Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT

Größe: px
Ab Seite anzeigen:

Download "Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT"

Transkript

1 Prof. N. Hungerbühler ETH Zürich, Winter 6 Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT. Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende Kästchen und zwar so: wahr falsch Als Markierungen sind ausschliesslich Kreuzchen erlaubt. Wenn Sie ein Kreuzchen rückgängig machen wollen, streichen Sie es klar erkennbar durch. Jedes richtig gesetzte Kreuzchen ergibt Punkt, jedes falsch gesetzte Kreuzchen ergibt Punkt. Die erreichte Gesamtpunktzahl wird aber nie negativ sein wir runden auf auf. WICHTIG: Die Reihenfolge der Teilaufgaben a)-j) kann von der auf Ihrem Prüfungsblatt abweichen. a) Sei A eine n n-matrix mit Einträgen a ij, so dass a ij = wenn i + j = n + und a ij = sonst. Dann gilt A = A. b) Seien p, q : R R Polynome mit p) = < q), p) > = q). Dann sind p, q linear unabhängig. c) Es gibt Matrizen B R 4 und C R 4, so dass das Produkt BC R 44 vollen Rang also Rang 4) hat. d) Seien x, y zwei Zeilenvektoren in R n. Rangxy ) ist genau dann gleich, wenn mindestens einer der Vektoren der Nullvektor ist. e) Die Summe zweier Eigenvektoren zu verschiedenen Eigenwerten ist nie ein Eigenvektor. f) Zwei Einheitsvektoren v, w R n sind genau dann linear abhängig, wenn entweder v + w = oder v w =. g) Seien A, B R nn und c, d R n. Ist x R n eine Lösung von Ax = c und y eine Lösung von By = d, so ist x+y eine Lösung von A+B)z = c + d. h) Hat die symmetrische -Matrix A zwei verschiedene Eigenwerte ) strikt grösser als Null, so ist die Lösungsmenge von x, y)a x y = eine Ellipse in R. i) Sei P R nn eine quadratische Matrix. Gilt P P = P, so folgt imp ) = E, wobei E = {x R n P x = x} ist und imp ) das Bild von P bezeichnet. j) Für jede quadratische Matrix P R nn gilt E imp ), wobei E = {x R n P x = x} ist und imp ) das Bild von P bezeichnet. wahr falsch verschiedene Serien A, B, C, D Bitte wenden!

2 . Gegeben seien die Vektoren 4 a = 3, a = 7, a 3 = 8, a 4 =, a 5 =. 6 9 a) [3 Punkte] Finden Sie zwei verschiedene Basen von R 3, die aus drei der obigen fünf Vektoren bestehen. b) [3 Punkte] Geben Sie eine nicht triviale Linearkombination λ a + λ a + λ 3 a 3 + λ 4 a 4 + λ 5 a 5 dieser Vektoren an also verschieden von λ = λ = λ 3 = λ 4 = λ 5 = ), welche Null ergibt. c) [ Punkt] Finden Sie eine Matrix A R 33, deren Bild von den Vektoren a und a aufgespannt wird. d) [3 Punkte] Finden Sie eine Matrix B R 33, deren Kern von den Vektoren a und a 4 aufgespannt wird. Lösung: a) Die Vektoren a und a sind offensichtlich linear unabhängig, da keiner ein skalares Vielfaches des anderen ist. Unter den drei restlichen soll man zwei unterschiedliche Vektoren auswählen, welche die Menge {a, a } jeweils zu einer Basis erweitern. Die Vektoren a, a, a i i = 3, 4, 5) bilden genau dann eine Basis von R 3, wenn das Gleichungssystem A i x = nur die triviale Lösung besitzt, wobei A i die Matrix a a a i ) R 33 bezeichnet. Um dies für jedes solche System zu überprüfen, verwenden wir den Gauss-Algorithmus: a a a 3 a 4 a /5 /5 4/5 /5 4 9 Aus der letzten Matrix folgt, dass A 3 x = unendlich viele Lösungen hat und dass A 4 x = und A 5 x = nur die triviale Lösung besitzen. Somit sind B = {a, a, a 4 } und B = {a, a, a 5 } zwei verschiedene Basen von R 3. Bemerkung: Es gibt 5 3) = Kombinationen mit drei Vektoren aus den oben angegebenen fünf. Ist die Determinante der Matrix a i a j a k ) nicht Null i, j, k =,..., 5)), so ist die Menge {a i, a j, a k } linear unabhängig und folglich eine Basis von R 3. Es lässt sich auf diese Weise überprüfen, dass ausser {a, a, a 3 } alle anderen Kombinationen Basen von R 3 sind. b) Im Teil a) wurde gezeigt, dass die Menge {a, a, a 3 } linear abhängig ist, weil das System A 3 x = unendlich viele Lösungen hat. Eine nicht triviale Lösung x = λ, λ, λ 3 ) dieses Systems ergibt eine nicht triviale Linearkombination λ a + λ a + λ 3 a 3 + a 4 + a 5 = hier wurden λ 4 = λ 5 = gesetzt). Aus dem letzten Schritt des Gauss-Algorithmus in a) liest man ab, dass die Lösungen von A 3 x = von der Gestalt λ = 5t, λ = t, λ 3 = t Siehe nächstes Blatt!

