Magnetresonanztomographie (MRT)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Magnetresonanztomographie (MRT)"

Transkript

1

2 Prinzip - aktiver Abbildungsvorgang durch Zuführung von Energie (starkes konstantes Magnetfeld + elektromagnetische Pulse) und - passiver Abbildungsvorgang durch Ausnutzung körpereigener Signale (Spin-Ensembles als Radiowellensender) - unterschiedliche Magnetisierungsverteilung in den Geweben des Körpers, abh. von Struktur, Funktion und Metabolismus

3 tomographische bildgebende Technik (wie CT, SPECT und PET) (gr. tomos (τοµοσ) - Schnitt) MR-Scanner liefert multidimensionales Datenarray (Bild) über räumliche Verteilung physikalischer Größen - 2D Schnittbilder beliebiger Orientierung - 3D Volumendatensätze - 4D Bilder (räumlich-spektrale Verteilungen) MR-Signale kommen direkt aus dem Körper Emissions -Tomographie; vgl. PET, SPECT aber keine radioaktiven Substanzen notwendig!

4 MRT arbeitet im Radiofrequenzbereich keine ionisierende Strahlung MRT-Bilder enthalten Fülle von Informationen Grauwert des Bildpixels (Signalintensität) abhängig von: Kernspindichte? Spin-Gitter-Relaxationszeit T 1 Spin-Spin-Relaxationszeit T 2 molekularer Bewegung (Fluß, Diffusion, Perfusion) Suszeptibilität chemische Verschiebung

5 ??

6 Wellenlängen bei der MRT > 0,3 m schlechte Ortsauflösung Ansatz: Überlagerung HF-Feld und ortsvariables magnetisches Gleichfeld + Ausnutzung der scharfen Resonanzabsorption magnetischer Kerne im biologischen Gewebe ( 1 H, 13 C, 19 F, 23 Na, 31 P) Räumliche Zuordnung der Kernmagnetisierung

7 Inhalt: - geschichtlicher Überblick - physikalische Grundlagen klassisch, quantenmechanisch - Grundlagen der MRT vom Signal zum Bild, Meßtechnik Kontrast, Auflösung, Signal-Rausch-Verhältnis - Anwendungen (Bildernachweis: Dössel, 2000; Morneburg, 1995; Siemens, Philips, Internet)

8 !

9 !!

10

11 Historie 1946 Kernmagnetische Resonanz (NMR) F. Bloch, W.W. Hansen, M. Packard. Phys Rev 69, 127, 1946 E.M. Purcell, H.C. Torrey, R.V. Pound. Phys Rev 69, 37, E.L. Hahn: Spin echos. (Phys Rev 80, 580, 1950) Anwendungen der NMR in Physik und Chemie zur Strukturanalyse 1952 Nobelpreis an Bloch und Purcell 1970 Erstes Hirn-MRT (Meßzeit: 8 Std., Bildverarbeitung: 72 Std) 1971 R. Damadian: unterschiedliche NMR Relaxationszeiten für Tumoren und gesundes Gewebe (MRT als Diagnosemethode)

12 Historie 1973 P. Lauterbur: MRT-Bildgebung mit Gradienten- Feldern (Nature, 242, 190) 1975 R. Ernst: MRT mit Phasen- und Frequenzkodierung und Verwendung der Fouriertransformation 1977 R. Damadian: erste Ganzkörperaufnahme (Meßzeit: 4 Std, 45 min) 1977 P. Mansfield: Entwicklung Echo-Planar-Imaging (EPI) 1980 Edelstein et al.: Ganzkörperaufnahme mit Ernst-Technik (Datenacquisition: 5 min./schicht; 1986: 5 sec./schicht) ab 1980: erste kommerzielle MRT-Systeme

13 Historie : Gradient Echo Imaging, NMR-Mikroskop 1990 Ogawa et al.: BOLD-Effekt 1991 Nobelpreis an R. Ernst fmrt 1992 Kwong et al.: BOLD + neuronale Aktivität 2003 Nobelpreis an P. Lauterbur und P. Mansfield Routinemethode in Krankenbehandlung ca. 60 Mio. Untersuchungen weltweit > Installationen weltweit

14 Kompassnadel im Magnetfeld Durch Messung des Drehmoments im homogenen Magnetfeld läßt sich das magnetische Dipolmoment messen B = magn. Induktion oder Kraftflussdichte! H = Magnetfeld! In der MRT-Literatur üblicherweise B = Magnetfeld

15 Magnetisierung paramagnetischer und diamagnetischer Stoffe diamagnetische Stoffe: e - induzieren Abschirmstrom B-Feld im Innern des Stoffes kleiner paramagnetische Stoffe: Ausrichtung der Elementarmagnete (e - -Spins) im äußeren B-Feld B-Feld im Innern des Stoffes größer Vektorsumme aller magn. Momente in Volumenelement bezogen auf Größe des Volumenelementes heißt Magnetisierung: r r dm M = dv Ist ein Körper aus verschiedenen Materialien zusammengesetzt, gilt: M = M(x,y,z)

16 Magnetischer Kreisel im konstanten Magnetfeld magnetischer Kreisel: rotierendes Objekt mit magn. Dipolmoment m Präzession eines magnetischen Kreisels im B-Feld

17 Magnetischer Kreisel im konstanten Magnetfeld Laborsystem um z-achse rotierendes Koordinatensystem

18 Gradientenfelder (I) Spezialfall eines inhomogenen Feldes B G, dessen z-komponente entlang einer vorgegebenen Richtung (x,y,z) linear variiert. (Gradientenrichtung) z-gradientenfeld B G,z = G z. z y-gradientenfeld B G,z = G y. y x-gradientenfeld B G,z = G x. x

19 Gradientenfelder (II) sei B z = B 00 + G z. z und B = (0,0,B z ) Feldgradient in z-richtung wegen: ω 0 = γ. B = γ. B 00 + γ. G z. z = ω 00 + γ. G z. z (mit ω 0 = lokale Präzessionsfrequenz und ω 00 = Präzessionsfrequenz bei z = 0 = Tomographenzentrum) folgt: Präzessions-Winkelgschwindigkeit ω 0 lineare Fkt. von z - alle Kreisel in x-y-ebene präzidieren mit gleicher Winkelgeschw. - in einem mit ω 00 rotierenden Koordinatensystem laufen Kreisel mit z > 0 vor und Kreisel mit z < 0 nach.

