Der (7, 4)-Hamming-Code

Größe: px
Ab Seite anzeigen:

Download "Der (7, 4)-Hamming-Code"

Transkript

1 Polynomcodes p. 1 Der (7, 4)-Hamming-Code Der 1-Fehler-korrigierende Hamming-Code der Länge 7 besteht aus 16 binären 7-Tupeln: Je zwei verschiedene Codewörter unterscheiden sich an mindestens drei Stellen.

2 Polynomcodes p. 2 Als Kern der Kontrollmatrix Man kann den Hamming-Code verstehen als einen Untervektorraum des Vektorraumes GF(2) 7, gegeben als Kern der Kontrollmatrix H 3 := Der Hamming-Code besteht aus genau denjenigen Vektoren, die mit H 3 multipliziert den Nullvektor ergeben (Rechnung über GF(2)).

3 Polynomcodes p. 3 Als Polynomcode Man kann die Codewörter auch als Koeffiziententupel von Polynomen auffassen. usw X + X X 2 + X 4 + X 5 + X 6 Dadurch wird der Hamming-Code zu einer Teilmenge von GF(2)[X]/p(X), wobei p(x) ein Polynom vom Grad 7 ist. Diese Teilmenge ist abgeschlossen gegen Addition.

4 Polynomcodes p. 4 Zyklischer Code Der Hamming-Code ist zyklisch: Wenn ein Codewort ist, dann auch (c 0,c 1,...,c 5,c 6 ) (c 6,c 0,...,c 4,c 5 ). In der Sprache der Polynomcodes kann man das so formulieren: Wenn zum Code gehört, dann auch c 0 + c 1 X c 5 X 5 + c 6 X 6 c 0 X + c 1 X c 5 X 6 + c 6.

5 Polynomcodes p. 5 Modulo X n 1 Wenn c 0 + c 1 X c 5 X 5 + c 6 X 6 zum Code gehört, dann auch c 0 X + c 1 X c 5 X 6 + c 6 = X (c 0 + c 1 X c 5 X 5 ) + c 6 = X (c 0 + c 1 X c 5 X 5 + c 6 X 6 ) mod X 7 1

6 Polynomcodes p. 6 Zyklische Polynomcodes Abkürzung: K n [X] := GF(q)[X]/X n 1. Eine Teilmenge C K n [X] wird ein zyklischer Code genannt, falls gilt: 1. C ist ein Unterraum von K n [X] (also ein linearer Code), und 2. für alle c(x) C gilt X c(x) C, (d.h. zyklische Vertauschungen führen Codewörter in Codewörter über). Die Zahl n ist dann die Länge des zyklischen Codes C.

7 Polynomcodes p. 7 Multiplikation mit einem Polynom Multipliziert man ein Codewort c(x) eines zyklischen Codes C mit X i, so erhält man X i c(x) = X(X( X c(x) )), also wieder ein Codewort von C. Multipliziert man c(x) mit einem beliebigen Polynom a(x) K n [X], so ergibt sich (a 0 + a 1 X a n 1 X n 1 ) c(x) = a 0 c(x) + a 1 X c(x) + a 2 X 2 c(x) +...a n 1 X n 1 c(x), also ebenfalls wieder ein Codewort.

8 Polynomcodes p. 8 Zyklische Codes sind Ideale in K n [X] Die zyklischen Codes sind also genau die Ideale im Ring K n [X], das heißt, diejenigen nichtleeren Teilmengen C K n [X], die folgende Bedingungen erfüllen: 1. Wenn c(x) C und λ GF(q), dann λc(x) C, 2. wenn c 1 (X),c 2 (X) C, dann c 1 (X) + c 2 (X) C, und 3. wenn c(x) C und a(x) K n [X], dann a(x) c(x) C. Dabei wird mit den Koeffizienten in GF(q) gerechnet. Die Polynommultiplikation versteht sich modulo X n 1.

9 Polynomcodes p. 9 Der ggt zweier Codewörter Zu je zwei Codewörtern c 1 (X),c 2 (X) eines zyklischen Codes C K n [X] können wir in GF(q)[X] den größten gemeinsamen Teiler berechnen. Man hat folgendes: ggt(c 1 (X),c 2 (X)) 1. grad(ggt(c 1 (X),c 2 (X))) min{grad(c 1 (X)), grad(c 2 (X))}, also ist ggt(c 1 (X),c 2 (X)) K n [X], 2. ggt(c 1 (X),c 2 (X)) = a(x) c 1 (X) + b(x) c 2 (X) für geeignete Polynome a(x), b(x), also ist ggt(c 1 (X),c 2 (X)) C.

10 Polynomcodes p. 10 Generatorpolynom Ist C ein nichttrivialer zyklischer Code, dann gilt 1. Unter den von Null verschiedenen normierten Polynomen in C gibt es genau eines vom kleinsten Grad. Es wird mit g(x) bezeichnet. 2. g(x) ist der ggt aller Polynome in C. 3. Jedes Vielfache von g(x) (modulo X n 1) gehört zu C. C besteht also genau aus allen Vielfachen des Generatorpolynoms modulo X n 1!