3 für t R sind. Setzt man t =, so erhält man λ = 5, λ = λ 3 =, und somit ist 5 a + a + a 3 + a 4 + a 5 = eine nicht triviale Linearkombination der fünf Vektoren, welche Null ergibt. Bemerkung: Die Lösungsmenge des Systems Ax =, wobei A = a a 5 ) und x = λ,, λ 5 ) sind, besteht aus allen 5-Tupeln von Skalaren, so dass die Linearkombination λ a + λ a + λ 3 a 3 + λ 5 a 4 + λ 5 a 5 = ist. Man kann den Gauss-Algorithmus aus a) weiter führen, um zu zeigen, dass jede solche Lösung von der Gestalt λ = 5t 3 s, λ = t s, λ 3 = t, λ 4 = 9 4 s, λ 5 = s für t, s R ist. Wenn man t oder s setzt, erhält man eine Linearkombination mit den gesuchten Eigenschaften. c) Sei u ein beliebiger Vektor in span{a, a }. Dann wird das Bild der Matrix A := a a u) R 33 von den Vektoren a und a aufgespannt. Insbesondere ist 4 A = a a ) = 3 7 eine solche Matrix. d) Gesucht wird ein Vektor u R 3, u, der orthogonal zu a und a 4 ist. Aus diesem Vektor kann man eine Matrix B folgendermassen definieren: B = u R 33. Die Matrix B hat die gewünschten Eigenschaften: Einerseits gilt Ba = u a,, ) =,, ), wobei das Standardskalarprodukt in R 3 bezeichnet; analog ist auch Ba 4 =. Wir haben gezeigt, dass span{a, a 4 } ker B ist. Die zwei Vektorräume stimmen überein, denn Rang B =, also ist dimker B) = 3 Rang B =, und als ein Unterraum mit maximaler Dimension muss span{a, a 4 } gleich ker B sein man bemerke, dass span{a, a 4 } Dimension hat, da a und a 4 linear unabhängig sind). Wir geben nun eine explizite Matrix B an. Als u kann man in diesem Fall das Kreuzprodukt a a 4 auswählen: 4 a a 4 = 3 =. 4 Eine Möglichkeit für B ist somit 4 4 B =. Bitte wenden!

4 3. Gegeben sei die Differentialgleichung. Ordnung Lösung: y t) = 5yt) + 4y t). a) [3 Punkte] Verwandeln Sie ) in ein Differentialgleichungssystem. Ordnung. Welche Dimension hat der Lösungsraum dieses Systems? b) [4 Punkte] Geben Sie die allgemeine Lösung des in a) gefundenen Systems an. c) [3 Punkte] Bestimmen Sie die Lösung von ) zu den Bedingungen y) =, y ) =. a) Sei zt) := y t). Dann ist die Differentialgleichung y t) = 5yt) + 4y t) zum System { } ) ) ) y t) = zt) y t) yt) oder = z t) = 5yt) + 4zt) z t) 5 4 zt) }{{} =:A äquivalent. Weil A R ist, ist die Dimension des Lösungraumes gleich zwei. b) Das charakteristische Polynom von A ist P A λ) = deta λi ) = λ 4λ + 5. Wir berechnen nun die Eigenwerte von A, d.h. die Nullstellen von P A, und erhalten λ = + i und λ = λ = i. Da wir uns im Fall von zwei komplex konjugierten Eigenwerten jeweils der Multiplizität ) befinden, folgen wir dem auf der Seite 78 im Buch [ Lineare Algebra, K. Nipp / D. Stoffer, vdf Hochschulverlag, 5. Auflage ] beschriebenen Lösungsvorgehen Abschnitt Die Behandlung komplexer Eigenwerte ). Wir bestimmen den Eigenraum von A zu einer der zwei konjugierten Nullstellen, z.b. zu λ = + i, indem wir das Gleichungssystem A λ I )x = lösen: ) + i) A + i)i =. 5 i Also ist der Eigenraum E +i = span{ i, 5) }. Wir setzen ) ) ) ) i i α = Re λ =, β = Im λ =, u = Re =, v = Im = Nach der Formel 8.) auf der Seite 79 desselben Buchs ist die allgemeine Lösung des in a) gefundenen Systems ) yt) = e αt {a cosβt) b sinβt)) u a sinβt) + b cosβt)) v} zt) ) )} = e {a t cos t b sin t) a sin t + b cos t) 5 für Parameter a, b R. Insbesondere ist die Lösung von ) c) Die Bedingungen ergeben: ) yt) = e t {a + b) cos t + a b) sin t}. y) = a + b = und y/) = e a b) =. Man bestimmt daraus die Werte a und b und findet anschliessend durch Einsetzen die gesuchte Lösung yt) = e t cos t + e t sin t. Siehe nächstes Blatt!