20 Gradientenfelder (III) Präzession im Gradientenfeld ruhendes Laborsystem rotierendes System

21 Magnetischer Kreisel im konstanten Magnetfeld mit überlagertem transversalen Wechselfeld (I) zeitlich konstantes Feld B z in z-richtung und ein in x-y-ebene rotierendes Wechselfeld B T mit Frequenz ω T transversale magnetische Wechselfelder:

22 Magnetischer Kreisel im konstanten Magnetfeld mit überlagertem transversalen Wechselfeld (II) Additive Überlagerung von B z und B T : Ansicht von der Seite Ansicht von oben ruhendes Koordinatensystem

23 Magnetischer Kreisel im konstanten Magnetfeld mit überlagertem transversalen Wechselfeld (III) Betrachte: ω T = ω 0 = γ. B z (transversales Feld rotiert mit Präzessions-Winkelgeschwindigkeit) Herausdrehen der Richtung des magn. Dipolmoments aus der Ruhelage (z-richtung) durch das rotierende Feld Ansicht von der Seite Ansicht von oben magn. Dipolmoment B = B z + B T

24 Magnetischer Kreisel im konstanten Magnetfeld mit überlagertem transversalen Wechselfeld (IV) Herausdrehen der Richtung des magn. Dipolmoments aus der Ruhelage durch das rotierende Feld ruhendes Laborsystem rotierendes System

25 Magnetischer Kreisel im konstanten Magnetfeld mit überlagertem transversalen Wechselfeld (V) - magnetisches Dipolmoment präzidiert um B = B z + B T - bei ω T = ω 0 : Verstärkung der Phänomene Präzession und Wackeln durch B T - Präzession startet auch bei m 0 e z - Länge von m 0 bleibt konstant - nach einer best. Zeit T 90 liegt m in x-y-ebene (auch wenn B T << B z ) - nach 2. T 90 zeigt m in negative z-richtung

26 Magnetischer Kreisel im konstanten Magnetfeld mit überlagertem transversalen Wechselfeld (Va) 90 -HF-Puls im ortsfesten und im rotierenden Koordinatensystem 180 -HF-Puls im ortsfesten und im rotierenden Koordinatensystem

27 Magnetischer Kreisel im konstanten Magnetfeld mit überlagertem transversalen Wechselfeld (VI) Bewegungsgleichung für magn. Dipol: r dm'( t) r r = γ m'( t) B T dt Winkelgeschwindigkeit, mit der sich α vergrößert: ω F = dα dt T = L sinα m BT sinα = L sinα = m L B T = γ B T ω F = γ B α = γ B T T τ (Konvention) α = Flipwinkel τ = Pulsdauer B T = Amplitude des Wechselfelds in x-richtung

28 Magnetischer Kreisel im konstanten Magnetfeld mit überlagertem transversalen Wechselfeld (VII) Signalerfassung (1): Annahme: - transversales Wechselfeld B T kippt magn. Moment (in z-richtung) in x-y-ebene und wird dann abgeschaltet (Puls mit Dauer τ) - ohne äußere Einwirkung rotiere magn. Moment in x-y-ebene Normalenrichtung der Antennenspule senkrecht auf z-achse Fluss proportional zur Querkomponente von m: m T r r dm mit M = dv Φ U mag ~ ~ M T M T ω 0 cos( ω sin( ω 0 0 t) t)

29 Magnetischer Kreisel im konstanten Magnetfeld mit überlagertem transversalen Wechselfeld (VII) Signalerfassung (2): Induzierte Spannung in der Antenne ist HF-Signal mit Frequenz ω 00 oder nahe ω 00, falls Probe in einem Gradientenfeld Messtechnik (Quadratur-Detektor): Heruntermischen der Antennensignale mit einem HF-Signal der Frequenz ω 00 (Präzessionsfrequenz bei z=0) entspricht Multiplikation mit Referenzsignal

30 Magnetischer Kreisel im konstanten Magnetfeld mit überlagertem transversalen Wechselfeld (VII) Signalerfassung (3): Realteil: U R = U = U 1 1 sin( ω U t) U 2 sin (( ω + ω) t) 00 { cos( ωt) cos( (2ω + ω) t} ω durch Tiefpassfilterung 00 Imaginärteil (Phasenschieber notwendig, da cos-term symmetrisch Vorzeichenverlust bei ω!) U I = U = U 1 1 cos( ω U t) U * U = U + iu ~ R 2 sin (( ω + ω) t) 00 { sin( ωt) + sin( (2ω + ω) t} i m T 00 - U* dreht sich in komplexer Ebene mit ω - misst m T in einem mit ω 00 rot. Koord.-system

31 Magnetischer Kreisel im konstanten Magnetfeld mit überlagertem transversalen Wechselfeld (VII) Signalerfassung (4): ω < 0

32 Magnetischer Kreisel im konstanten Magnetfeld mit überlagertem transversalen Wechselfeld (VII) Signalerfassung (5): ω > 0

33 Kernspin Protonen, Neutronen, Elektronen als (quantenmechanische) magnetische Kreisel Gyromagnetisches Verhältnis eines rotierenden geladenen Teilchens: Präzession von Kernspins im konstanten Magnetfeld: ist µ in Richtung von B ausgerichtet Präzession mit Larmorfrequenz ω 0 = γ B

Bildgebende Verfahren in der Medizin MRT-Tomographie

Bildgebende Verfahren in der Medizin MRT-Tomographie Bildgebende Verfahren in der Medizin MRT-Tomographie INSTITUT FÜR BIOMEDIZINISCHE TECHNIK 2008 Google - Imagery 2008 Digital Globe, GeoContent, AeroWest, Stadt Karlsruhe VLW, Cnes/Spot Image, GeoEye KIT

Mehr

Magnetresonanztomographie

Magnetresonanztomographie Magnetresonanztomographie 1 Inhalt Geschichtlicher Überblick MRT in Kürze Verfahrensschritte Physikalische Grundlagen der MRT Signal/Messung Bildgebung Vor- und Nachteile der MRT 2 Geschichtlicher Überblick

Mehr

Wie funktioniert Kernspintomographie?