11 Polynomcodes p. 11 Beispiel: Hamming-Code Generatorpolynom des (7, 4)-Hamming-Codes ist das Polynom g(x) = 1 + X + X 3. Man erhält alle Elemente des (7, 4)-Hamming-Codes, indem man das Generatorpolynom mit allen Polynomen vom Grad 3 in GF(2)[X] multipliziert. Dabei muss gar nicht modulo X 7 1 gerechnet werden, weil die Ergebnisse sämtlich den Grad 6 haben.

12 Polynomcodes p. 12 elche Polynome s. Generatorpolynome? Sei C K n [X] ein zyklischer Code mit dem Generatorpolynom g(x). Zu t(x) := ggt(g(x),x n 1) gibt es Polynome a(x), b(x) mit t(x) = a(x) g(x) + b(x) X n 1, also t(x) = a(x) g(x) mod X n 1. t(x) gehört also zu C und muss deshalb gleich g(x) sein.

13 Polynomcodes p. 13 Teiler von X n 1 Ist g(x) ein Teiler von X n 1 in K[X] und normiert, dann ist g(x) Generatorpolynom eines zyklischen Codes der Länge n. Ist C ein zyklischer Code der Länge n in K n [X], dann ist das Generatorpolynom von C ein Teiler von X n 1 und außerdem normiert. Kurz gesagt: Die zyklischen Codes sind durch die Teiler von X n 1 eindeutig bestimmt.

14 Polynomcodes p. 14 Wie findet man die Teiler von X n 1? Wir studieren zunächst den einfachsten Fall: Unter welcher Bedingung gilt, dass das Polynom X n 1 in GF(q)[X] in Linearfaktoren zerfällt, also, dass es Elemente λ 1,...,λ n GF(q) gibt mit X n 1 = (X λ 1 ) (X λ 2 ) (X λ n )? Jedes solche Element λ i muss eine Nullstelle des Polynoms X n 1 sein, also eine n-te Einheitswurzel in GF(q). Außerdem müssen die λ i paarweise verschieden sein.

15 Polynomcodes p. 15 n muss Teiler von q 1 sein Die n-ten Einheitswurzeln (sofern vorhanden) bilden eine Untergruppe der multiplikativen Gruppe GF(q) von GF(q). Nach dem Satz vom primitiven Element ist die multiplikative Gruppe GF(q) zyklisch. Sie hat q 1 Elemente, ist also isomorph zu Z q 1. Deshalb hat GF(q) genau eine Untergruppe zu jedem Teiler von q 1. Wenn X n 1 also n verschiedene Nullstellen hat, dann muss n ein Teiler von q 1 sein.

16 Polynomcodes p. 16 Wenn n q 1, dann zerfällt X n 1 GF(q) hat ein primitives Element α, dessen Potenzen α,α 2...α q 1 = 1 alle Elemente 0 durchlaufen. Wenn n ein Teiler von q 1 ist, wenn also q 1 = n t für eine Zahl t gilt, dann gilt für β := α t und beliebiges i folgendes: (β i ) n = ((α t ) i ) n = (α n t ) i = 1 i = 1. Die Potenzen von β sind also allesamt n-te Einheitswurzeln.

17 Polynomcodes p. 17 Zusammenfassung Satz: In GF(q) gibt es genau dann n verschiedene n-te Einheitswurzeln, wenn die Zahl n ein Teiler von q 1 ist. Ist das der Fall, dann gibt es sogar eine primitive n-te Einheitswurzel, also eine, deren Potenzen alle n-ten Einheitswurzeln durchlaufen. Genau in diesem Fall zerfällt auch das Polynom X n 1 in GF(q)[X] in Linearfaktoren.

Was bisher geschah...

Was bisher geschah... Polynomcodes, Fortsetzung p. 1 Was bisher geschah... Zyklische Codes versteht man beser als Polynomcodes Polynomcodes erhält man als Hauptideale im Ring GF(q)[X]/X n 1. Solche Hauptideale bestehen aus

Mehr

15. Vorlesung. Primitive Polynome (Beispiel) Beispiel zur Konstruktion von GF(p)[x]/f (x) mit einem primitiven Polynom f (x) (Logarithmentafel)

15. Vorlesung. Primitive Polynome (Beispiel) Beispiel zur Konstruktion von GF(p)[x]/f (x) mit einem primitiven Polynom f (x) (Logarithmentafel) 15. Vorlesung Primitive Polynome (Beispiel) Beispiel zur Konstruktion von GF(p)[x]/f (x) mit einem primitiven Polynom f (x) (Logarithmentafel) Struktur endlicher Körper Rechnen in endlichen Körpern Isomorphie

Mehr

Algebra für Informationssystemtechniker

Algebra für Informationssystemtechniker Algebra für Informationssystemtechniker Prof. Dr. Ulrike Baumann Fachrichtung Mathematik Institut für Algebra www.math.tu-dresden.de/ baumann Ulrike.Baumann@tu-dresden.de 16.07.2018 14. Vorlesung irreduzible

