Aufgabe Summe Note Punkte

Größe: px
Ab Seite anzeigen:

Download "Aufgabe Summe Note Punkte"

Transkript

1 Fachhochschule Südwestfalen - Meschede Prof. Dr. Henrik Schulze Klausur Ingenieurmathematik am. September 5 (mit Lösungen) Name Matr.-Nr. Vorname Unterschrift Aufgabe Summe Note Punkte Die Klausur umfasst 7 Aufgaben. Insgesamt sind Punkte erreichbar. Die Bearbeitungszeit beträgt 9 Minuten. Erlaubtes Hilfsmittel (neben Schreib- und Zeichengerät): Ein Formelblatt DIN A (beidseitig beschrieben). Ausdrücklich verboten sind Taschenrechner. Eingeschaltete Kommunikationsgeräte (z.b. Mobiltelefone) müssen als Täuschungsversuch gewertet werden. Verwenden Sie bitte ausschließlich das bereit gestellte Papier. Die Rechenschritte müssen nachvollziehbar sein. Ungültige Teile streichen Sie bitte durch! Vereinfachen Sie die Ergebnisse so weit wie möglich!

2 Aufgaben Aufgabe Gegeben sind der Vektor v = (a) Welchen Winkel schließen die beiden Vektoren ein? (b) Wie groß ist die Kraftkomponente F parallel zu v? (c) Wie groß ist die Kraftkomponente F senkrecht zu v? und der Kraftvektor F =. Lösung zu Aufgabe Skalarprodukt und Beträge: F v = 3, F =, v = (a) Winkel: F v = Fvcosϕ 3 = cosϕ = cosϕ ϕ = (b) F : 8 F F = v v v = 3 = (c) F : F = F F = / / = 3/ 3/

3 Aufgabe Eine Ebene geht durch die Punkte A = (; 3; ), B = (3;;) und C = (; ;). (a) Stellen Sie die Ebenengleichung auf. Ortsvektoren der 3 Punkte: Richtungsvektoren: a = Ebenengleichung in Richtungform: 3 u = b a =, b = 3 r(λ,µ) = a+λ u+µ v =, c =, v = c a = 3 +λ +µ (b) Wie groß ist der Abstand der Ebene zum Ursprung? Ermittle einen Normalenvektor durch Kreuzprodukt und wähle Normalenform der Ebene: u v = n = 8 u v = n r n a = also 8. x y z = Dividiere die Gleichung durch n = 3 und erhalte mit ˆ n = 3 die Hessesche Normalenform ˆ n r d = als 3 x y z =. Daraus liest man ab d = (c) Wie groß ist der Abstand der Ebene zum Punkt P = (; 3; 3)? Ortsvektor p = 3 = 3 3 = ˆ n p d = 3 3 = 3

4 Aufgabe 3 Berechnung komplexer Ausdrücke: (a) (b) Berechnen Sie den folgenden komplexen Ausdruck und geben Sie das Ergebnis in kartesischer Darstellung an: (( ) 3 ) j 3 z = 3+j + (+j) (3+j) 8+j Berechnen Sie für die folgenden komplexen Ausdrückez das Betragsquadrat z und vereinfachen Sie das Ergebnis so weit wie möglich. z = j 3j (+7j), z = e j5 + e j Lösung zu Aufgabe 3 (a) (( ) 3 ) j 3 z = 3+j + (+j) (3+j) 8+j (( ) e j 3 ( ) e j5 (3+j) ) = = ( 8 (3+j)) z = 8 j (b-) z = j 3j (+7j) z = 5 = 5 (b-) z = e j5 + e j ( z = e j5 + e j ) (e j5 + e j ) = ++ (e j5 +e j5 ) = 3+ cos5 = 3+ z = 5

5 Aufgabe Bestimmen Sie alle komplexen Lösungen z der folgenden Gleichungen und geben Sie das Ergebnis in kartesischer Form an. (a) (b) d.h. Die Lösungen für lauten: Die andere Lösung ist z z +8 = z z ++ = (z ) = z, = ±j z +8z = (z 3 +8)z = z 3 = 8 oder z = z 3 = 8 = 3 e j8 z = e j = +j 3 z = e j8 = z = e j3 = j 3 z 3 =