5 4. Nicht alle der folgenden Abbildungen a) d) sind linear. Geben Sie für jede Abbildung entweder die Darstellungsmatrix bezüglich der Standardbasis an oder zeigen Sie, dass die Abbildung nicht linear ist. Bestimmen Sie zudem, welche der Darstellungsmatrizen orthogonal sind. a) [ Punkte] f : R R, orthogonale Projektion auf den Unterraum span{, ) }; b) [ Punkte] f : R R, Rotation um 9 Grad im Gegenuhrzeigersinn um den Punkt, ) ; c) [3 Punkte] f 3 : R R, Projektion auf die untere Halbebene, also { x, y) x, ), falls y > x, y), sonst; d) [3 Punkte] f 4 : R 3 R 3, Rotation um 8 Grad um die z-achse, gefolgt von einer Spiegelung an der x-y-ebene. Lösung: a) Für die Abbildung f gilt: ) ) x ) ) ) x x y f = proj,) = y y, ) = x + y ) ) ) / / x =, / / y wobei das Standardskalarprodukt im R bezeichnet. Weil f sich als Produkt einer Matrix und des Arguments x, y) schreiben lässt, erkennt man sofort, dass die Abbildung linear ist. Diese Matrix ist genau die Darstellungsmatrix bezüglich der Standardbasis. Da ihre Determinante gleich Null ist, ist sie nicht orthogonal Orthogonalmatrizen haben immer Determinante mit Betrag Eins). b) Die Abbildung f bildet den Ursprung nicht auf sich ab und ist somit nicht linear. c) Die Abbildung f 3 ist nicht linear. Dies lässt sich durch die folgende Berechnung zeigen: ) )) ) ) f 3 + = f 3 =, aber ) ) ) ) ) f 3 + f 3 = + =. d) Man bezeichne durch S die Spiegelung an der x-y-ebene, d.h. S x, y, z) ) = x, y, z). Es gilt für f 4 : x cos sin x x f 4 y = S sin cos y = S y z z z x x x = S y = y = I 3 ) y. z z z Bitte wenden!

6 Aus dem selben Grund wie in a) ist f 4 linear und ihre Darstellungsmatrix ist I 3. Diese Matrix ist orthogonal, weil die Gleichung erfüllt ist. I 3 ) I 3 ) = I 3 Siehe nächstes Blatt!

7 5. Sei C[, ]) der Vektorraum der stetigen Funktionen auf dem Intervall [, ] und V der Untervektorraum aufgespannt von den Vektoren B := {, sin, cos}. Weiter sei das folgende Skalarprodukt gegeben: p, q := / / px)qx) dx. a) [5 Punkte] Wenden Sie das Gram-Schmidt sche Orthogonalisierungsverfahren auf B an, um eine Orthonormalbasis ˆB zu erhalten. Hinweis: Es gilt / / sin x) dx = / / cos x) dx =. b) [ Punkte] Finden Sie die Matrix T, welche Koordinaten bezüglich B auf Koordinaten bezüglich der Basis ˆB aus a) abbildet, also die Übergangsmatrix von B nach ˆB. c) [3 Punkte] Projizieren Sie das Polynom px) = x orthogonal auf den Unterraum V. Lösung: a) Gegeben sind die Basisvektoren f =, f = sin und f 3 = cos von V, auf die das Gram Schmidt sche Orthogonalisierungsverfahren angewandt wird. Zuerst normieren wir f, um den ersten Vektor ˆf unserer Orthonormalbasis ONB) zu erhalten: ˆf = f f = ) / = / dx /. Nach Gram Schmidt ergibt f = f f, ˆf ˆf einen Vektor, dessen Normalisierung ˆf der zweite Vektor der ONB ist: =, sin ungerade { }} { / f = sin sin x dx = sin. ˆf = f f = / sin ) / = / / sin x dx sin. Mit analoger Notation führen wir Gram Schmidt weiter durch, um den dritten Vektor ˆf 3 zu bestimmen: f 3 = f 3 f 3, ˆf ˆf f 3, ˆf ˆf = cos = cos. / / cos x dx =, Integrand ungerade { }} { / cos x sin x dx sin / Bitte wenden!