Mehr

Endliche Körper und Codierung SS Übungsblatt. 9. Bestimmen Sie alle primitiven Elemente (Erzeuger der multiplikativen Gruppe) von

Endliche Körper und Codierung SS Übungsblatt. 9. Bestimmen Sie alle primitiven Elemente (Erzeuger der multiplikativen Gruppe) von Endliche Körper und Codierung SS 2007 1. Übungsblatt 1. Sei p eine Primzahl und 0 j p 1. Zeigen Sie, dass ( ) p 1 j ( 1) j (mod p). 2. Sei R ein kommutativer Ring der Charakteristik p > 0 (prim). Zeigen

Mehr

Von den ganzen Zahlen zu GF(p)

Von den ganzen Zahlen zu GF(p) Endliche Körper p. 1 Von den ganzen Zahlen zu GF(p) Aus dem Ring aller ganzen Zahlen gewinnt man endliche Körper wie folgt: Man führt das Rechnen modulo n ein (modulare Arithmetik) und erhält so endliche

Mehr

Klausur vom Algebra I. Rolf Farnsteiner

Klausur vom Algebra I. Rolf Farnsteiner Klausur vom 31.03.2010 Algebra I Rolf Farnsteiner Lösungen Daiva Pučinskaitė Aufgabe 1. Sei p R ein Primideal eines Integritätsbereichs R. Beweisen Sie folgende Aussagen: (1 S := R \ p ist eine multiplikativ

Mehr

14 Kreisteilungskörper

14 Kreisteilungskörper 14 Kreisteilungskörper Wir wenden unsere Ergebnisse auf einen Fall an, mit dem die Algebraische Zahlentheorie begann und der bis heute im Zentrum der Forschung steht. 14.1 Erweiterungen mit Einheitswurzeln

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 10 Endliche Untergruppen der Einheitengruppe eines Körpers Wir wollen zeigen, dass die Einheitengruppe Z/(p), p Primzahl, zyklisch

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 18 Kreisteilungskörper Definition 18.1. Der n-te Kreisteilungskörper ist der Zerfällungskörper des Polynoms X n 1 über Q. Offenbar

Mehr

m 1 Die Bewegung der drei Kugeln wird beschrieben durch das folgende Differentialgleichungssystem x 1 (t) x 2 (t) x 3 (t) k 12 k 12 k 12 k k 23

m 1 Die Bewegung der drei Kugeln wird beschrieben durch das folgende Differentialgleichungssystem x 1 (t) x 2 (t) x 3 (t) k 12 k 12 k 12 k k 23 Kapitel 5 Eigenwerte 5. Definition und Beispiele Wir sehen uns ein System dreier schwingender Kugeln der Massen m, m und m 3 an, die durch Federn aneinander gekoppelt sein sollen. m k m k 3 m 3 x ( t x

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 26 Einheitswurzeln Definition 26.1. Es sei K ein Körper und n N +. Dann heißen die Nullstellen des Polynoms X n 1 in K die n-ten

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 2 Beispiele für Gruppen Aus der Vorlesung Mathematik I sind schon viele kommutative Gruppen bekannt. Zunächst gibt es die additiven

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrück SS 2015 Elemente der Algebra Vorlesung 1 Der Gruppenbegriff Definition 1.1. Eine Verknüpfung auf einer Menge M ist eine Abbildung : M M M, (x,y) (x,y) = x y. Statt (x,y)

Mehr

1 3. Nullstellen- und Z erfällungskörper von Polynomen

1 3. Nullstellen- und Z erfällungskörper von Polynomen 1. Nullstellen- und Z erfällungskörper von Polynomen Im ganzen apitel ist ein örper. 1. 1. ( Polynome und Polynomring) [ X] der -Vektorraum der Polynome in der Unbestimmten X, mit Basis { X 0, X 1, X,

Mehr

. Dann hat die Gleichung [X 2 ] p k = [a] p k in ( Z/p k Z )

. Dann hat die Gleichung [X 2 ] p k = [a] p k in ( Z/p k Z ) Aufgabe 57 a) Seien p Primzahl, p 2, k N und [a] p k ( Z/p k Z ). Dann hat die Gleichung [X 2 ] p k = [a] p k in ( Z/p k Z ) genau zwei oder gar keine Lösung. Beweis: Sei [x] p k ( Z/p k Z ) eine Lösung

Mehr

Lineare Algebra II, Lösungshinweise Blatt 9

Lineare Algebra II, Lösungshinweise Blatt 9 Prof Dr Katrin Wendland Priv Doz Dr Katrin Leschke Christoph Tinkl SS 27 Lineare Algebra II, Lösungshinweise Blatt 9 Aufgabe (4 Punkte) Sei 2 3 4 A = 5 6 Berechnen Sie A k für alle k N und verifizieren

Mehr

Anzahl der Generatoren

Anzahl der Generatoren Anzahl der Generatoren Satz Anzahl Generatoren eines Körpers Sei K ein Körper mit q Elementen. Dann besitzt K genau φ(q 1) viele Generatoren. Beweis: K ist zyklisch, d.h. K besitzt einen Generator a mit