6 Aufgabe 5 Gegeben ist die Matrix A = (a) Berechnen Sie die Spur und die Determinante der Matrix. Was folgt daraus für die Eigenwerte? Welche Eigenschaft der Eigenvektoren ergibt sich aus der Struktur der Matrix? Es gilt: tr(a) = λ +λ +λ 3 = det(a) = 3 λ λ λ 3 = 3 Die Matrix ist symmetrisch die Eigenvektoren sind orthogonal zu einander. (b) Berechnen Sie die Eigenwerte und Eigenvektoren der Matrix A und vergleichen Sie mit den Erwartungen aus (a). Eigenwertgleichung: Charakteristische Gleichung: λ λ λ x x x 3 = ( λ)( ( λ)(+λ)) ( λ) = ( λ) ( λ 3 ) = Daraus ergeben sich die Eigenwerte: λ = λ = 3 λ 3 = 3. Offenbar sind die Bedingungen λ +λ +λ 3 = und λ λ λ 3 = 3 aus (a) erfüllt. Der Eigenvektor zu λ = ergibt sich aus Gleichungssystem: Also gilt x 3 = und x = x. Eigenvektor: x 3 = x 3 = x +x x 3 = x (α) = α Der Eigenvektor zu λ = 3 ergibt sich aus Gleichungssystem: ( 3)x +x 3 = ( 3)x +x 3 = x +x +(+ 3)x 3 = Aus den ersten beiden Gleichungen folgt x = x und x 3 = ( 3)x (die dritte Gleichung liefert nichts Anderes). Eigenvektor: x (β) = β 3 Man prüft zur Probe die wegen (a) erwartete Orthogonalität: x x =. Der Eigenvektor zu λ = 3 ergibt sich aus Gleichungssystem: (+ 3)x +x 3 = (+ 3)x +x 3 = x +x +( 3)x 3 = Aus den ersten beiden Gleichungen folgt x = x und x 3 = ( 3 + )x (die dritte Gleichung liefert nichts Anderes). Eigenvektor: x 3 (γ) = γ ( 3+) Man prüft zur Probe die wegen (a) erwartete Orthogonalität: x x 3 =, x x =.

7 Aufgabe Gegeben sind Matrix A und Vektor b: A = , b = (a) Wie lautet die Lösungsmenge des Gleichungssystems Ax = b? Wir wenden das Gaußsche Eliminationsverfahren an Die letzten 3 Gleichungen sind äquivalent zu: Es gibt also freie Parameter. Setze und erhalte daraus Einsetzen in die erste Gleichung führt auf ( ) 3 ( 3 ( )) 3 ( ( )) 7 5 ( ( )) x x 3 +x = x = λ und x 3 = µ x = λ µ. x = λ µ. Die Lösungsmenge ist also gegeben durch x(λ,µ) = +λ +µ 8 (b) Ist die Matrix A regulär oder singulär? Bitte begründen Sie die Antwort (möglichst einfach)! Es gibt keine eindeutige Lösung des Gleichungssystems die inverse Matrix existiert nicht die Matrix ist singulär. (c) Wie groß ist der Rang der Matrix A? Bitte begründen Sie die Antwort (möglichst einfach)! Es gilt rank(a) =. Die ersten beiden Spaltenvektoren der Matrix sind linear unabhängig, und die anderen beiden sind Linearkombinationen der ersten beiden. Man erkennt das auch nach dem letzten Schritt beim Gaußschen Eliminationsverfahren: Man sieht sofort, dass es nur zwei linear unabhängige Zeilenvektoren gibt.