8 ˆf 3 = f 3 f 3 = { / ) } cos x / dx = / cos ) { / cos x 4 cos x + ) } / cos ) = 4 4 ) cos ). / dx Die Menge ˆB = { ˆf, ˆf, ˆf3 } ist eine Orthonormalbasis von V. b) Wir schreiben zuerst die Vektoren der Basis B als Linearkombinationen der Vektoren der Orthonomalbasis ˆB: f = ˆf + ˆf + ˆf 3, f = ˆf + ˆf + ˆf 3, f 3 = ˆf + ˆf + 4 / ) ˆf 3. Die j-te Spalte der gesuchten Matrix T ist der Koordinatenvektor von f j bezüglich der Basis ˆB j =,, 3). Somit ist T =. 4 / ) c) Die Projektion proj V p) von px) = x auf V ist durch proj V p) = p, ˆf ˆf + p, ˆf ˆf + p, ˆf3 ˆf 3 gegeben. Wir berechnen die Koeffizienten: Einerseits ergibt sich, dass p, ˆf = / x dx = und p, ˆf3 = / / / x 4 ) cos x ) dx = sind, weil die Integranden ungerade sind; für den zweiten Basisvektor hat man p, ˆf = / / x = sin x dx = x cos x / + / / x sin x dx cos x dx =, wobei das zweite Gleichheitszeichen aus der Tatsache, dass der Integrand gerade ist, folgt. Es gilt also ) proj V p) = sin = 4 sin.

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Sommer 4 Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT. [ Punkte] Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in

Mehr

Lösungen Serie 5. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler

Lösungen Serie 5. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler D-MAVT Lineare Algebra II S 8 Prof. Dr. N. Hungerbühler Lösungen Serie 5. Die Abbildung V n R n, v [v] B, die jedem Vektor seinen Koordinatenvektor bezüglich einer Basis B zuordnet, ist linear. Sei B =

Mehr

Probeprüfung Lineare Algebra I/II für D-MAVT

Probeprüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Frühling 018 Probeprüfung Lineare Algebra I/II für D-MAVT Die Prüfung dauert 10 Minuten. Sie dient der Selbstevaluation. Die Musterlösungen folgen. Die Multiple Choice

Mehr

Serie 5. ETH Zürich - D-MAVT Lineare Algebra II. Prof. Norbert Hungerbühler

Serie 5. ETH Zürich - D-MAVT Lineare Algebra II. Prof. Norbert Hungerbühler Prof. Norbert Hungerbühler Serie 5 ETH Zürich - D-MAVT Lineare Algebra II. a) Die Abbildung V n R n, v [v] B, die jedem Vektor seinen Koordinatenvektor bezüglich einer Basis B zuordnet, ist linear. Sei

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 6. Aufgabe 6.1. Dr. V. Gradinaru K. Imeri. Herbstsemester 2018.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 6. Aufgabe 6.1. Dr. V. Gradinaru K. Imeri. Herbstsemester 2018. Dr. V. Gradinaru K. Imeri Herbstsemester 8 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 6 Aufgabe 6. Multiple Choice: Online abzugeben. 6.a) (i) Welche der folgenden

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG. Winter 2016 Typ B

Lineare Algebra und Numerische Mathematik für D-BAUG. Winter 2016 Typ B R. Käppeli T. Welti F. Weber Herbstsemester 2015 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Prüfung Winter 2016 Typ B Name a a Note Vorname Leginummer Datum 03.02.2017 1 2 3

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R. Käppeli L. Herrmann W. Wu Herbstsemester 16 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Prüfung Name a a Note Vorname Leginummer Datum 18.8.17 1 3 4 Total 1P 1P 1P 1P 1P P

Mehr

Diagonalisierbarkeit symmetrischer Matrizen

Diagonalisierbarkeit symmetrischer Matrizen ¾ Diagonalisierbarkeit symmetrischer Matrizen a) Eigenwerte und Eigenvektoren Die Matrix einer linearen Abbildung ³: Î Î bezüglich einer Basis ( Ò ) ist genau dann eine Diagonalmatrix wenn jeder der Basisvektoren

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 25 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8 Basen für Bild und Kern Gegeben sind die beiden 2 Matrizen:

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe Beispiel einer Koordinatentransformation Gegeben seien zwei

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester 6 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe Das Kreuzprodukt als lineare Abbildung Oft findet man

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 8. Aufgabe 8.1. Dr. V. Gradinaru T. Welti. Herbstsemester 2017.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 8. Aufgabe 8.1. Dr. V. Gradinaru T. Welti. Herbstsemester 2017. Dr. V. Gradinaru T. Welti Herbstsemester 7 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8. Multiple Choice: Online abzugeben. 8.a) (i) Welche der folgenden

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

Lineare Algebra I Lösungsvorschlag

Lineare Algebra I Lösungsvorschlag Aufgabe Lineare Algebra I Lösungsvorschlag Wir bezeichnen mit a, a 2, a 3 Q 4 die Spalten der Matrix A. Es ist 7 a + 2a 2 = 7 4 = 7a 3, und wir sehen im l A = a, a 2, a 3 = a, a 2. Da die Vektoren a und

