engineering - Übung 9 9 Prozess und Softwarequalität Abgabe der Hausaufgaben am Anfang der jeweiligen Präsenzübung am 14.06.2011 bzw. 15.06.2011. Hinweise und Kontakt: Veranstaltungsseite 1 9.1 Grundlagen

Mehr

Kurs 1612 Konzepte imperativer Programmierung Musterlösung zur Nachklausur am

Kurs 1612 Konzepte imperativer Programmierung Musterlösung zur Nachklausur am 1 Aufgabe 1 a) Da Effizienzbetrachtungen bei der Lösung der Aufgabe keine Rolle spielen, wählen wir einen einfachen, aber ineffizienten Algorithmus mit zwei ineinander verschachtelten for-schleifen. Dadiefor-Schleifen

Mehr

Übungen zu Programmierung I - Blatt 8

Übungen zu Programmierung I - Blatt 8 Dr. G. Zachmann A. Greß Universität Bonn Institut für Informatik II 1. Dezember 2004 Wintersemester 2004/2005 Übungen zu Programmierung I - Blatt 8 Abgabe am Mittwoch, dem 15.12.2004, 15:00 Uhr per E-Mail

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2017/18. Pro f. Dr. Sán do r Fe k e te

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2017/18. Pro f. Dr. Sán do r Fe k e te Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2017/18 Pro f. Dr. Sán do r Fe k e te 1 4.1 Grundoperationen Aufgabenstellung: 3 4.1 Grundoperationen Aufgabenstellung: Verwalten

Mehr

Kurs 1575, Klausur vom , Musterlösung

Kurs 1575, Klausur vom , Musterlösung Kurs 1575, Klausur vom 7.2.1998, Musterlösung Sie wollen die Tause von Büchern in Ihrem heimischen Bücherregal lich systematisch erfassen. Dazu schreiben Sie sich von jedem Buch Autorenname, Titel sowie

Mehr

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes. Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel

Mehr

3. Binäre Suchbäume. 3.1 Natürliche binäre Suchbäume. EADS 3.1 Natürliche binäre Suchbäume 78/598 ľernst W. Mayr

3. Binäre Suchbäume. 3.1 Natürliche binäre Suchbäume. EADS 3.1 Natürliche binäre Suchbäume 78/598 ľernst W. Mayr 3. Binäre Suchbäume 3.1 Natürliche binäre Suchbäume Definition 18 Ein natürlicher binärer Suchbaum über einem durch total geordneten Universum U ist ein als interner Suchbaum organisierter Binärbaum (also:

Mehr

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen Bäume sind verallgemeinerte Listen Datenstrukturen Teil 2 Bäume Jeder Knoten kann mehrere Nachfolger haben Sie sind weiter spezielle Graphen Graphen bestehen aus Knoten und Kanten Kanten können gerichtet

Mehr

Wiederholung. Bäume sind zyklenfrei. Rekursive Definition: Baum = Wurzelknoten + disjunkte Menge von Kindbäumen.

Wiederholung. Bäume sind zyklenfrei. Rekursive Definition: Baum = Wurzelknoten + disjunkte Menge von Kindbäumen. Wiederholung Baum: Gerichteter Graph, der die folgenden drei Bedingungen erfüllt: Es gibt einen Knoten, der nicht Endknoten einer Kante ist. (Dieser Knoten heißt Wurzel des Baums.) Jeder andere Knoten

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2016/17 13. Vorlesung Binäre Suchbäume Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Dynamische Menge verwaltet Elemente einer sich ändernden Menge

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 217 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Graphen, Suchbäume, AVL Bäume Heute: Graphen und Bäume Binäre Suchbäume AVL-Bäume Nächste

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Binärbaum Suchbaum Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 356 Datenstruktur Binärbaum Strukturrepräsentation des mathematischen Konzepts Binärbaum

Mehr

Wiederholung. Datenstrukturen und. Bäume. Wiederholung. Suchen in linearen Feldern VO

Wiederholung. Datenstrukturen und. Bäume. Wiederholung. Suchen in linearen Feldern VO Wiederholung Datenstrukturen und Algorithmen VO 708.031 Suchen in linearen Feldern Ohne Vorsortierung: Sequentielle Suche Speicherung nach Zugriffswahrscheinlichkeit Selbstanordnende Felder Mit Vorsortierung:

Mehr

Die Notwendigkeit für wiederholte Programmausführungen. Agenda für heute, 11. März, 2010

Die Notwendigkeit für wiederholte Programmausführungen. Agenda für heute, 11. März, 2010 Agenda für heute, 11. März, 2010 Die Notwendigkeit für wiederholte Programmausführungen Aufgabe: Die Quadratwurzel einer positiven Zahl berechnen Einschränkung: Es stehen nur arithmetische Operationen

Mehr

INFORMATIK FÜR BIOLOGEN

INFORMATIK FÜR BIOLOGEN Technische Universität Dresden 15012015 Institut für Theoretische Informatik Professur für Automatentheorie INFORMATIK FÜR BIOLOGEN Musterklausur WS 2014/15 Studiengang Biologie und Molekulare Biotechnologie

Mehr

An alle Teilnehmer(innen) des Kurses Einführung in die imperative Programmierung im Wintersemester 2008/2009. Klausur-Informationen

An alle Teilnehmer(innen) des Kurses Einführung in die imperative Programmierung im Wintersemester 2008/2009. Klausur-Informationen Lehrgebiet Software Engineering Prof. Dr. H.-W. Six FernUniversität in Hagen 58084 Hagen An alle Teilnehmer(innen) des Kurses 01613 Einführung in die imperative Programmierung im Wintersemester 2008/2009

Mehr

Tutorium Algorithmen & Datenstrukturen

Tutorium Algorithmen & Datenstrukturen June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten

Mehr

Algorithmen und Datenstrukturen 1

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen 1 8. Vorlesung Martin Middendorf und Peter F. Stadler Universität Leipzig Institut für Informatik middendorf@informatik.uni-leipzig.de studla@bioinf.uni-leipzig.de Gefädelte

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

Sortieren. Eine Testmenge erstellen

Sortieren. Eine Testmenge erstellen Sortieren Eine der wohl häufigsten Aufgaben für Computer ist das Sortieren, mit dem wir uns in diesem Abschnitt eingeher beschäftigen wollen. Unser Ziel ist die Entwicklung eines möglichst effizienten

Mehr

Kapitel 12: Induktive

Kapitel 12: Induktive Kapitel 12: Induktive Datenstrukturen Felix Freiling Lehrstuhl für Praktische Informatik 1 Universität Mannheim Vorlesung Praktische Informatik I im Herbstsemester 2009 Folien nach einer Vorlage von H.-Peter

Mehr

SOI 2013. Die Schweizer Informatikolympiade

SOI 2013. Die Schweizer Informatikolympiade SOI Die Schweizer Informatikolympiade Lösung SOI Wie schreibe ich eine gute Lösung? Bevor wir die Aufgaben präsentieren, möchten wir dir einige Tipps geben, wie eine gute Lösung für die theoretischen

Mehr

Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps

Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Binäre Suchbäume Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Mengen n Ziel: Aufrechterhalten einer Menge (hier: ganzer Zahlen) unter folgenden Operationen: Mengen n Ziel: Aufrechterhalten einer

Mehr

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 07 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München 7 Fortgeschrittene Datenstrukturen Graphen

Mehr

(a, b)-bäume / 1. Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss.

(a, b)-bäume / 1. Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss. (a, b)-bäume / 1. Szenario: Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss. Konsequenz: Kommunikation zwischen Hauptspeicher und Festplatte - geschieht nicht Byte für Byte,

Mehr

KV Software Engineering Übungsaufgaben SS 2005

KV Software Engineering Übungsaufgaben SS 2005 KV Software Engineering Übungsaufgaben SS 2005 Martin Glinz, Silvio Meier, Nancy Merlo-Schett, Katja Gräfenhain Übung 1 Aufgabe 1 (10 Punkte) Lesen Sie das Originalpapier von Dijkstra Go To Statement Considered

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/3, Folie 1 2010 Prof. Steffen Lange - HDa/FbI

Mehr

Algorithmen und Datenstrukturen 12

Algorithmen und Datenstrukturen 12 12. Juli 2012 1 Besprechung Blatt 11 Fragen 2 Binary Search Binäre Suche in Arrays Binäre Suchbäume (Binary Search Tree) 3 Sortierverfahren Allgemein Heapsort Bubblesort Insertionsort Mergesort Quicksort

Mehr

Binäre Bäume Darstellung und Traversierung

Binäre Bäume Darstellung und Traversierung Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail fb641378@inf.tu-dresden.de Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.