8 Aufgabe 7 Eine reelle Funktion f ist gegeben durch die Abbildungsvorschrift f(x) = x x+ (x) +. (a) Geben Sie den größtmöglichen Definitionsbereich D an! Besitzt die Funktion Polstellen oder Nullstellen? Wenn ja, wo? Der Nenner kann nicht null werden, also ist die Funktion auf D = R definiert, und es gibt keine Polstelle. Wegen f(x) = (x) (x) + (binomische Formel) gibt es eine Nullstelle bei x =. (b) Wie lautet das asymptotische Verhalten für x ±, d.h. Schreibe lim f(x)? x ± f(x) = x x+ x x+ = x x /x+/x /x+/x = /x+/x /x+/x für x ± (c) Wie lautet der (kleinste) Wertebereich W? Skizzieren Sie den Graphen der Funktion. Aus f(x) = (x) (x) + oder auch f(x) = (x) + folgt f(x) <. Die Funktion ist außerdem stetig und nicht-negativ und besitzt eine Nullstelle. Daraus folgt W = [, ). Mit diesen Informationen kann man die Funktion zeichnen: f(x) x (Die strenge Monotonie links und rechts der Nullstelle folgt man aus dem letzteren Ausdruck für f(x). Hier geht es aber nicht primär um die saubere mathematische Begründung, sondern vor allem um die Vorstellung über den Verlauf der Funktion.)

Aufgabe Summe Note Punkte

Aufgabe Summe Note Punkte Fachhochschule Südwestfalen - Meschede Prof. Dr. Henrik Schulze Klausur Ingenieurmathematik am 9. März 7 - Musterlösung Name Matr.-Nr. Vorname Unterschrift Aufgabe 4 5 6 7 Summe Note Punkte Die Klausur

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Klausur DI/LA F 2006 LA : 1

Klausur DI/LA F 2006 LA : 1 Klausur DI/LA F 26 LA : Aufgabe (4+2=6 Punkte): Gegeben seien die Matrix A und der Vektor b mit λ A = λ und b = λ a) Bestimmen Sie die Werte λ R, für welche das Gleichungssystem Ax = b genau eine, keine

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 28/29 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden

Mehr

KLAUSUR. Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.:

KLAUSUR. Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: KLAUSUR Lineare Algebra (E-Techniker/Mechatroniker/W-Ingenieure/Informatiker).3. (W. Koepf) Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: Für jede Aufgabe gibt es Punkte. Zum Bestehen der Klausur

Mehr

Aufgabe Summe Note Punkte

Aufgabe Summe Note Punkte Fachhochschule Südwestfalen FB IW - Meschede Ingenieurmathematik (MB 0.09.018 Klausur Ingenieurmathematik - Lösungen Name Matr.-Nr. Vorname Unterschrift Aufgabe 1 3 4 5 6 7 8 Summe Note Punkte Die Klausur

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Klausur zum Grundkurs Höhere Mathematik I

Klausur zum Grundkurs Höhere Mathematik I Name, Vorname: Studiengang: Matrikelnummer: 2 4 5 6 Z Punkte Note Klausur zum Grundkurs Höhere Mathematik I für BNC, GtB, MB, EC, TeM, VT, KGB, WWT, ESM, FWK, BGi, WiW 22. Februar 2007, 8.00 -.00 Uhr Zugelassene

Mehr

4. Übungsblatt zur Mathematik I für Maschinenbau

4. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 4. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-7.. Aufgabe G (Geraden im R ) Bestimmen

Mehr

Diplomvorprüfung LA H 06 VD : 1

Diplomvorprüfung LA H 06 VD : 1 Diplomvorprüfung LA H 6 VD : Aufgabe : (3 + + = 6 Punkte) Gegeben sei die Matrix A = a) Bestimmen Sie die Eigenwerte von A b) Bestimmen Sie alle Eigenvektoren der Matrix A c) Ist die Matrix A invertierbar?

Mehr

Mathematik I für MB/ME

Mathematik I für MB/ME Mathematik I für MB/ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 25/26 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik I Wiederholung Mathematik für Bauingenieure Wiederholungsaufgaben: Mathematik I Aufgabe : Für die Aussagenverbindung T = (A B) ( A) gebe man

Mehr

Übungsblatt

Übungsblatt Übungsblatt 3 3.5.27 ) Die folgenden vier Matrizen bilden eine Darstellung der Gruppe C 4 : E =, A =, B =, C = Zeigen Sie einige Gruppeneigenschaften: a) Abgeschlossenheit: Berechnen Sie alle möglichen

Mehr

Variante A. Hinweise

Variante A. Hinweise Lehrstuhl C für Mathematik (Analysis Prof Dr Holger Rauhut Aachen, den 373 Wiederholungsklausur zur Höheren Mathematik I SoSe 3 Variante A Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind

Mehr

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Winter 6 Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT. Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende

Mehr

Lösungshinweise zur Klausur

Lösungshinweise zur Klausur Höhere Mathematik 1 und 4..14 Lösungshinweise zur Klausur für Studierende der Fachrichtungen el, kyb,mecha,phys Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind.