Mehr

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1 Prof. Norbert Hungerbühler Serie Lineare Algebra II ETH Zürich - D-MAVT. a Welche der folgenden Vektoren sind Eigenvektoren der Matrix? i (,,. ii (,,. iii (,,. iv (, 3,. v (,,. Ein Vektor v ist Eigenvektor

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie D-MAVT Lineare Algebra I HS 7 Prof. Dr. N. Hungerbühler Lösungen Serie 4: Ferienserie . Finden Sie ein Erzeugendensystem des Lösungsraums L R 5 des Systems x + x x 3 + 3x 4 x 5 = 3x x + 4x 3 x 4 + 5x 5

Mehr

Klausur Lineare Algebra I & II

Klausur Lineare Algebra I & II Prof. Dr. G. Felder, Dr. Thomas Willwacher ETH Zürich, Sommer 2010 D MATH, D PHYS, D CHAB Klausur Lineare Algebra I & II Bitte ausfüllen! Name: Vorname: Studiengang: Bitte nicht ausfüllen! Aufgabe Punkte

Mehr

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }.

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }. 154 e Gegeben sind die Vektoren v 1 = ( 10 1, v = ( 10 1. Sei V 1 = v 1 der von v 1 aufgespannte Vektorraum in R 3. 1 Dann besteht V 1 aus allen Vielfachen von v 1, V 1 = { c v 1 c R }. ( 0 ( 01, v 3 =

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D. Dr. V. Gradinaru D. Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe..a Bezüglich des euklidischen Skalarprodukts in R ist die Orthogonalprojektion

Mehr

Lineare Algebra für Ingenieure

Lineare Algebra für Ingenieure TECHNISCHE UNIVERSITÄT BERLIN SS 4 Fakultät II - Mathematik J Liesen/F Lutz/R Seiler Lineare Algebra für Ingenieure Lösungen zur Juli-Klausur Stand: 4 September 4 Rechenteil Aufgabe (8 Punkte Berechnen

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 9 Aufgabe 9 Finden Sie eine Basis des Lösungsraums L R 5 des linearen

Mehr

Höhere Mathematik I. Variante A

Höhere Mathematik I. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I WiSe / Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche Aufzeichnungen von maximal DinA4-Blättern.

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 5 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Skalarprodukt und Orthogonalität.a) Bezüglich des euklidischen

Mehr

Musterlösungen zur Linearen Algebra II Übungsklausur

Musterlösungen zur Linearen Algebra II Übungsklausur Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,

Mehr

Untersuchen Sie, ob die folgenden Abbildungen linear oder nicht linear sind. x y

Untersuchen Sie, ob die folgenden Abbildungen linear oder nicht linear sind. x y Aufgabe 1 Untersuchen Sie, ob die folgenden Abbildungen linear oder nicht linear sind. (( )) 3x x (a) Sei f : R 2 R 3 mit f = 2y + x y x y ( ) 4 (b) Sei f : R R 2 mit f(x) = x + 1 (( )) ( ) x x y (c) Sei

Mehr

Berechnung der Determinante

Berechnung der Determinante Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,

Mehr

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1 D-MAVT Lineare Algebra II FS 8 Prof. Dr. N. Hungerbühler Lösungen Serie. Welche der folgenden Vektoren sind Eigenvektoren der Matrix? (a) (,, ). Ein Vektor v ist Eigenvektor von A :=, falls Av ein skalares

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

Lösungsskizzen zur Klausur

Lösungsskizzen zur Klausur sskizzen zur Klausur Mathematik II Sommersemester 4 Aufgabe Es seien die folgenden Vektoren des R 4 gegeben: b = b = b 3 = b 4 = (a) Prüfen Sie ob die Vektoren b b 4 linear unabhängig sind bestimmen Sie

Mehr

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung Technische Universität München Physik Department Pablo Cova Fariña, Claudia Nagel Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 207/8 Blatt 3 - Aufgabe : Darstellungsmatrizen Sei

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

Lineare Algebra II Lösungen der Klausur

Lineare Algebra II Lösungen der Klausur Prof Dr K Doerk 673 Jens Mandavid Christian Sevenheck Lineare Algebra II Lösungen der Klausur (a Diese Aussage ist richtig, sie stimmt nämlich für k = Sei nämlich n N beliebig und bezeichne N die Menge

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1.