Mehr

Quadrate und Wurzelziehen modulo p

Quadrate und Wurzelziehen modulo p Quadrate und Wurzelziehen modulo p Sei im Folgenden p eine Primzahl größer als. Wir möchten im Körper Z p Quadratwurzeln ziehen. Die Quadrierabbildung Q :Z p Z p ist aber nicht surjektiv, daher gibt es

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 14: Ferienserie D-MAVT Lineare Algebra I HS 7 Prof. Dr. N. Hungerbühler Lösungen Serie 4: Ferienserie . Finden Sie ein Erzeugendensystem des Lösungsraums L R 5 des Systems x + x x 3 + 3x 4 x 5 = 3x x + 4x 3 x 4 + 5x 5

Mehr

Algebra II, SS 2009 Montag $Id: endlich.tex,v /04/27 13:49:37 hk Exp $ GF(q) := {x A p x q = x}

Algebra II, SS 2009 Montag $Id: endlich.tex,v /04/27 13:49:37 hk Exp $ GF(q) := {x A p x q = x} $Id: endlich.tex,v 1.4 2009/04/27 13:49:37 hk Exp $ 3 Endliche Körper Wir waren gerade mit dem Beweis von Satz 1 beschäftigt, und hatten die Existenzteile des Satzes bereits eingesehen. Satz 3.1 (Klassifikation

Mehr

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr?

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr? Aufgabe 1. (10 Punkte) Bei den folgenden Teilaufgaben ist jeweils genau eine Antwort richtig; diese ist anzukreuzen. Beweise oder Begründungen sind nicht erforderlich. Für jede richtige Antwort erhalten

Mehr

Lineare Schieberegisterfolgen

Lineare Schieberegisterfolgen Lineare Schieberegisterfolgen Sei K ein endlicher Körper. Man nehme zwei Vektoren x 0 a0 x n 1, a n 1 K n n 1 x n := a i x i und betrachte die lineare Abbildung : K n K n, die durch i=0, berechne x 0 x

Mehr

Algebra (Studiengang I+K)

Algebra (Studiengang I+K) Formeln und Notizen Algebra (Studiengang I+K) Florian Franzmann 7. April 2009, 23:50 Uhr Abbildungsverzeichnis Tabellenverzeichnis Inhaltsverzeichnis 1 Grundlegende Definitionen 2 1.1 Morphismen...................................

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 19 Algebraisch abgeschlossene Körper Wir haben zuletzt erwähnt, dass ein lineares Polynom X a über einem Körper stets irreduzibel

Mehr

31 Polynomringe Motivation Definition: Polynomringe

31 Polynomringe Motivation Definition: Polynomringe 31 Polynomringe 31.1 Motivation Polynome spielen eine wichtige Rolle in vielen Berechnungen, einerseits weil oftmals funktionale Zusammenhänge durch Polynome beschrieben werden, andererseits weil Polynome

Mehr

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012 Rechnernetze Übung 6 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?

Mehr

Algebra. (b) Der Beweis funktioniert analog zu Teil (a), nur daß wir in der Argumentation Z durch R und 2 durch c ersetzen müssen.

Algebra. (b) Der Beweis funktioniert analog zu Teil (a), nur daß wir in der Argumentation Z durch R und 2 durch c ersetzen müssen. Fachbereich Mathematik Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 2. Dezember 2008 Algebra 8. Übung mit Lösungshinweisen Aufgabe 36 (a) Zeige, daß Z[X] kein Hauptidealring

Mehr

Lösungen - Serie 1 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie

Lösungen - Serie 1 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Lösungen - Serie 1 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Aufgabe 1: Zeigen Sie die folgenden Identitäten zu Idealen: In Z[ 5] gilt () = (, 1 + 5) (, 1 5) und (1 + 5) = (, 1 + 5)

Mehr

KANN DER VEKTORRAUM R 3 EIN KÖRPER WERDEN? 1. Der Körper Centsprichtdem Vektorraum R 2

KANN DER VEKTORRAUM R 3 EIN KÖRPER WERDEN? 1. Der Körper Centsprichtdem Vektorraum R 2 KANN DER VEKTORRAUM R 3 EIN KÖRPER WERDEN? MARKUS FULMEK 1. Der Körper Centsprichtdem Vektorraum R 2 Die Menge R 2 = { (x, y) : x, y R } bildet mit der komponentenweisen Addition + R 2 R 2 R 2, (x, y)+(a,

Mehr

Klausur zur Einführung in die Algebra, Lösungsvorschlag

Klausur zur Einführung in die Algebra, Lösungsvorschlag Universität Konstanz Christoph Hanselka Fachbereich Mathematik und Statistik Markus Schweighofer 16. März 2015 Wintersemester 2014/2015 Klausur zur Einführung in die Algebra, Lösungsvorschlag Aufgabe 1

Mehr

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2)