Wie funktioniert Kernspintomographie? Wie funktioniert Kernspintomographie? Vom Radfahren zum Gedankenlesen Hans-Henning Klauss Til Dellmann, Walter Keller, Hannes Kühne, Hemke Maeter, Frank Radtke, Denise Reichel, Göran Tronicke, Institut

Mehr

Magnetresonanztomographie (MRT) * =

Magnetresonanztomographie (MRT) * = γ * γ π Beispiel: - Protonen ( H) Messung - konstantes B-Feld (T) in -Richtung - Gradientenfeld (3mT/m) in -Richtung - bei 0: f 00 4,6 MH Wie stark ist Frequenveränderung Df der Spins bei 0 mm? f (0mm)

Mehr

MR Grundlagen. Marco Lawrenz

MR Grundlagen. Marco Lawrenz MR Grundlagen Marco Lawrenz Department of Systems Neuroscience University Medical Center Hamburg-Eppendorf Hamburg, Germany and Neuroimage Nord University Medical Centers Hamburg Kiel Lübeck Hamburg Kiel

Mehr

Physikalische Grundlagen der Magnetresonanz-Tomographie MRT

Physikalische Grundlagen der Magnetresonanz-Tomographie MRT Physikalische Grundlagen der Magnetresonanz-Tomographie MRT http://www.praxis-nuramed.de/images/mrt_3_tesla.png Seminarvortrag am 30.05.2016 von Nanette Range MRT Bilder Nanette Range 30.05.2016 2 Motivation

Mehr

Zentralabstand b, Spaltbreite a. Dreifachspalt Zentralabstand b, Spaltbreite a. Beugungsgitter (N Spalte, N<10 4, Abstand a)

Zentralabstand b, Spaltbreite a. Dreifachspalt Zentralabstand b, Spaltbreite a. Beugungsgitter (N Spalte, N<10 4, Abstand a) Doppelspalt (ideal) Doppelspalt (real) Zentralabstand b, Spaltbreite a Dreifachspalt Zentralabstand b, Spaltbreite a Beugungsgitter (N Spalte, N

Mehr

Computertomographie (CT), Ultraschall (US) und Magnetresonanztomographie (MRT)

Computertomographie (CT), Ultraschall (US) und Magnetresonanztomographie (MRT) Computertomographie (CT), Ultraschall (US) und Magnetresonanztomographie (MRT) Prof. Dr. Willi Kalender, Ph.D. Institut für Medizinische Physik Universität Erlangen-Nürnberg www.imp.uni-erlangen.de 3D

Mehr

Zusammenfassung des Seminarsvortrags Nuclear magnetic resonance

Zusammenfassung des Seminarsvortrags Nuclear magnetic resonance Zusammenfassung des Seminarsvortrags Nuclear magnetic resonance Andreas Bünning 9. Januar 2012 Betreuer: Dr. Andreas Thomas Seite 1 3 PHYSIKALISCHE GRUNDLAGEN 1 Motivation Die nuclear magnetic resonance,

Mehr

2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung

2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung 2. Magnetresonanztomographie (MRT, MRI) 2.3. Spin und Magnetisierung Übergang zwischen den beiden Energieniveaus ω l = γb 0 γ/2π Larmor-Frequenz ν L 500 400 300 200 100 ν L = (γ/2π)b 0 [MHz/T] 1 H 42.57

Mehr

Physikalische Grundlagen der Kernspin-Tomographie

Physikalische Grundlagen der Kernspin-Tomographie Vorlesung: Bildgebende Diagnoseverfahren SS 2008 Physikalische Grundlagen der Kernspin-Tomographie Hans-Jochen Foth TU Kaiserslautern Für diese Bildgebende Diagnosemethode werden auch andere Begriffe verwendet:

Mehr

Wo ist der magnetische Nordpol der Erde?

Wo ist der magnetische Nordpol der Erde? Wo ist der magnetische Nordpol der Erde? A B C D am geographischen Nordpol am geographischen Südpol Nahe am geographischen Südpol Nahe am geographischen Nordpol 3. Magnetische Phänomene 3.1. Navigation,

Mehr

Bestimmung der Struktur einer (un)bekannten Verbindung

Bestimmung der Struktur einer (un)bekannten Verbindung Bestimmung der Struktur einer (un)bekannten Verbindung Elementaranalyse Massenspektrometrie andere spektroskopische Methoden Röntgen- Strukturanalyse Kernmagnetische Resonanz - Spektroskopie H 3 C H 3

Mehr

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

Komponenten eines MRT- Systems

Komponenten eines MRT- Systems Komponenten eines MRT- Systems Komponenten eines MRT- Systems starker Magnet zur Erzeugung des statischen homogenen Magnetfeldes (0,1-4,0 Tesla; zum Vergleich: Erdmagnetfeld 30 µt - 60 µt) Hochfrequenzanlage

Mehr

1. Allgemeine Grundlagen Quantenmechanik

1. Allgemeine Grundlagen Quantenmechanik 1. Allgemeine Grundlagen 1.3. Quantenmechanik Klassische Mechanik vs Quantenmechanik Klassische (Newton sche) Mechanik klassischer harmonischer Oszillator Quantenmechanik quantenmechanischer harmonischer

Mehr

Photonen-Echos. Protokolle für Festkörper-Quantenspeicher: Seminar: Optische Quantenspeicher. Pascal Notz

Photonen-Echos. Protokolle für Festkörper-Quantenspeicher: Seminar: Optische Quantenspeicher. Pascal Notz Seminar: Optische Quantenspeicher Protokolle für Festkörper-Quantenspeicher: Photonen-Echos Pascal Notz 28. November 2012 Institut für Angewandte Physik AG Nichtlineare Optik/Quantenoptik Pascal Notz 1