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1. b Musterlösung Lineare Algebra und Numerische Mathematik D-BAUG. Multiple Choice) Gegeben sei die folgende Matrix Winter 3 Prof. H.-R. Künsch A = a a) deta) = genau dann wenn gilt x a =. a =. ), a R. x

Mehr

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen

Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen Übungen zum Ferienkurs Lineare Algebra 5/6: Lösungen Darstellungsmatrizen. Bestimme die Darstellungsmatrix M B,B (f ) für die lineare Abbildung f : 3, die durch f (x, y, z) = (4x + y z, y + z) definiert

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte Teschl/Teschl 4. Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x 0, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG Winter 2013 Prof. H.-R. Künsch. Regeln Multiple Choice:

Lineare Algebra und Numerische Mathematik D-BAUG Winter 2013 Prof. H.-R. Künsch. Regeln Multiple Choice: b Prüfung Lineare Algebra und Numerische Mathematik D-BAUG Winter 03 Prof. H.-R. Künsch c Alle Aufgaben haben das gleiche Gewicht. Die Lösungswege müssen, abgesehen von Aufgabe, nachvollziehbar dargestellt

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Übungen zur Vorlesung Lineare Algebra II, SoSe 2016, Blatt 1

Übungen zur Vorlesung Lineare Algebra II, SoSe 2016, Blatt 1 Übungen zur Vorlesung Lineare Algebra II, SoSe 216, Blatt 1 Mündliche Aufgaben Die Aufgaben aus diesem Blatt bestehen zu einem großen Teil aus den Aufgaben von Blatt 13 der LA1. Sie dienen vor allem der

Mehr

2. Klausur zur Linearen Algebra II

2. Klausur zur Linearen Algebra II Technische Universität Dortmund Fakultät für Mathematik Platznummer: Sommersemester 7.9.7. Klausur zur Linearen Algebra II Name: Vorname: Matrikelnummer: Studiengang: Wichtige Informationen: Prüfen Sie

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

Determinante und Inverse

Determinante und Inverse Vorzeigeaufgaben: Determinante und Inverse Bestimmen Sie für welche a R die folgende Matrix invertierbar ist und berechnen Sie deren Inverse: A = a cos(x) sin(x) a sin(x) cos(x) Bestimmen Sie ob folgende

Mehr

Klausur HM I F 2004 HM I : 1

Klausur HM I F 2004 HM I : 1 Klausur HM I F 004 HM I : Aufgabe (5 Punkte): Für welche n gilt die folgende Aussage? ( n ) det n! n 0 (n )! () Führen Sie den Beweis mit Hilfe der vollständigen Induktion. Lösung: Beweis per Induktion

Mehr

Probeklausur zu Mathematik 2 für Informatik

Probeklausur zu Mathematik 2 für Informatik Gunter Ochs Wintersemester 4/5 Probeklausur zu Mathematik für Informatik Lösungshinweise wie immer ohne Garantie auf Fehlefreiheit. Gegeben sei das Dreieck im R mit den Eckpunkten A a Berechnen Sie die

Mehr

Probeklausur Lineare Algebra 1 Achten Sie auf vollständige, saubere und schlüssige Argumentation! 100 Punkte sind 100%. Inhaltsverzeichnis

Probeklausur Lineare Algebra 1 Achten Sie auf vollständige, saubere und schlüssige Argumentation! 100 Punkte sind 100%. Inhaltsverzeichnis Prof. Dr. Wolfgang Arendt Manuel Bernhard Wintersemester 5/6 Probeklausur Lineare Algebra Achten Sie auf vollständige, saubere und schlüssige Argumentation! Punkte sind %. Inhaltsverzeichnis Aufgabe Aufgabe

Mehr

D-MATH, D-PHYS, D-CHAB Lineare Algebra II FS 14 Manfred Einsiedler. Musterlösung 8. i=1. w 2, w 2 w 2 =

D-MATH, D-PHYS, D-CHAB Lineare Algebra II FS 14 Manfred Einsiedler. Musterlösung 8. i=1. w 2, w 2 w 2 = D-MATH, D-PHYS, D-CHAB Lineare Algebra II FS 14 Manfred Einsiedler Musterlösung 8 1. Wir konstruieren eine Orthogonalbasis aus der Basis (v 1, v 2, v ) mit dem Gram- Schmidt-Verfahren. Wir wenden die Formel

Mehr

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW Lineare Gleichungssysteme Lösen Sie folgende Gleichungssysteme über R: a) x + x + x = 6x + x + x = 4 x x x = x 7x x = 7 x x = b) x + x 4x + x 4 = 9 x + 9x x x

Mehr

Höhere Mathematik I. Variante A Musterlösung

Höhere Mathematik I. Variante A Musterlösung Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I SoSe Variante A Musterlösung Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche Aufzeichnungen von maximal DinA4-Blättern.