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2) Lineare Abbildungen (Teschl/Teschl.3,.2 Eine lineare Abbildung ist eine Abbildung zwischen zwei Vektorräumen, die mit den Vektoroperationen Addition und Multiplikation mit Skalaren verträglich ist. Formal:

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie Prof. Dr. Sebastian Iwanowski DM4 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 4: Zahlentheorie Beutelspacher 5 Lang 7, Biggs 20, 22, 23 (jeweils teilweise,

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte)

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte) Aufgabe 1 (6 Punkte) Einführung in Algebra und Zahlentheorie svorschläge zur Klausur vom 23.09.2016 a) Bestimmen Sie das multiplikativ inverse Element zu 22 in Z/61Z. b) Finden Sie ein x Z mit folgenden

Mehr

Lineare Algebra I Lösungsvorschlag

Lineare Algebra I Lösungsvorschlag Aufgabe Lineare Algebra I Lösungsvorschlag Wir bezeichnen mit a, a 2, a 3 Q 4 die Spalten der Matrix A. Es ist 7 a + 2a 2 = 7 4 = 7a 3, und wir sehen im l A = a, a 2, a 3 = a, a 2. Da die Vektoren a und

Mehr

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich:

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: Lineare Algebra D-MATH, HS 04 Prof. Richard Pink Lösung zu Serie. [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: a) F (X) := X 5 X in R[X] und C[X]. b) F (X) := X 4 +X 3 +X in

Mehr

Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik. Sommersemester 2018

Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik. Sommersemester 2018 Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik Sommersemester 2018 Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper).

Mehr

10 Lineare Gleichungssysteme

10 Lineare Gleichungssysteme ChrNelius : Lineare Algebra I (WS 2004/05) 1 10 Lineare Gleichungssysteme (101) Bezeichnungen: Ein System a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 ( ) a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a

Mehr

1 Potenzen und Polynome

1 Potenzen und Polynome 1 Potenzen und Polynome Für eine reelle Zahl x R und eine natürliche Zahl n N definieren wir x n := x x x... x }{{} n-mal Einschub über die bisher aufgetretenen mathematischen Symbole: Definition mittels

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

4.1. Vektorräume und lineare Abbildungen

4.1. Vektorräume und lineare Abbildungen 4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt

Mehr

Lineare Gleichungen Exkurs: Binomische Formeln Quadratische Gleichungen Exkurs: Polynomdivision Polynomgleichungen

Lineare Gleichungen Exkurs: Binomische Formeln Quadratische Gleichungen Exkurs: Polynomdivision Polynomgleichungen Gleichungen Lineare Gleichungen Exkurs: Binomische Formeln Quadratische Gleichungen Exkurs: Polynomdivision Polynomgleichungen Lineare Gleichungen Lineare Gleichungen ax + b = 0 Lineare Gleichungen ax

Mehr

Konstruierbarkeit des n-ecks

Konstruierbarkeit des n-ecks Proseminar Körpertheorie Vortrag 9 Konstruierbarkeit des n-ecks Dennis Petersen-Endrulat 27.06.2013 Prof. Dr. K. Wingberg, K. Hübner 9.1 2-Gruppen Proposition 9.1.1 Sei konstruierbar. z C konstruierbar

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

Formelsammlung Kanalcodierung

Formelsammlung Kanalcodierung Formelsammlung Kanalcodierung Allgemeines Codewortlänge: N Anzahl der Informationsstellen: K Coderate: R = K/N Hamming-Distanz: D( x i, x j ) = w( x i xj ) Codedistanz: d = min D( x i, x j ); i j Fehlerkorrektur:

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 20 Kultur ist Reichtum an Problemen. Egon Friedell Der Interpolationssatz Satz 20.1. Es sei K ein Körper

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit

Mehr

Kapitel III Ringe und Körper

Kapitel III Ringe und Körper Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem

Mehr

17 Euklidische Ringe und Polynome

17 Euklidische Ringe und Polynome 17 Euklidische Ringe und Polynome Definition 17.1. Sei R ein Integritätsbereich. Eine Abbildung δ : R \{0} N 0 heißt euklidisch falls gilt (E1) a, b R mit b 0: q, r R mit r = 0 oder mit r 0 und δ(r)

Mehr

PROSEMINAR LINEARE ALGEBRA SS10

PROSEMINAR LINEARE ALGEBRA SS10 PROSEMINAR LINEARE ALGEBRA SS10 Körper und Konstruktion mit Zirkel und Lineal Neslihan Yikici Mathematisches Institut der Heinrich-Heine Universität Düsseldorf Juni 2010 Betreuung: Prof. Dr. Oleg Bogopolski

Mehr

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch

Mehr

Übungen p-adische Zahlen

Übungen p-adische Zahlen Blatt 1 Aufgabe 1. Berechnen Sie die ersten fünf Ziffern a 0,..., a 4 der ganzen p- adischen Zahl 1 + p + p 2 = a i p i Z p, p 1 i 0 für die Primzahlen p = 2, 3, 5. Aufgabe 2. Sei a = i 0 a ip i Z p eine

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Kapitel 6 Lineare Gleichungssysteme 6. Gaußalgorithmus Aufgabe 6. : Untersuchen Sie die folgenden linearen Gleichungssysteme mit dem Gaußalgorithmus auf Lösbarkeit und bestimmen Sie jeweils die Lösungsmenge.