Mehr

Abitur 2016 Mathematik Geometrie V

Abitur 2016 Mathematik Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik Geometrie V Betrachtet wird der abgebildete Würfel A B C D E F G H. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen

Mehr

Mathematik für Wirtschaftswissenschaftler I (Lineare Algebra) 2. Klausur Wintersemester 2011/

Mathematik für Wirtschaftswissenschaftler I (Lineare Algebra) 2. Klausur Wintersemester 2011/ Mathematik für Wirtschaftswissenschaftler I (Lineare Algebra) 2. Klausur Wintersemester 2011/2012 21.03.2012 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN. Nachname:...................................................................

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel/Sändig 06. 09. 0 Klausur zur Höheren Mathematik / für Ingenieurstudiengänge Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 40 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhändig

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016 Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016 Bearbeiten Sie bitte zwei

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

Teil II. Geometrie 19

Teil II. Geometrie 19 Teil II. Geometrie 9 5. Dreidimensionales Koordinatensystem Im dreidimensionalen Koordinatensystem gibt es acht Oktanten, oben I bis VI und unten VI bis VIII. Die Koordinatenachsen,x 2 und stehen jeweils

Mehr

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Mathematik für Informatiker und Softwaretechniker

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Mathematik für Informatiker und Softwaretechniker Apl. Prof. Dr. W.-P. Düll Fachbereich Mathematik Universität Stuttgart Klausur für Studierende der Fachrichtungen inf, swt Bitte unbedingt beachten: Bitte beschriften Sie jeden Ihrer Zettel mit Namen und

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 05/06 Prof. Dr. Michael Scheutzow 20. Februar 2006

Technische Universität Berlin Fakultät II Institut für Mathematik WS 05/06 Prof. Dr. Michael Scheutzow 20. Februar 2006 Technische Universität Berlin Fakultät II Institut für Mathematik WS 5/6 Prof. Dr. Michael Scheutzow 2. Februar 26 Februar Klausur Lineare Algebra I Name:.............................. Vorname:..............................

Mehr

MATHEMATIK I für Bauingenieure (Fernstudium)

MATHEMATIK I für Bauingenieure (Fernstudium) TU DRESDEN Dresden, 2. Februar 2004 Fachrichtung Mathematik / Institut für Analysis Doz.Dr.rer.nat.habil. N. Koksch Prüfungs-Klausur MATHEMATIK I für Bauingenieure (Fernstudium) Name: Vorname: Matrikel-Nr.:

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

Fachhochschule München Fachbereich 03 FA WS 2006/07. Diplomvorprüfung in Mathematik I (Lineare Algebra) Fahrzeugtechnik

Fachhochschule München Fachbereich 03 FA WS 2006/07. Diplomvorprüfung in Mathematik I (Lineare Algebra) Fahrzeugtechnik 1 Fachhochschule München Fachbereich 03 FA WS 006/07 Diplomvorprüfung in Mathematik I (Lineare Algebra) Fahrzeugtechnik Arbeitszeit: Hilfsmittel: Aufgabensteller: 90 Minuten Formelsammlung, Skripten, Bücher,

Mehr

Vorkurs Mathematik. Vektoren, lineare Gleichungssysteme und Matrizen

Vorkurs Mathematik. Vektoren, lineare Gleichungssysteme und Matrizen Dorfmeister, Boiger, Langwallner, Pfister, Schmid, Wurtz Vorkurs Mathematik TU München WS / Blatt Vektoren, lineare Gleichungssysteme und Matrizen. In einem kartesischen Koordinatensystem des R sei eine

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG Winter 2013 Prof. H.-R. Künsch. Regeln Multiple Choice:

Lineare Algebra und Numerische Mathematik D-BAUG Winter 2013 Prof. H.-R. Künsch. Regeln Multiple Choice: b Prüfung Lineare Algebra und Numerische Mathematik D-BAUG Winter 03 Prof. H.-R. Künsch c Alle Aufgaben haben das gleiche Gewicht. Die Lösungswege müssen, abgesehen von Aufgabe, nachvollziehbar dargestellt

Mehr

Lösungen der Aufgaben zu Kapitel 11

Lösungen der Aufgaben zu Kapitel 11 Lösungen der Aufgaben zu Kapitel Vorbemerkung: Zur Bestimmung der Eigenwerte (bzw. des charakteristischen Polynoms) einer (, )-Matrix verwenden wir stets die Regel von Sarrus (Satz..) und zur Bestimmung

Mehr

Modulprüfung Mathematik I Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik, Wirtschaftsinformatik WS 2013/

Modulprüfung Mathematik I Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik, Wirtschaftsinformatik WS 2013/ Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Michael Höding Modulprüfung Mathematik I Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik,

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016 Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 206 Bearbeiten Sie bitte

Mehr

Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 2016/

Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 2016/ Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 206/207 20.03.207 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler. (a) Bestimmen Sie die kartesische Form von Wintersemester 7/8 (..8) z = ( + i)( i) + ( + i). (b) Bestimmen Sie sämtliche komplexen Lösungen

Mehr

Gemischte Aufgaben zur Klausurvorbereitung

Gemischte Aufgaben zur Klausurvorbereitung Gunter Ochs Wintersemester / Gemischte Aufgaben zur Klausurvorbereitung Lösungshinweise (ohne Galantie auf Fehreleiheit. Gegeben sei eine Tabelle, die bestimmten Buchstaben Zahlen von bis zuordnet. Buchstabe

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total 3 4 5 6 -

Mehr

WS 2012/2013. Hinweise

WS 2012/2013. Hinweise Lehrstuhl C für Mathematik (Analysis Prof. Dr. Y. Guo Aachen, den.. Trainingsklausur zur Höheren Mathematik I WS / Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche Aufzeichnungen

Mehr

Matrikel- Nummer: Aufgabe Summe Punkte /1 /3 /4 /3 /9 /7 /2 /2 /31

Matrikel- Nummer: Aufgabe Summe Punkte /1 /3 /4 /3 /9 /7 /2 /2 /31 Scheinklausur Höhere Mathematik 0 0 0 Name, Vorname: Nummer: Matrikel- Studiengang: Aufgabe 4 5 6 7 8 Summe Punkte / / /4 / /9 /7 / / / Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 90 Minuten

Mehr

Gruppe II Lineare Algebra

Gruppe II Lineare Algebra Pflichtbereichs Klausur in der Lehrerweiterbildung am 7.Juni 22 Bearbeiten Sie 3 der folgenden 6 Aufgaben, dabei aus jeder der beiden Gruppen (Lineare Algebra und Analysis) mindestens eine Aufgabe! Zur

Mehr

Prüfungsteil B, Aufgabengruppe 1, Geometrie. Bayern Aufgabe 1. a b. Bundesabitur Mathematik: Musterlösung. Abitur Mathematik Bayern 2014

Prüfungsteil B, Aufgabengruppe 1, Geometrie. Bayern Aufgabe 1. a b. Bundesabitur Mathematik: Musterlösung. Abitur Mathematik Bayern 2014 Abitur Mathematik Bayern Prüfungsteil B; Aufgabengruppe : Bundesabitur Mathematik: Prüfungsteil B, Aufgabengruppe, Bayern Aufgabe a) SCHRITT: BERECHNUNG DER VEKTOREN AB UND AC Den Flächeninhalt eines Dreiecks

Mehr

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif 14 Oktober 2008 1 Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof Dr Ulrich Reif Inhalt: 1 Vektorrechnung 2 Lineare Gleichungssysteme 3 Matrizenrechnung 4 Lineare Abbildungen 5 Eigenwerte

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK Sommersemester 006 Zahl der Blätter: 5 Blatt 1 s. unten Hilfsmittel: Literatur, Manuskript, keine Taschenrechner und sonstige elektronische Rechner Zeit:

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Übungsaufgaben Aufgaben zur Wiederholung Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 06/07 a) Stellen Sie die Gleichung a b 3+c = a +c, a, b > 0, nach

Mehr

Kapitel 5 : Eigenwerte und Eigenvektoren

Kapitel 5 : Eigenwerte und Eigenvektoren Kapitel 5 : Eigenwerte und Eigenvektoren 5.1 Definition und allgemeine Eigenschaften Definition 5.1 Sei A eine quadratische (n n)-matrix. λ C heißt Eigenwert von A, wenn ein Vektor x C n mit x 0 existiert,

Mehr

Klausur zur Höheren Mathematik I (ET/IT/AI/IKT/P/MP) WS 2016/

Klausur zur Höheren Mathematik I (ET/IT/AI/IKT/P/MP) WS 2016/ Dr. P. Furlan Dr. J. Horst Fakultät Mathematik Technische Universität Dortmund Klausur zur Höheren Mathematik I (ET/IT/AI/IKT/P/MP) WS 06/7 6.0.07 Es sind insgesamt 50 Punkte erreichbar. Bei mindestens

Mehr

Abitur 2010 Mathematik LK Geometrie V

Abitur 2010 Mathematik LK Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik LK Geometrie V Gegeben sind in einem kartesischen Koordinatensystem des R der Punkt A( ) und die Menge der Punkte B k ( k) mit k R. Die Punkte

Mehr

Richie Gottschalk Lineare Algebra I Seite 1. a) Welche der folgenden Ringe sind kommutativ? Es gibt genau einen Unterraum W von V mit dim(w ) = n.

Richie Gottschalk Lineare Algebra I Seite 1. a) Welche der folgenden Ringe sind kommutativ? Es gibt genau einen Unterraum W von V mit dim(w ) = n. Richie Gottschalk Lineare Algebra I Seite Aufgabe Im Folgenden sind K immer ein Körper und V ein K-Vektorraum. a) Welche der folgenden Ringe sind kommutativ? K[x] K[x] ist per se ein kommutativer Polynomring.

Mehr

Matrikel- Nummer: Aufgabe Summe Punkte /1 /3 /3 /3 /7 /5 /3 /3 /3 /31

Matrikel- Nummer: Aufgabe Summe Punkte /1 /3 /3 /3 /7 /5 /3 /3 /3 /31 Scheinklausur Höhere Mathematik Musterlösung 8.. 00, Version Name, Vorname: Nummer: Matrikel- Studiengang: Aufgabe 4 5 6 7 8 9 Summe Punkte / / / / /7 /5 / / / / Bitte beachten Sie die folgenden Hinweise:

Mehr

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker TECHNISCHE UNIVERSITÄT BERLIN SS 200 Fachbereich 3 - Mathematik Pohst / Lusala Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker Name:................................................................................

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)

Mehr

Abitur 2017 Mathematik Geometrie VI

Abitur 2017 Mathematik Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur 7 Mathematik Geometrie VI Gegeben sind die beiden bezüglich der x x 3 -Ebene symmetrisch liegenden Punkte A( 3 ) und B( 3 ) sowie der Punkt C( ). Teilaufgabe

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

Lehrstuhl II für Mathematik. Bachelor-Prüfung/Diplom-Vorprüfung/Zwischenprüfung. Höhere Mathematik I

Lehrstuhl II für Mathematik. Bachelor-Prüfung/Diplom-Vorprüfung/Zwischenprüfung. Höhere Mathematik I RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN Lehrstuhl II für Mathematik Bachelor-Prüfung/Diplom-Vorprüfung/Zwischenprüfung Höhere Mathematik I Prüfer: Prof. Dr. E. Triesch Termin: 5..8 Fachrichtung:..................