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 4

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 4 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 4 4. (Frühjahr 27, Thema, Aufgabe ) Zeigen Sie, dass die beiden folgenden Unterräume des R 3 übereinstimmen:

Mehr

Lineare Algebra I für Mathematiker Lösungen

Lineare Algebra I für Mathematiker Lösungen Lineare Algebra I für Mathematiker Lösungen Anonymous 24. April 2016 Aufgabe 1 Beantworten Sie bitte die folgenden Fragen. Jeder Vektorraum hat mindestens ein Element. Q ist ein R-Vektorraum (mit der Multiplikation

Mehr

Blatt 10 Lösungshinweise

Blatt 10 Lösungshinweise Lineare Algebra und Geometrie I SS 05 Akad. Rätin Dr. Cynthia Hog-Angeloni Dr. Anton Malevich Blatt 0 Lösungshinweise 0 0 Aufgabe 0. Es seien die Vektoren u =, v = und w = in R gegeben. a # Finden Sie

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 4

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 4 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 26/7): Lineare Algebra und analytische Geometrie 4 4. (Frühjahr 27, Thema, Aufgabe ) Zeigen Sie, dass die beiden folgenden Unterräume des R 3 übereinstimmen:

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass I. a) Es sei (G, ) eine abelsche Gruppe mit neutralem Element e G. Zeigen Sie, dass U := {g G g 3 = e G } eine Untergruppe von G ist. b) In der symmetrischen Gruppe S 4 definieren wir analog zu a) die

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Lösung 23: Sylvesters Trägheitssatz & Singulärwertzerlegung

Lösung 23: Sylvesters Trägheitssatz & Singulärwertzerlegung D-MATH Lineare Algebra I/II HS 07/FS 08 Dr Meike Akveld Lösung 3: Sylvesters Trägheitssatz & Singulärwertzerlegung Wir wissen, dass eine Basis B von R n existiert, sodass p [β Q ] B I I q 0 n p q gilt

Mehr

Richie Gottschalk Lineare Algebra I Seite 1. a) Welche der folgenden Ringe sind kommutativ? Es gibt genau einen Unterraum W von V mit dim(w ) = n.

Richie Gottschalk Lineare Algebra I Seite 1. a) Welche der folgenden Ringe sind kommutativ? Es gibt genau einen Unterraum W von V mit dim(w ) = n. Richie Gottschalk Lineare Algebra I Seite Aufgabe Im Folgenden sind K immer ein Körper und V ein K-Vektorraum. a) Welche der folgenden Ringe sind kommutativ? K[x] K[x] ist per se ein kommutativer Polynomring.

Mehr

Lösungsskizzen zur Klausur zur Linearen Algebra II. Definitionen

Lösungsskizzen zur Klausur zur Linearen Algebra II. Definitionen Technische Universität Berlin Sommersemester 2008 Institut für Mathematik 18 Juli 2008 Prof Dr Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Klausur zur Linearen Algebra II Aufgabe 1 (1+1+1 Punkte)

Mehr

9. Übungsblatt zur Mathematik I für Maschinenbau

9. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 9. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-4.. Aufgabe G (Koordinatentransformation)

Mehr

Lösungsskizzen zur Klausur Mathematik II

Lösungsskizzen zur Klausur Mathematik II sskizzen zur Klausur Mathematik II vom..7 Aufgabe Es sei die Ebene im R 3 gegeben. E = +λ 3 + µ λ,µ R (a) Geben Sie die Hesse-Normalform der Ebene E an. (b) Berechnen Sie die orthogonale Projektion Π E

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen Hannover, den 7. Februar 2002 Aufgabe. Übungsblatt: Lineare Algebra II Abgabe: 8./9.4.2002 in den Übungsgruppen (2, 2, 3 Punkte) Der Vektorraum V = C[, ] sei mit dem üblichen Skalarprodukt f, g = f(t)g(t)

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru T. Welti

Lineare Algebra für D-ITET, D-MATL, RW. Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru T. Welti Dr. V. Gradinaru T. Welti Herbstsemester 27 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Serie Aufgabe. Multiple Choice: Online abzugeben..a) Bezüglich des euklidischen Skalarprodukts in R

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS 27 L I N E A R E A L G E B R A F Ü R T P H, U E (.64) 2. Haupttest (FR, 9..28) (mit Lösung ) Ein einfacher Taschenrechner ist erlaubt.

Mehr

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover Dozent: Prof. Dr. Wolfgang Ebeling Übungsleiter: Dr. Detlef Wille Klausur zur Vorlesung Lineare Algebra B im SS an der Universität Hannover Joachim Selke 9. Februar Lineare Algebra B SS Klausur zur Vorlesung

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS 7 L I N E A R E A L G E B R A F Ü R T P H, U E (.64). Haupttest (FR, 9..8) (mit Lösung ) Ein einfacher Taschenrechner ist erlaubt.