Mehr

Magnetresonanztomographie

Magnetresonanztomographie Magnetresonanztomographie Kathrin Schulte 16. Januar 2008 Gliederung Abbildung: Magnetresonanztomograph Die Spin-Eigenschaft T1 / T2- Relaxation Sequenzen Rekonstruktion Zeitdiagramme Segmentierung des

Mehr

NMR Vortag im Rahmen des Fortgeschrittenen-Praktikums

NMR Vortag im Rahmen des Fortgeschrittenen-Praktikums NMR Vortag im Rahmen des Fortgeschrittenen-Praktikums Martin Fuchs 1 Motivation Die Nuclear Magnetic Resonance, oder zu deutsch Kernspinresonanz ist vor allem durch die aus der Medizin nicht mehr wegzudenkende

Mehr

Definition MRT. MRT Magnetresonanztomographie = MRI Magnetic Resonance Imaging = Kernspintomographie = NMR Nuclear Magnetic Resonance

Definition MRT. MRT Magnetresonanztomographie = MRI Magnetic Resonance Imaging = Kernspintomographie = NMR Nuclear Magnetic Resonance MaReCuM Seminar MRT OA PD Dr. med Henrik Michaely Leiter des Geschäftsfelds Abdominelle und Vaskuläre Bildgebung Institut für Klinische Radiologie und Nuklearmedzin Definition MRT MRT Magnetresonanztomographie

Mehr

Magnetresonanztomographie (MRT) Grundlagen der Tomographie

Magnetresonanztomographie (MRT) Grundlagen der Tomographie Gegeben: Körper in einem starken B 0 -Feld - Folge von HF-Pulsen erzeugt rotierende Quermagnetisierung M T - M T variiert je nach Gewebetyp ortsabhängige Observable: M T (x,y,z) - kleine Volumenelemente

Mehr

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

Bildbeispiele Physikalisches Prinzip Hounsfield-Einheiten Bilderzeugung. Strahlenbelastung Bildbeispiele. Hirn - Weichteilfenster

Bildbeispiele Physikalisches Prinzip Hounsfield-Einheiten Bilderzeugung. Strahlenbelastung Bildbeispiele. Hirn - Weichteilfenster Prof. Dr. med. P. Schramm Röntgen- Computer-Tomografie Magnet-Resonanz-Tomografie Physikalisches Prinzip Dr. rer. nat. Uwe H. Melchert Röntgen - Computer-Tomografie Bildbeispiele Physikalisches Prinzip

Mehr

Bildgebende Systeme in der Medizin

Bildgebende Systeme in der Medizin Hochschule Mannheim 11/10/2011 Page 1/20 Bildgebende Systeme in der Medizin Magnet Resonanz Tomographie I: Kern-Magnet-Resonanz Spektroskopie Multinuclear NMR Lehrstuhl für Computerunterstützte Klinische

Mehr

Kernspinresonanz, Kernspin-Tomographie

Kernspinresonanz, Kernspin-Tomographie Kernspinresonanz, Kernspin-Tomographie nützt die Wechselwirkungen von Kerndipolmomenten mit elektromagnetischen Feldern NMRS... Nuclear Magnetic Resonance Spectroscopy MRT... Magnetic Resonance Tomography

Mehr

Bildgebende Verfahren in der Medizin MRT-Tomographie

Bildgebende Verfahren in der Medizin MRT-Tomographie Bildgebende Verfahren in der Medizin MRT-Tomographie INSTITUT FÜR BIOMEDIZINISCHE TECHNIK 2008 Google - Imagery 2008 Digital Globe, GeoContent, AeroWest, Sta Karlsruhe VLW, Cnes/Spot Image, GeoEye KIT

Mehr

Magnetresonanztomographie

Magnetresonanztomographie Magnetresonanztomographie Eine Übersicht Lukas Wissmann 6. März 2011 Die Magnetresonanztomographie, auch bekannt unter dem englischen Begriff Magnetic Resonance Imaging, ist ein medizinisches Bildgebungsverfahren.

Mehr

Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ

Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ Viele Kerne besitzen einen Spindrehimpuls. Ein Kern mit der Spinquantenzahl I hat einen Drehimpuls (L)

Mehr

MRT. Benoit Billebaut MTRA, Institut für Klinische Radiologie UKM

MRT. Benoit Billebaut MTRA, Institut für Klinische Radiologie UKM MRT Benoit Billebaut MTRA, Institut für Klinische Radiologie UKM WARUM SIND RÖNTGEN UND CT NICHT GENUG? MAGNETRESONANZTOMOGRAPHIE Die Große Frage? "Image by AZRainman.com Wie schaffen wir das überhaupt?

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.

Mehr

Vorlesung Physik für Pharmazeuten PPh - 09 b

Vorlesung Physik für Pharmazeuten PPh - 09 b Vorlesung Physik für Pharmazeuten PPh - 09 b Elektrizitätslehre (II) 29.01.2007 IONENLEITUNG 2 Elektrolytische Leitfähigkeit Kationen und Anionen tragen zum Gesamtstrom bei. Die Ionenleitfähigkeit ist

Mehr

Grundlagen der Kernspintomographie (NMR) Richard Bauer, JLU Gießen

Grundlagen der Kernspintomographie (NMR) Richard Bauer, JLU Gießen Grundlagen der Kernspintomographie (NMR) Richard Bauer, JLU Gießen Physikalische Grundlagen der Bildgebung Röntgen, CT Ultraschall Szintigraphie MR-Tomographie Absorption von Röntgenstrahlen Änderung der

Mehr

Messung der Magnetischen Momente von p und n. Hauptseminar WS 2006/2007 Bahnbrechende Experimente der Kern- und Teilchenphysik bis 1975

Messung der Magnetischen Momente von p und n. Hauptseminar WS 2006/2007 Bahnbrechende Experimente der Kern- und Teilchenphysik bis 1975 Messung der Magnetischen Momente von p und n Hauptseminar WS 2006/2007 Bahnbrechende Experimente der Kern- und Teilchenphysik bis 1975 Till-Lucas Hoheisel 6.12.06 Inhalt: 1. Erste Messung des mag. Moments