Mehr

Unterlagen zu Polynomringen. Erhard Aichinger

Unterlagen zu Polynomringen. Erhard Aichinger Unterlagen zu Polynomringen Erhard Aichinger Linz, im November 2005 Alle Rechte vorbehalten 1 KAPITEL 1 Polynome und Körper 1. Körper DEFINITION 1.1. Ein kommutativer Ring mit Eins R R,,,, 0, 1 ist ein

Mehr

3.4 Erweiterungen von Ringen und Körpern

3.4 Erweiterungen von Ringen und Körpern Algebra I c Rudolf Scharlau, 2002 2010 145 3.4 Erweiterungen von Ringen und Körpern In diesem Abschnitt werden Erweiterungen von Ringen (etwas vereinfacht gesagt: Oberringe), insbesondere Erweiterungen

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 6. Aufgabe 6.1. Dr. V. Gradinaru K. Imeri. Herbstsemester 2018.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 6. Aufgabe 6.1. Dr. V. Gradinaru K. Imeri. Herbstsemester 2018. Dr. V. Gradinaru K. Imeri Herbstsemester 8 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 6 Aufgabe 6. Multiple Choice: Online abzugeben. 6.a) (i) Welche der folgenden

Mehr

Algebra WS 2008/ Übungsblatt

Algebra WS 2008/ Übungsblatt Algebra WS 2008/2009 1. Übungsblatt Konvention. In Aufgabenstellungen getätigte Aussagen sind jeweils zu beweisen, auch wenn kein explizites Zeigen Sie, dass... dabeisteht. 1. Sei (R, +, ) ein Ring, a

Mehr

Lineare Algebra I für Mathematiker Lösungen

Lineare Algebra I für Mathematiker Lösungen Lineare Algebra I für Mathematiker Lösungen Anonymous 24. April 2016 Aufgabe 1 Beantworten Sie bitte die folgenden Fragen. Jeder Vektorraum hat mindestens ein Element. Q ist ein R-Vektorraum (mit der Multiplikation

Mehr

Satz. Wie wirkt sich ein Basiswechsel auf die Darstellungsmatrix einer linearen Abbildung F : V n V n aus?

Satz. Wie wirkt sich ein Basiswechsel auf die Darstellungsmatrix einer linearen Abbildung F : V n V n aus? Wie wirkt sich ein Basiswechsel auf die Darstellungsmatrix einer linearen Abbildung F : V n V n aus? Seien [F] B und [F] B die Darstellungsmatrizen von F bezüglich zweier Basen B und B. Weiter sei T die

Mehr

Lineare Algebra II Lösungen der Klausur

Lineare Algebra II Lösungen der Klausur Prof Dr K Doerk 673 Jens Mandavid Christian Sevenheck Lineare Algebra II Lösungen der Klausur (a Diese Aussage ist richtig, sie stimmt nämlich für k = Sei nämlich n N beliebig und bezeichne N die Menge

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,

Mehr

Algebra. 0 = (f g)(x) = f(x) g(x).

Algebra. 0 = (f g)(x) = f(x) g(x). Fachbereich Mathematik Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 25. November 2008 Algebra 7. Übung mit Lösungshinweisen Aufgabe 31 Sei R ein Integritätsbereich,

Mehr

Satz 142 (Partialbruchzerlegung)

Satz 142 (Partialbruchzerlegung) Satz 142 (Partialbruchzerlegung) Seien f, g K[x] (K = Q, R, C) Polynome mit grad(g) < grad(f), und es gelte f(x) = (x α 1 ) m1 (x α r ) mr mit N m i 1 und paarweise verschiedenen α i K (i = 1,, r) Dann

Mehr

Aufgabenblatt 5: Abgabe am vor der Vorlesung

Aufgabenblatt 5: Abgabe am vor der Vorlesung Aufgabenblatt 5: Abgabe am 15.10.09 vor der Vorlesung Aufgabe 17. In Beispiel 2.24 wurde die abelsche Gruppe (Z/kZ, ) eingeführt und in Definition 2.33 um die Verknüpfung erweitert (in Beispiel 2.25 und

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine Vektorräume (Teschl/Teschl 9 Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen: Eine

Mehr

6. Lösungsblatt

6. Lösungsblatt TECHNISCHE UNIVERSITÄT DARMSTADT FACHGEBIET THEORETISCHE INFORMATIK PROF. JOHANNES BUCHMANN DR. JULIANE KRÄMER Einführung in die Kryptographie WS 205/ 206 6. Lösungsblatt 9..205 Ankündigung Es besteht

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. 29.11.2018 32. Vorlesung Homomorphiesatz für Ringe Chinesischer Restsatz, speziell für Ringe Z n Lösen von t simultanen linearen Kongruenzen Sonderfall t = 2 Anwendungen, z.b. schnelle Addition