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 13. (A ± I)x = 0 Ax ± x = 0 Ax = ±x Ax = λx

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 13. (A ± I)x = 0 Ax ± x = 0 Ax = ±x Ax = λx D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Musterlösung 13 1. Die Matrix A±I ist singulär falls es einen Vektor x 0 gibt der die Gleichung (A±I)x = 0 erfüllt, d.h. wenn A ± I als

Mehr

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 05/06 Prof. Dr. Michael Scheutzow 20. Februar 2006

Technische Universität Berlin Fakultät II Institut für Mathematik WS 05/06 Prof. Dr. Michael Scheutzow 20. Februar 2006 Technische Universität Berlin Fakultät II Institut für Mathematik WS 5/6 Prof. Dr. Michael Scheutzow 2. Februar 26 Februar Klausur Lineare Algebra I Name:.............................. Vorname:..............................

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Wichtige Kenntnisse der Linearen Algebra

Wichtige Kenntnisse der Linearen Algebra Wichtige Kenntnisse der Linearen Algebra In Kapitel 3 der Vorlesung werden wir sehen (und in Kapitel 6 vertiefen, dass zur Beschreibung von Quantensystemen mathematische Begriffe aus dem Gebiet der Linearen

Mehr

WS 2012/2013. Hinweise

WS 2012/2013. Hinweise Lehrstuhl C für Mathematik (Analysis Prof. Dr. Y. Guo Aachen, den.. Trainingsklausur zur Höheren Mathematik I WS / Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche Aufzeichnungen

Mehr

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel 4 Orthogonalität 4. Motivation Im euklidischen Raum ist das euklidische Produkt zweier Vektoren u, v IR n gleich, wenn die Vektoren orthogonal zueinander sind. Für beliebige Vektoren lässt sich sogar der

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Lineare Algebra 2. Lösung zu Aufgabe 7.2:

Lineare Algebra 2. Lösung zu Aufgabe 7.2: Technische Universität Dortmund Sommersemester 2017 Fakultät für Mathematik Übungsblatt 7 Prof. Dr. Detlev Hoffmann 15. Juni 2017 Marco Sobiech/ Nico Lorenz Lineare Algebra 2 Lösung zu Aufgabe 7.1: (a)

Mehr

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Lineare Algebra 1 WS 2006/07 Lösungen Blatt 13/ Probeklausur. Lösungen zur. Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN. Lineare Algebra 1 WS 2006/07 Lösungen Blatt 13/ Probeklausur. Lösungen zur. Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 13/2 29.1.27 en zur Probeklausur Aufgabe 1 (ca. 6 Punkte) Sei

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Serie 8: Fakultativer Online-Test

Serie 8: Fakultativer Online-Test Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung

Mehr

Prüfung Lineare Algebra , B := ( ), C := 1 1 0

Prüfung Lineare Algebra , B := ( ), C := 1 1 0 1. Es seien 1 0 2 0 0 1 3 0 A :=, B := ( 1 2 3 4 ), C := 1 1 0 0 1 0. 0 0 0 1 0 0 1 0 0 0 0 Welche der folgenden Aussagen ist richtig? A. A und C haben Stufenform, B nicht. B. A und B haben Stufenform,

Mehr

Wiederholungsserie II

Wiederholungsserie II Lineare Algebra II D-MATH, FS 205 Prof. Richard Pink Wiederholungsserie II. Zeige durch Kopfrechnen, dass die folgende reelle Matrix invertierbar ist: 205 2344 234 990 A := 224 423 990 3026 230 204 9095

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

Variante A. Hinweise

Variante A. Hinweise Lehrstuhl C für Mathematik (Analysis Prof Dr Holger Rauhut Aachen, den 373 Wiederholungsklausur zur Höheren Mathematik I SoSe 3 Variante A Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,

Mehr

Lehrstuhl II für Mathematik. Bachelor-Prüfung/Diplom-Vorprüfung/Zwischenprüfung. Höhere Mathematik I

Lehrstuhl II für Mathematik. Bachelor-Prüfung/Diplom-Vorprüfung/Zwischenprüfung. Höhere Mathematik I RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN Lehrstuhl II für Mathematik Bachelor-Prüfung/Diplom-Vorprüfung/Zwischenprüfung Höhere Mathematik I Prüfer: Prof. Dr. E. Triesch Termin: 5..8 Fachrichtung:..................

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 2014/2015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 10 Abgabetermin: Freitag, 16.01.2015, 11 Uhr Auf diesem

Mehr

Sommer 2017 Musterlösung

Sommer 2017 Musterlösung Sommer 7 Musterlösung. (5 Punkte) a) Sei V ein Vektorraum über K und sei T End(V ). Geben Sie die Definition eines Eigenwertes von T und zeigen Sie für endlichdimensionales V, dass λ K genau dann ein Eigenwert

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11 D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Serie 11 1. Wir betrachten das überbestimmte Gleichungssystem Ax = y mit 1 1 1 1 A := 1 1 0 1 0 1, y := 2 3 0 0 1 4 Berechnen Sie die

Mehr