Mehr

Prof. Dr. Heinrich Müller, Dr. Frank Weichert 10. September 2012

Prof. Dr. Heinrich Müller, Dr. Frank Weichert 10. September 2012 Technische Universität Dortmund Informatik VII (Graphische Systeme) Prof. Dr. Heinrich Müller, Dr. Frank Weichert 10. September 2012 Übungsaufgaben zum Vorkurs Informatik Wintersemester 2012/2013 Teil

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die

Mehr

Kap. 4.2 Binäre Suchbäume ff Kap. 4.3: AVL-Bäume

Kap. 4.2 Binäre Suchbäume ff Kap. 4.3: AVL-Bäume Kap. 4.2 Binäre Suchbäume ff Kap. 4.3: AVL-Bäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 12./13. VO DAP2 SS 2009 28.5./2.6.2009 1 Motivation Warum soll

Mehr

Programmierung und Modellierung

Programmierung und Modellierung Programmierung und Modellierung Terme, Suchbäume und Pattern Matching Martin Wirsing in Zusammenarbeit mit Moritz Hammer SS 2009 2 Inhalt Kap. 7 Benutzerdefinierte Datentypen 7. Binärer Suchbaum 8. Anwendung:

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Universität Innsbruck Institut für Informatik Zweite Prüfung 16. Oktober 2008 Algorithmen und Datenstrukturen Name: Matrikelnr: Die Prüfung besteht aus 8 Aufgaben. Die verfügbaren Punkte für jede Aufgabe

Mehr

Programmierkurs: Delphi: Einstieg

Programmierkurs: Delphi: Einstieg Seite 1 von 6 Programmierkurs: Delphi: Einstieg Aus Wikibooks Inhaltsverzeichnis 1 Einstieg Einstieg Was ist Delphi Borland Delphi ist eine RAD-Programmierumgebung von Borland. Sie basiert auf der Programmiersprache

Mehr

Informatik Teil 7: Von der Vektorgraphik zur Pixelgraphik

Informatik Teil 7: Von der Vektorgraphik zur Pixelgraphik Informatik Teil 7: Von der Vektorgraphik zur Pielgraphik Gymnasium Icking 2011 Jörg D. Becker, Starnberg Es gibt Programme zur Steuerung von virtuellen Robotern. Interessanter als damit zu spielen ist

Mehr

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array Das Suchproblem Gegeben. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.-3,2.2-3,2.3-] Menge von Datensätzen. Beispiele

Mehr

Übung 4: Die generische Klasse AvlBaum in Java 1

Übung 4: Die generische Klasse AvlBaum in Java 1 Übung 4: Die generische Klasse AvlBaum in Java 1 Ein binärer Suchbaum hat die AVL -Eigenschaft, wenn sich in jedem Knoten sich die Höhen der beiden Teilbäume höchstens um 1 unterscheiden. Diese Last (

Mehr

Literatur: Kapitel 2.1 des Skripts Rot-Schwarz-Bäume Kapitel 2.2 des Skripts Treaps Cormen. Kapitel 13, Red-Black-Trees

Literatur: Kapitel 2.1 des Skripts Rot-Schwarz-Bäume Kapitel 2.2 des Skripts Treaps Cormen. Kapitel 13, Red-Black-Trees Algorithmische Anwendungen WS 2006/2007 Praktikum 3: Aufgabe 1: Einfügen eines Knotens ist einen Rot-Schwarz-Baum Aufgabe 2: Erklärungen für die Beobachtungen auf Folie 2.1/67 Aufgabe 3: Zeige wie RB-DELETE-FIXUP

Mehr

Buch-Add-Ons. Jürgen Bayer. Object Pascal-Tipps und Tricks. 1 Konvertieren und auf numerische Werte überprüfen 2