Mehr

III Elektrizität und Magnetismus

III Elektrizität und Magnetismus 20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion Versuche: Diamagnetismus, Supraleiter Induktion Leiterschleife, bewegter Magnet Induktion mit Änderung der Fläche

Mehr

Übungen zu Experimentalphysik 4 - Lösungsvorschläge Prof. S. Paul Sommersemester 005 Dr. Jan Friedrich Nr. 5 16.05.005 Email Jan.Friedrich@ph.tum.de Telefon 089/89-1586 Physik Department E18, Raum 3564

Mehr

2.2 Chemische Verschiebung

2.2 Chemische Verschiebung - 26-2.2 Chemische Verschiebung 2.2.1 Phänomenologie der chemischen Verschiebung Misst man den spektralen Bereich eines Isotops (z. B. 13 C) mit hoher Auflösung, so findet man meist nicht nur eine Resonanzlinie,

Mehr

Was wir heute daher vorhaben: Was Sie heute lernen sollen...

Was wir heute daher vorhaben: Was Sie heute lernen sollen... 18.05.16 Technik der MRT MRT in klinischer Routine und Forschung Magnet Resonanz Tomographie Kernspintomographie PD Dr. Alex Frydrychowicz Was wir heute daher vorhaben: Was Sie heute lernen sollen... Allgemeine

Mehr

7.3 Anwendungsbeispiele aus Physik und Technik

7.3 Anwendungsbeispiele aus Physik und Technik 262 7. Differenzialrechnung 7.3 7.3 Anwendungsbeispiele aus Physik und Technik 7.3.1 Kinematik Bewegungsabläufe lassen sich durch das Weg-Zeit-Gesetz s = s (t) beschreiben. Die Momentangeschwindigkeit

Mehr

MRT-GRUNDLAGEN. Dr. Felix Breuer. 64. Heidelberger Bildverarbeitungsforum, Fürth, Fraunhofer

MRT-GRUNDLAGEN. Dr. Felix Breuer. 64. Heidelberger Bildverarbeitungsforum, Fürth, Fraunhofer MRT-GRUNDLAGEN Dr. Felix Breuer 64. Heidelberger Bildverarbeitungsforum, Fürth, 07.03.2017 Fraunhofer INHALT NMR (Nuclear Magnetic Resonance) Grundlagen Signalentstehung/Detektion NMR Bildgebung Schichtselektion

Mehr

Vortrag im Rahmen des Seminars Moderne Anwendung der magnetischen Resonanz WS 2014/2015. 14.10.2014 Patricia Wenk 1

Vortrag im Rahmen des Seminars Moderne Anwendung der magnetischen Resonanz WS 2014/2015. 14.10.2014 Patricia Wenk 1 Vortrag im Rahmen des Seminars Moderne Anwendung der magnetischen Resonanz WS 2014/2015 14.10.2014 Patricia Wenk 1 Einfürung MRI Overhauser DNP Motivation Setup Modellsystem/ Probe Ergebnisse Zusammenfassung

Mehr

Technisch-Physikalische Grundlagen bildgebender Verfahren

Technisch-Physikalische Grundlagen bildgebender Verfahren Technisch-Physikalische Grundlagen bildgebender Verfahren Magnetresonanz Christian Kollmann Zentrum für Medizinische Physik & Biomedizinische Technik Technisches Ultraschall-Labor im AKH Wien Medizin Universität

Mehr

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H ET 6 Elektromagnetisches Feld Magnetische Feldstärke (magnetische Erregung) In der Umgebung stromdurchflossener Leiter entsteht ein magnetisches Feld, H = H e s... quellenfreies Vektorfeld der Feldstärke

Mehr

Das NMR-Experiment in der Vektordarstellung

Das NMR-Experiment in der Vektordarstellung Das NMR-Experiment in der Vektordarstellung Kerne mit einer Spinquantenzahl I = ½ ( 1 H, 13 C) können in einem äußeren statischen homogenen Magnetfeld B 0 (Vektorfeld) zwei Energiezustände einnehmen: +½

Mehr

Grundlagen funktionelle MRT (fmrt)

Grundlagen funktionelle MRT (fmrt) Grundlagen funktionelle MRT (fmrt) Martin Lotze, Jörg Pfannmöller Funktionelle Bildgebung Diagnostische Radiologie und Neuroradiologie Universität Greifswald Aufbau eines MRT-Scanners Technologische Realisierung

Mehr

Übungsblatt 12 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik

Übungsblatt 12 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik Übungsblatt 2 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik.7.28 Aufgaben. Ein Transformator mit Primärwindungen und 3 Sekundärwindungen wird mit einem Wechselstrom

Mehr

Fortgeschrittenenpraktikum

Fortgeschrittenenpraktikum Fortgeschrittenenpraktikum Nuclear Magnetic Resonance (NMR) Standort: Physikgebäude, Raum PHY D012 Versuchsdurchführung: - Donnerstag: 11-17 Uhr - Freitag: 8-16 Uhr - Im Sommersemester können die Anfangszeiten

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Messung von c und e/m Autor: Noé Lutz Assistent:

Mehr

Rotierende Leiterschleife

Rotierende Leiterschleife Wechselstrom Rotierende Leiterschleife B r Veränderung der Form einer Leiterschleife in einem magnetischen Feld induziert eine Spannung ( 13.1.3) A r r B zur kontinuierlichen Induktion von Spannung: periodische

Mehr

V 44 Magnetische Kernresonanz

V 44 Magnetische Kernresonanz V 44 Magnetische Kernresonanz A) Stichworte zur Vorbereitung Magnetismus, Induktion, magnetische Momente, Kernresonanz, Fourieranalyse, Kernspintomographie, Magnetresonanztomographie, Ortskodierung, Kernspinspektroskopie.