Mehr

Galois-Theorie Anfänge

Galois-Theorie Anfänge Galois-Theorie Anfänge Evariste Galois1811-1832 entdeckte als 20-Jähriger, dass mit dem Gleichungsauflösen durch Wurzelterme eine wiederholte Untergruppenbildung einer speziellen Permutationsgruppe der

Mehr

2.7. RINGDIREKTE SUMME, SIMULTANE KONGRUENZEN 89

2.7. RINGDIREKTE SUMME, SIMULTANE KONGRUENZEN 89 2.7. RINGDIREKTE SUMME, SIMULTANE KONGRUENZEN 89 Beweis. 1.) ϕ : Z K : 1 1 definiert einen Homomorphismus. Da Bild ϕ endlich ist, ist Z/ Kern ϕ endlich und man sieht leicht Kern ϕ = pz für eine Primzahl

Mehr

Aufgabe 1. Die ganzen Zahlen Z sind ein R-Vektorraum bezüglich der gewöhnlichen Multiplikation in R.

Aufgabe 1. Die ganzen Zahlen Z sind ein R-Vektorraum bezüglich der gewöhnlichen Multiplikation in R. Aufgabe Die ganzen Zahlen Z sind ein Q-Vektorraum bezüglich der gewöhnlichen Multiplikation in Q. Die reellen Zahlen R sind ein Q-Vektorraum bezüglich der gewöhnlichen Multiplikation in R. Die komplexen

Mehr

Systeme II 3. Die Datensicherungsschicht

Systeme II 3. Die Datensicherungsschicht Systeme II 3. Die Datensicherungsschicht Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Version 12.05.2016 1 Fehlererkennung: CRC Effiziente

Mehr

Variante A. Hinweise

Variante A. Hinweise Lehrstuhl C für Mathematik (Analysis Prof Dr Holger Rauhut Aachen, den 373 Wiederholungsklausur zur Höheren Mathematik I SoSe 3 Variante A Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind

Mehr

6.2. Ringe und Körper

6.2. Ringe und Körper 62 RINGE UND K ÖRPER 62 Ringe und Körper Wir betrachten nun Mengen (endlich oder unendlich) mit zwei Operationen Diese werden meist als Addition und Multiplikation geschrieben Meist ist dabei die additiv

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 13. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 13. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum

Mehr

Kapitel III. Ringerweiterungen

Kapitel III. Ringerweiterungen Inhalt der Vorlesung Algebraische Zahlentheorie Prof. Dr. Arno Fehm, TU Dresden SS2017 Kapitel III. Ringerweiterungen 0 Ringerweiterungen Seien R S Ringe. 0.1 Definition. Für A S bezeichnet R[A] den kleinsten

Mehr

Serie 29. (Zusatzaufgaben ohne Musterlösung) Repetition 2. Semester

Serie 29. (Zusatzaufgaben ohne Musterlösung) Repetition 2. Semester D-MATH Algebra II FS 013 Prof. Richard Pink Serie 9 (Zusatzaufgaben ohne Musterlösung) Repetition. Semester 1. Sei R ein Hauptidealring und sei a R ein Ideal. Zeige, dass jedes Ideal in R/a ein Hauptideal

Mehr

Lineare Algebra I 8. Übungsblatt - Weihnachtszettel - Lösungen

Lineare Algebra I 8. Übungsblatt - Weihnachtszettel - Lösungen Prof. Dr. Duco van Straten Blatt 8 - Lösungen Oliver Labs 8. Dezember 2003 Konrad Möhring Lineare Algebra I 8. Übungsblatt - Weihnachtszettel - Lösungen. Skizzieren Sie die folgenden Teilmengen der GAUSSschen

Mehr

Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1. (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K }

Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1. (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K } Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1 14 Körper (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K } (14.2) BEM: a) Ist K ein Körper, so ist (K

Mehr

Ringe. Kapitel Einheiten

Ringe. Kapitel Einheiten Kapitel 8 Ringe Die zahlreichen Analogien zwischen Matrizenringen und Endomorphismenringen (beides sind zugleich auch Vektorräume) legen es nahe, allgemeinere ringtheoretische Grundlagen bereitzustellen,

Mehr

6 Zyklische Codes. 6.1 Grundbegriffe

6 Zyklische Codes. 6.1 Grundbegriffe 6 Zyklische Codes 6.1 Grundbegriffe Definition. Sei C GF (q) n ein linearer Code, dessen Wörter c C wir c = c n 1 c n 2...c 1 c 0 schreiben. C heißt zyklischer Code, falls gilt c n 1 c n 2...c 1 c 0 C

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch.

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch. Abbildungen Rechnen Matrizen Rechnen Vektoren Äquivalenzrelation Addition: Skalarmultiplikation: Skalarprodukt: Länge eines Vektors: Vektorprodukt (im ): i ii i ii v) gilt (Cauchy-Schwarz-Ungleichung):

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa. Unterraum,

In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa. Unterraum, 2 Vektorräume In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa Unterraum, Linearkombination, lineare Unabhängigkeit und Erzeugendensystem.