Mehr

9. Übungsblatt zur Mathematik I für Maschinenbau

9. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 9. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-4.. Aufgabe G (Koordinatentransformation)

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 25/6 Bearbeiten Sie bitte

Mehr

Klausur zur Digitalen Kommunikationstechnik

Klausur zur Digitalen Kommunikationstechnik Klausur zur Digitalen Kommunikationstechnik Prof. Dr. Henrik Schulze, Fachhochschule Südwestfalen, Standort Meschede 16. Januar 2015 Name Matr.-Nr. Vorname Unterschrift Aufgabe 1 2 3 4 Summe Note Punkte

Mehr

12 Übungen zu Gauß-Algorithmus

12 Übungen zu Gauß-Algorithmus Aufgaben zum Vorkurs B S. 2 Übungen zu Gauß-Algorithmus 2x x 2 = 7x +, 5x 2 = 7 Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: 2x x 2 = x +2x 2 = 2 2x x 2 = 7x +, 5x 2 =, 5 x 2x 2 = x +x 2 = 5 2x +x 2 = 4

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Vorkurs Mathematik Übungen zu linearen Gleichungssystemen

Vorkurs Mathematik Übungen zu linearen Gleichungssystemen Vorkurs Mathematik Übungen zu linearen Gleichungssystemen Lineare Gleichungssysteme lösen Aufgabe. Lösen sie jeweils das LGS A x = b mit ( ( a A =, b = b A =, b = 6 Aufgabe. Berechnen Sie für die folgenden

Mehr

Klausur HM I H 2005 HM I : 1

Klausur HM I H 2005 HM I : 1 Klausur HM I H 5 HM I : 1 Aufgabe 1 4 Punkte): Zeigen Sie mit Hilfe der vollständigen Induktion: n 1 1 + 1 ) k nn k n! für n. Lösung: Beweis mittels Induktion nach n: Induktionsanfang: n : 1 ) 1 + 1 k

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1.

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1. b Musterlösung Lineare Algebra und Numerische Mathematik D-BAUG. Multiple Choice) Gegeben sei die folgende Matrix Winter 3 Prof. H.-R. Künsch A = a a) deta) = genau dann wenn gilt x a =. a =. ), a R. x

Mehr

Algebra 2.

Algebra 2. Algebra 2 www.schulmathe.npage.de Aufgaben 1. In einem kartesischen Koordinatensystem sind die Punkte A(10 0 0), B(0 4 0) und C(0 0 6) sowie die Ebenenschar E t : 3y + tz 3t = 0 (t R) gegeben. Die Punkte

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. W. Farkas ETH Zürich, Februar 2018 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total

Mehr

Aufgabe Summe Note Punkte

Aufgabe Summe Note Punkte Fachhochschule Südwestfalen - Meschede Prof. Dr. Henrik Schulze Klausur: Grundlagen der Elektrotechnik am 5. Juli 03 Name Matr.-Nr. Vorname Unterschrift Aufgabe 3 4 Summe Note Punkte Die Klausur umfasst

Mehr

Modulprüfung Hm 1 & Hm 2

Modulprüfung Hm 1 & Hm 2 Seite von 9 Modulprüfung Hm & Hm Hinweise: - Es gibt 9 Aufgaben. Die jeweilige Punktzahl ist angegeben. - Die Maximalpunktzahl ist 56. Zum Bestehen der Klausur sind 4 Punkte hinreichend. - Die Bearbeitungszeit

Mehr

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1 2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

Mathematik für Sicherheitsingenieure I A

Mathematik für Sicherheitsingenieure I A Prof. Dr. J. Ruppenthal Wuppertal, 3.8.8 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I A Aufgabe. (5+5+5+5 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH ist.

Mehr

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x).

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x). Stroppel/Sändig Musterlösung 8. 3., min Aufgabe 5 Punkte Beweisen Sie für alle x R {zπ z Z} die Formel für n N mit Hilfe der vollständigen Induktion. cosxcosxcosx cos n x = sinn+ x n+ sinx Dabei dürfen

Mehr

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker

Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker TECHNISCHE UNIVERSITÄT BERLIN WS 2/2 Fachbereich 3 - Mathematik Seiler / Rambau Prüfungs-/Übungsschein-Klausur (Rechenteil Lineare Algebra für Ingenieure/E-Techniker Name:................................................................................