Buch-Add-Ons. Jürgen Bayer. Object Pascal-Tipps und Tricks. 1 Konvertieren und auf numerische Werte überprüfen 2 Buch-Add-Ons Jürgen Bayer Inhaltsverzeichnis Object Pascal-Tipps und Tricks 1 Konvertieren und auf numerische Werte überprüfen 2 1.1 Strings in Integerwerte konvertieren 2 1.2 Strings in Extended-Werte

Mehr

Übungskomplex Felder (1) Eindimensionale Felder Mehrdimensionale Felder

Übungskomplex Felder (1) Eindimensionale Felder Mehrdimensionale Felder Übungskomplex Felder (1) Eindimensionale Felder Mehrdimensionale Felder Hinweise zur Übung Benötigter Vorlesungsstoff Ab diesem Übungskomplex wird die Kenntnis und praktische Beherrschung der Konzepte

Mehr

Manipulation binärer Bäume Binäre Bäume II

Manipulation binärer Bäume Binäre Bäume II Fakultät Informatik Lehramt Seminar Algorithmierung Programmierung III Kay Strobach Manipulation binärer Bäume Binäre Bäume II Dresden, 26.10.2006 Gliederung Suchen in Bäumen Hinzufügen von Blättern und

Mehr

Algorithmen & Datenstrukturen 1. Klausur

Algorithmen & Datenstrukturen 1. Klausur Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse

Mehr

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können. 6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente

Mehr

Sortieralgorithmen. Inhalt: InsertionSort BubbleSort QuickSort. Marco Block

Sortieralgorithmen. Inhalt: InsertionSort BubbleSort QuickSort. Marco Block Inhalt: InsertionSort BubbleSort QuickSort Block M.: "Java-Intensivkurs - In 14 Tagen lernen Projekte erfolgreich zu realisieren", Springer-Verlag 2007 InsertionSort I Das Problem unsortierte Daten in

Mehr

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle 119 4. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Exponentielle Suche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5] 120 Das Suchproblem Gegeben

Mehr

ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK

ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK (HAUPTTERMIN) Bearbeitungszeit: 270 Minuten Hilfsmittel: Wörterbuch zur deutschen Rechtschreibung Taschenrechner (nicht programmierbar, nicht grafikfähig) (Schüler,

Mehr

1 Bizz Buzz Woof (ca =18 Punkte) def read file(file_in): fp = open(file_in, r ) l = fp.read() fp.close() return l

1 Bizz Buzz Woof (ca =18 Punkte) def read file(file_in): fp = open(file_in, r ) l = fp.read() fp.close() return l Einführung in die wissenschaftliche Programmierung Klausur 1. März 2010 Seite 1/7 Name, Vorname, Unterschrift: Matrikelnummer: 1 Bizz Buzz Woof (ca. 3+9+6=18 Punkte) In dieser Aufgabe sollen Zahlen codiert

Mehr

Algorithmen und Datenstrukturen 1-5. Seminar -

Algorithmen und Datenstrukturen 1-5. Seminar - Algorithmen und Datenstrukturen 1-5. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Wintersemester 2009/10 Outline 5.+6. Übungsserie: 5 Aufgaben, insgesamt 40 Punkte A17 Baum-Traversierung

Mehr

Name: Seite 2. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort.

Name: Seite 2. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Name: Seite 2 Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Aufgabe 1 (8 Punkte) 1. Gegeben sei folgender Ausdruck (a ^ b) && (a b) && a. Welchen Wert hat er

Mehr

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle 122 4. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5] 123 Das Suchproblem Gegeben Menge von Datensätzen.

Mehr

VBA-Programmierung: Zusammenfassung

VBA-Programmierung: Zusammenfassung VBA-Programmierung: Zusammenfassung Programmiersprachen (Definition, Einordnung VBA) Softwareentwicklung-Phasen: 1. Spezifikation 2. Entwurf 3. Implementierung Datentypen (einfach, zusammengesetzt) Programmablaufsteuerung

Mehr

Prof. Dr. Heinrich Müller; Dr. Frank Weichert 7. September 2015

Prof. Dr. Heinrich Müller; Dr. Frank Weichert 7. September 2015 Technische Universität Dortmund Informatik VII (Graphische Systeme) Prof. Dr. Heinrich Müller; Dr. Frank Weichert 7. September 2015 Übungsaufgaben zum Vorkurs Informatik Wintersemester 2015/2016 Teil I

Mehr