Mehr

Kernspinresonanztomographie (NMR)

Kernspinresonanztomographie (NMR) Kernspinresonanztomographie (NMR) Einleitung Physikalische Grundlagen: Makroskopische Kernmagnetisierung Präzession der Kernmagnetisierung Kernresonanzexperiment Blochsche Gleichungen/Relaxation Selektive

Mehr

Kernspinresonanz - NMR

Kernspinresonanz - NMR Kernspinresonanz - NMR Referent: Pierre Sissol 10. Mai 2010 Seminar in Kern- und Teilchenphysik zum Fortgeschrittenenpraktikum 2 im SoSe 2010 Johannes-Gutenberg-Universität Mainz Betreuer: Dr. Andreas

Mehr

Teil 2 NMR-Spektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17

Teil 2 NMR-Spektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 Teil 2 NMR-Spektroskopie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2016/17 www.ruhr-uni-bochum.de/chirality 1 Einführung: NMR, was ist das? NMR = Nuclear Magnetic Resonance oder zu deutsch: Kernspinresonanz

Mehr

Teil 2 NMR-Spektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2017/18

Teil 2 NMR-Spektroskopie. Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2017/18 Teil 2 NMR-Spektroskopie Dr. Christian Merten, Ruhr-Uni Bochum, WiSe 2017/18 www.ruhr-uni-bochum.de/chirality 1 Einführung: NMR, was ist das? NMR = Nuclear Magnetic Resonance oder zu deutsch: Kernspinresonanz

Mehr

Bericht zum Versuch Gepulste Kernspinresonanz

Bericht zum Versuch Gepulste Kernspinresonanz Bericht zum Versuch Gepulste Kernspinresonanz Anton Haase, Michael Goerz 22. Januar 27 Freie Universität Berlin Fortgeschrittenenpraktikum Teil A Tutor: M. Brecht Inhalt 1 Einführung 2 1.1 Kernspin................................

Mehr

Auswertung des Versuches Gepulste Kernspinresonanz

Auswertung des Versuches Gepulste Kernspinresonanz Auswertung des Versuches Gepulste Kernspinresonanz Andreas Buhr, Matrikelnummer 1229903 9. Mai 2006 Inhaltsverzeichnis Gepulste Kernspinresonanz 1 Formales 3 2 Überblick über den Versuch 4 3 Grundlagen

Mehr

Ferrofluide. Physikalische Grundlagen. http://en.wikipedia.org/wiki/file:ferrofluid_close.jpg

Ferrofluide. Physikalische Grundlagen. http://en.wikipedia.org/wiki/file:ferrofluid_close.jpg Ferrofluide Physikalische Grundlagen http://en.wikipedia.org/wiki/file:ferrofluid_close.jpg Inhalt Definition Herstellung Maßnahmen zur Stabilisierung Abschätzung der Partikelgröße, Abstandsmechanismen

Mehr

9 Kernspintomographie (MRI)

9 Kernspintomographie (MRI) 9.1 Einführung 9.1.1 Prinzip Die bildgebende Kernspinresonanz erlaubt die Darstellung der Dichte von Kernspins (in fast allen Fällen Waserstoff, d.h. Protonen) als Funktion des Ortes. Dazu werden Übergänge

Mehr

MR Magnetresonanz / Kernspin-Tomographie

MR Magnetresonanz / Kernspin-Tomographie MR - Magnetresonanz MR Magnetresonanz / MR wer wir sind Kernspin-Tomographie Die MR Geschichte Our market Our portfolio Our focus on clinical fields Our innovations Peter Kreisler Driving clinical and

Mehr

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen)

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen) Magnetismus Magnetit (Fe 3 O 4 ) Sonne λ= 284Å Magnetare/ Kernspintomographie = Neutronensterne Magnetresonanztomographie Ein Magnetfeld wird erzeugt durch: Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls

Mehr

Longitudinale und transversale Relaxationszeit

Longitudinale und transversale Relaxationszeit Longitudinale und transversale Relaxationszeit Longitudinale Relaxationszeit T 1 (Zeit, die das System benötigt, um nach dem rf- Puls zurück ins Gleichgewicht zu kommen) Transversale Relaxationszeit T

Mehr

Eigenschaften einiger für die NMR-Spektrometrie organischer Verbindungen wichtiger Kerne

Eigenschaften einiger für die NMR-Spektrometrie organischer Verbindungen wichtiger Kerne Der Zusammenhang zwischen dem magnetischen Moment eines Atomkerns und seines mechanischen Drehimpulses lautet: μ=γ J, wobei γ das gyromagnetische Verhältnis ist. Der mechanische Drehimpuls ist durch die

Mehr

MRT. Funktionsweise MRT

MRT. Funktionsweise MRT MRT 1 25.07.08 MRT Funktionsweise Wofür steht MRT? Magnetische Resonanz Tomographie. Alternative Bezeichnung: Kernspintomographie. Das Gerät heißt dann Kernspintomograph. S N Womit wird der Körper bei

Mehr

Magnetresonanztherapie Bildkonstrast - Protonendichte p - Spin-Gitter-Relaxationszeit T1 - Spin-Spin-Relaxationszeit T2

Magnetresonanztherapie Bildkonstrast - Protonendichte p - Spin-Gitter-Relaxationszeit T1 - Spin-Spin-Relaxationszeit T2 Bildkonstrast - Protonendichte p - Spin-Gitter-Relaxationszeit T1 - Spin-Spin-Relaxationszeit T2 Magnetisches Moment von Protonen - µ = y * h * m(i) (m = magn. Quantenzahl, y = gyromag. Verhältnis) - m(i)

Mehr

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel 11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007. VL #29 am 19.06.2007.