Mehr

Quadratische Restcodes

Quadratische Restcodes Quadratische Restcodes Vortrag zum Seminar Gitter und Codes Paul Rohrbach 18.05.2015 Einleitung Dieser Vortrag behandelt verschiedene Konstruktionen von Codes und deren Eigenschaften. Die Grundkonstruktion

Mehr

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt.

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt. Polynome Definition 1. Ein Polynom f über einem Körper K mit der Unbestimmten x ist eine formale Summe f(x) = i 0 a i x i, (1) wobei nur endlich viele der Koeffizienten a i K von Null verschieden sind.

Mehr

(R4) Addition und Multiplikation erfüllen das Distributivgesetz a (b + c) = ab + ac und. Endomorphismenring d) K Körper, n N, R = K n n Matrizenring

(R4) Addition und Multiplikation erfüllen das Distributivgesetz a (b + c) = ab + ac und. Endomorphismenring d) K Körper, n N, R = K n n Matrizenring 5 Polynome 5.1 Ringe Definition 5.1.1. Eine Menge R zusammen mit zwei inversen Verknüpfungen (+ : R R R Addition, : R R R Multiplikation heißt Ring, wenn folgende Bedingungen gelten: Ring (R1 (R, + abelsche

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

1.1 Denition und Eigenschaften von Polynomen. k=0 b kx k Polynome. Dann ist. n+m. c k x k, c k = k=0. f(x) + g(x) := (a k + b k )x k. k=0.

1.1 Denition und Eigenschaften von Polynomen. k=0 b kx k Polynome. Dann ist. n+m. c k x k, c k = k=0. f(x) + g(x) := (a k + b k )x k. k=0. 1 Polynome I 1.1 Denition und Eigenschaften von Polynomen Denition: Ein Polynom über einem Körper K ist ein Ausdruck der Form a 0 + a 1 x + a 2 x 2 +... + a n x n = a k x k mit a i K. Ist a n 0, so heiÿt

Mehr

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Arbeitsblatt 19 Die Pausenaufgabe Aufgabe 19.1. Sei K ein Körper und sei K[X] der Polynomring über K. Wie lautet

Mehr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr TUM Ferienkurs Lineare Algebra WiSe 8/9 Dipl.-Math. Konrad Waldherr Musterlösung Relationen Aufgabe Auf R sei die Relation σ gegeben durch (a, b)σ(c, d) : a + b c + d. Ist σ reflexiv, symmetrisch, transitiv,

Mehr

13 Polynome. p(x) = p i x i,

13 Polynome. p(x) = p i x i, 13 Polynome Polynome und Polynomfunktionen In Beispiel 1.5.29 sowie Beispiel 5.4 haben wir bereits Polynome eingeführt. In diesem Kapitel wollen wir diese wichtige algebraische Struktur genauer untersuchen.

Mehr

c i α i = t(α) q = 0 q = 0 c q i (αi ) q = (X α qi ) = j=0 Da das Potenzieren mit q ein Ringhomomorphismus ist, ergibt sich l 2

c i α i = t(α) q = 0 q = 0 c q i (αi ) q = (X α qi ) = j=0 Da das Potenzieren mit q ein Ringhomomorphismus ist, ergibt sich l 2 Ergänzend zur Übung vom 8.6.006 anbei eine vollständige Lösung zur Aufgabe 3 vom Übungsblatt 10: Wir werden von folgendem Satz gebrauch machen, welchen wir zunächst beweisen, obwohl ich davon ausgehe,

Mehr

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln $Id: integral.tex,v.5 2009/05/05 4:57:29 hk Exp hk $ 2 Integralrechnung 2.3 Die Integrationsregeln Wir wollen noch eine letzte kleine Anmerkung zur Substitutionsregel machen. Der letzte Schritt bei der

Mehr

Übung zur Vorlesung Diskrete Strukturen I

Übung zur Vorlesung Diskrete Strukturen I Technische Universität München WS 2002/03 Institut für Informatik Aufgabenblatt 8 Prof. Dr. J. Csirik 2. Dezember 2002 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen

Mehr

Algebra II, SS 2009 Mittwoch [L : K] := dim K L.

Algebra II, SS 2009 Mittwoch [L : K] := dim K L. $Id: wh.tex,v 1.2 2009/04/15 14:24:38 hk Exp $ 1 Wiederholung Zur Einstimmung wollen wir uns noch einmal an die Theorie der Körpererweiterungen erinnern, und bei dieser Gelegenheit auch gleich die in diesem

Mehr

11. Übung zur Vorlesung. Zahlentheorie. im Wintersemester 2015/16

11. Übung zur Vorlesung. Zahlentheorie. im Wintersemester 2015/16 11. Übung zur Vorlesung Aufgabe 41. Zeige, dass das Polynom (X 2 13)(X 2 17)(X 2 13 17) Z[X] modulo jeder natürlichen Zahl n N eine Nullstelle hat, aber keine Nullstelle in Z besitzt. Aufgabe 42. Sei p

Mehr