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007. VL #29 am 19.06.2007. Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #29 am 19.06.2007 Vladimir Dyakonov Induktionsspannung Bewegung der Leiterschleife im homogenen

Mehr

Inhalt. a) Typische Wechselwirkungen im Festkörper. b) Spektrenform für Einkristalle und Pulver. c) Messung und Interpretation einfacher Systeme

Inhalt. a) Typische Wechselwirkungen im Festkörper. b) Spektrenform für Einkristalle und Pulver. c) Messung und Interpretation einfacher Systeme Inhalt. Grundlagen der FK-NMR-Spektroskopie a) Typische Wechselwirkungen im Festkörper b) Spektrenform für Einkristalle und Pulver c) Messung und Interpretation einfacher Systeme. Wichtige Techniken und

Mehr

Multipuls-NMR in der Organischen Chemie. Puls und FID

Multipuls-NMR in der Organischen Chemie. Puls und FID Puls und FID Obwohl der Puls eine bestimmte, am NMR-Spektrometer vorab eingestellte Sendefrequenz ν 1 hat, ist er in der Lage, über einen relativ weiten Frequenzbereich von mehreren khz, den gesamten Resonanzbereich

Mehr

Molekulare Biophysik. NMR-Spektroskopie (Teil 1)

Molekulare Biophysik. NMR-Spektroskopie (Teil 1) Molekulare Biophysik NMR-Spektroskopie (Teil 1) Das Vorlesungs-Programm 2/93 Vorlesung Molekulare Biophysik : NMR-Spektroskopie Tag 1 Theoretische Grundlagen der NMR-Spektroskopie (1) Tag 2 Theoretische

Mehr

Grundlagen der kernmagnetischen Resonanz (NMR)

Grundlagen der kernmagnetischen Resonanz (NMR) Grundlagen der TEP Verwandte Themen Kernspins, Atomkerne mit magnetischem Moment, Quantenphysik versus klassische Physik, Pauli- Ausschließungsprinzip, Präzessionsbewegung der Kernspins, Landau-Lifshitz-Gleichung,

Mehr

Grundlagen der MR-Tomographie

Grundlagen der MR-Tomographie Grundlagen der MR-Tomographie INSTITUT FÜR BIOMEDIZINISCHE TECHNIK 2008 Google - Imagery 2008 Digital Globe, GeoContent, AeroWest, Stadt Karlsruhe VLW, Cnes/Spot Image, GeoEye KIT Universität des Landes

Mehr

Einfache Versuche zum Diamagnetismus Daniel Schwarz, Marion Schulte

Einfache Versuche zum Diamagnetismus Daniel Schwarz, Marion Schulte Einführung und Erklärung: Einfache Versuche zum Diamagnetismus Daniel Schwarz, Marion Schulte Die aufgebauten Versuche beinhalten diamagnetische Stoffe. Bei den angelegten inhomogenen Feldern kann beobachtet

Mehr

Kernresonanzspektroskopie

Kernresonanzspektroskopie Gleich geht s los! Kernresonanzspektroskopie 1. Geschichtliche Entwicklung 2. Physikalische Grundlagen 3. Das NMR-Spektrometer 4. Anwendung der 1 H-NMR-Spektren zur Analyse der Konstitution von Molekülen

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 4. Vorlesung 9.5.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2015-1 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Gesamtpunktzahl: Ergebnis: Bemerkungen: Elektromagnetische

Mehr

Hauptseminar Experimentalphysik Sommersemester 2006

Hauptseminar Experimentalphysik Sommersemester 2006 Hauptseminar Experimentalphysik Sommersemester 2006 Physikalische Grundlagen der medizinischen Diagnostik Thema: Magnetresonanztomografie von: Kay Fremuth 20.04.2006 2 Inhalt: I. Einführung II. Historische

Mehr

Bestimmung der Struktur einer (un)bekannten Verbindung

Bestimmung der Struktur einer (un)bekannten Verbindung Bestimmung der Struktur einer (un)bekannten Verbindung Elementaranalyse Massenspektroskopie andere spektroskopische Methoden Röntgen- Strukturanalyse Kernmagnetische Resonanz - Spektroskopie neue Produktlinie,

Mehr

Man nimmt an, dass sich der Kernspin zusammensetzt aus der Vektorsumme der Nukleonenspins und der Bahndrehimpulse der Nukleonen

Man nimmt an, dass sich der Kernspin zusammensetzt aus der Vektorsumme der Nukleonenspins und der Bahndrehimpulse der Nukleonen 2.5.1 Spin und magnetische Momente Proton und Neutron sind Spin-½ Teilchen (Fermionen) Aus Hyperfeinstruktur der Energieniveaus vieler Atomkerne kann man schließen, dass Atomkerne ein magnetisches Moment

Mehr

4.4 Induktion. Bisher: Strom durch einen Draht Magnetfeld Jetzt: zeitlich veränderliches Magnetfeld Strom

4.4 Induktion. Bisher: Strom durch einen Draht Magnetfeld Jetzt: zeitlich veränderliches Magnetfeld Strom Bisher: Strom durch einen Draht Magnetfeld Jetzt: zeitlich veränderliches Magnetfeld Strom 4.4 Induktion Spannungen und Ströme, die durch Veränderungen von Magnetfeldern entstehen, bezeichnet man als Induktionsspannungen,

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 26. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 26. 06.

Mehr

1. Rotation um eine feste Achse

1. Rotation um eine feste Achse 1. Rotation um eine feste Achse Betrachtet wird ein starrer Körper, der sich um eine raumfeste Achse dreht. z ω Das Koordinatensystem wird so gewählt, dass die Drehachse mit der z-achse zusammenfällt.

Mehr

VL Spin-Bahn-Kopplung Paschen-Back Effekt. VL15. Wasserstoffspektrum Lamb Shift. VL16. Hyperfeinstruktur

VL Spin-Bahn-Kopplung Paschen-Back Effekt. VL15. Wasserstoffspektrum Lamb Shift. VL16. Hyperfeinstruktur VL 16 VL14. Spin-Bahn-Kopplung (III) 14.1. Spin-Bahn-Kopplung 14.2. Paschen-Back Effekt VL15. Wasserstoffspektrum 15.1. Lamb Shift VL16. Hyperfeinstruktur 16.1. Hyperfeinstruktur 16.2. Kernspinresonanz

Mehr

Learn4Vet. Magnete. Man kann alle Stoffe in drei Klassen einteilen:

Learn4Vet. Magnete. Man kann alle Stoffe in drei Klassen einteilen: Magnete Die Wirkung und der Aufbau lassen sich am einfachsten erklären mit dem Modell der Elementarmagneten. Innerhalb eines Stoffes (z.b. in ein einem Stück Eisen) liegen viele kleine Elementarmagneten

Mehr

Übungsblatt 06. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 06. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 06 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 24. 1. 2005 31. 1. 2005 1 Aufgaben 1. Berechnen Sie für das Vektorpotential

Mehr

Péter Maróti Professor für Biophysik, Universität Szeged, Ungarn

Péter Maróti Professor für Biophysik, Universität Szeged, Ungarn Moderne Methode in medizinischer Diagnostik und Therapie, die ohne moderne (Quanten)Physik unerreichbar blieben. Wie kann man die Ergebnisse der modernen Physik (Quantenphysik) in der Medizin anwenden?

Mehr

Magnetresonanztomographie (veraltet: Kernspintomographie) MRT

Magnetresonanztomographie (veraltet: Kernspintomographie) MRT 600 500 F lo w [m l/m in ] 400 300 200 100 0 0 100 200 300 400 500 600 700-100 time [ms] MRT Fluss Magnetresonanztomographie (veraltet: Kernspintomographie) MRT Diagnostische Radiologie Atomkerne rotieren

Mehr

6. Instrumentelle Aspekte

6. Instrumentelle Aspekte Prof. Dieter Suter Magnetische Resonanz SS 99 6. Instrumentelle Aspekte 6. INSTRUMENTELLE ASPEKTE 1 6.1 Spektrometer 2 6.1.1 Messprinzip 2 6.1.2 Magnet 2 6.1.3 RF Spule und Schwingkreis 3 6.1.4 Detektion

Mehr

Methodische Ansätze zur Strukturaufklärung: Rnt. - Kernmagnetische Resonanzspektroskopie (NMR)

Methodische Ansätze zur Strukturaufklärung: Rnt. - Kernmagnetische Resonanzspektroskopie (NMR) ? Methodische Ansäte ur Strukturaufklärung: - Rastersondenmikroskopie (AFM, SPM) SPM - Röntgenbeugung Rnt. - Elektronenspektroskopie (UV-vis) UV-vis - Schwingungsspektroskopie (IR) IR - Massenspektroskopie

Mehr

Aufbau der Elektronenhülle des Wasserstoffatoms

Aufbau der Elektronenhülle des Wasserstoffatoms Aufbau der Elektronenhülle des Wasserstoffatoms Wasserstoff, H: ein Proton im Kern, (+) Elektronenhülle mit nur einem Elektron, (-)( Kern und Elektron ziehen sich aufgrund der Coulombkraft an. Das Elektron

Mehr

I = I 0 exp. t + U R

I = I 0 exp. t + U R Betrachten wir einen Stromkreis bestehend aus einer Spannungsquelle, einer Spule und einem ohmschen Widerstand, so können wir auf diesen Stromkreis die Maschenregel anwenden: U L di dt = IR 141 Dies ist

Mehr

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker 12. Elektrodynamik 12.11 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

LMU LUDWIG- p E kin 2 R. Girwidz Drehimpuls. 7.5 Drehimpuls. für Zentralkräfte: F dt. Geschwindigkeit. Masse. Translationsenergie. 1 mv.

LMU LUDWIG- p E kin 2 R. Girwidz Drehimpuls. 7.5 Drehimpuls. für Zentralkräfte: F dt. Geschwindigkeit. Masse. Translationsenergie. 1 mv. 7.5 Drehimpuls Translation Rotation Geschwindigkeit Masse v m Translationsenergie Kraft Impuls Ekin F 1 mv F ma p d p F dt p m v p E kin m R. Girwidz 1 7.5 Drehimpuls Drehscheml für Zentralkräfte: M 0

Mehr

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2015-1 1 Aufgabe 1 ( 5 Punkte) Ein Elektronenstrahl ist entlang der z-achse gerichtet. Bei z = 0 und bei z = L befindet sich jeweils eine Lochblende, welche

Mehr

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld Inhalt 11. Elektrodynamik 11.1 Das Gaußsche Gesetz 11.2 Kraft auf Ladungen 11.2.1 Punktladung im elektrischen Feld 11. Elektromagnetische Kraft 11 Elektrodynamik 11. Elektrodynamik (nur Vakuum = Ladung

Mehr

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen)

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen) Magnetismus Magnetit (Fe 3 O 4 ) Sonne λ= 284Å Magnetare/ Kernspintomographie = Neutronensterne Magnetresonanztomographie Ein Magnetfeld wird erzeugt durch: Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls

Mehr

Magnetismus. Vorlesung 5: Magnetismus I

Magnetismus. Vorlesung 5: Magnetismus I Magnetismus Erzeugung eines Magnetfelds möglich durch: Kreisende Elektronen: Permanentmagnet Bewegte Ladung: Strom: Elektromagnet (Zeitlich veränderliches elektrisches Feld) Vorlesung 5: Magnetismus I

Mehr

Erweiterung des NMR-Versuchs im F-Praktikum um eine computergesteuerte Steuerung

Erweiterung des NMR-Versuchs im F-Praktikum um eine computergesteuerte Steuerung RUHR-UNIVERSITÄT BOCHUM Erweiterung des NMR-Versuchs im F-Praktikum um eine computergesteuerte Steuerung Bachelorarbeit im Studiengang Bachelor of Science im Fach Physik Institut für Experimentalphysik

Mehr

5 Elektrizität und Magnetismus

5 Elektrizität und Magnetismus 5.1 Elektrische Ladung q Ursprung: Existenz von subatomaren Teilchen Proton: positive Ladung Elektron: negative Ladung besitzen jeweils eine Elementarladung e = 1.602 10 19 C (Coulomb) Ladung ist gequantelt

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 30. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 30. 06.

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Gibt es myonische Atome?

Gibt es myonische Atome? Minitest 7 Das Myon it ist ein Elementarteilchen, t das dem Elektron ähnelt, jedoch jd eine deutlich höhere Masse (105,6 MeV/c 2 statt 0,511 MeV/c 2 ) aufweist. Wie das Elektron ist es mit einer Elementarladung

Mehr