Mehr

Höhere Mathematik I HM I A. WiSe 2014/15. Variante A

Höhere Mathematik I HM I A. WiSe 2014/15. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I WiSe 4/ Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Münchner Volkshochschule. Planung. Tag 08

Münchner Volkshochschule. Planung. Tag 08 Planung Tag 08 Prof.Dr. Nils Mahnke Mathematischer Vorkurs Folie: 181 Vektoren Analytische Darstellung: Jedem Punkt im Raum kann ein Ortsvektor zugeordnet werden. P: (6; 5) R 2 P(6; 5) a = OP = 6 5 a Vektoren

Mehr

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen a) Es ist < x, y > α + + β β ( + α) und y α + + β α + + ( + α) (α + α + ) 6 α + α, also α, ± 5 + ± 9 4 ± 3 Es gibt also Lösungen: α, β

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

fj 2 = f n f n+1. fj 2 = 0 2 = 0 = 0 1 = f 0 f 1. f 2 j = f n f n+1 +fn+1 = (f n +f n+1 )f n+1 = f n+2 f n+1 = f n+1 f (n+1)+1.

fj 2 = f n f n+1. fj 2 = 0 2 = 0 = 0 1 = f 0 f 1. f 2 j = f n f n+1 +fn+1 = (f n +f n+1 )f n+1 = f n+2 f n+1 = f n+1 f (n+1)+1. Stroppel Musterlösung 4..4, 8min Aufgabe 3 Punkte) Sei f n ) n N die Fibonacci-Folge, die durch f :=, f := und f n+ := f n +f n definiert ist. Beweisen Sie durch vollständige Induktion, dass für alle n

Mehr

Wiederholungs-Modulprüfung: zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 1.Klausur

Wiederholungs-Modulprüfung: zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 1.Klausur Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Wiederholungs-Modulprüfung: zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 1.Klausur Bearbeiten

Mehr

Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik

Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik (Aufgaben aus Klausuren). Bestimmen und skizzieren Sie in der Gaußschen Zahlenebene

Mehr

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Höhere Mathematik Teil

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Höhere Mathematik Teil Prof. Dr. Guido Schneider Fachbereich Mathematik Universität Stuttgart Klausur für Studierende der Fachrichtungen el, kyb, mecha, phys, tpel Bitte unbedingt beachten: Bitte beschriften Sie jeden Ihrer

Mehr

Höhere Mathematik I. Variante A

Höhere Mathematik I. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I WiSe 4/5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Aufgabe Summe Note Punkte

Aufgabe Summe Note Punkte Fachhochschule Südwestfalen - Meschede Prof. Dr. Henrik Schulze Klausur: Grundlagen der Elektrotechnik am 4. Juli 04 Name Matr.-Nr. Vorname Unterschrift Aufgabe 3 4 Summe Note Punkte Die Klausur umfasst

Mehr

Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 2017/

Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 2017/ Mathematik für Betriebswirte I (Lineare Algebra) 2. Klausur Wintersemester 2017/2018 1.03.2018 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

Abitur 2010 Mathematik GK Geometrie VI

Abitur 2010 Mathematik GK Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur Mathematik GK Geometrie VI In einem kartesischen Koordinatensystem mit Ursprung O sind die Punkte A( ), B( ) und die Gerade g : x = O A + λ, λ R, gegeben.

Mehr

Nachklausur (Modulprüfung) zum Lehrerweiterbildungskurs 6 Lineare Algebra/Analytische Geometrie I WiSe 2016/17

Nachklausur (Modulprüfung) zum Lehrerweiterbildungskurs 6 Lineare Algebra/Analytische Geometrie I WiSe 2016/17 Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Nachklausur (Modulprüfung) zum Lehrerweiterbildungskurs 6 Lineare Algebra/Analytische Geometrie I WiSe 2016/17 Bearbeiten

Mehr

Prüfungsklausur Mathematik I für Bauingenieure am

Prüfungsklausur Mathematik I für Bauingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Bauingenieure am 8.02.206 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 2 3 4 5 6 7 8 9 0 gesamt erreichbare P. 4 7

Mehr

Trainingsaufgaben Teil 1 (Sie müssen nicht alle Aufgaben bearbeiten. Eine Auswahl der Lösungen wird in der letzten VL und Ü des Semesters besprochen)

Trainingsaufgaben Teil 1 (Sie müssen nicht alle Aufgaben bearbeiten. Eine Auswahl der Lösungen wird in der letzten VL und Ü des Semesters besprochen) Trainingsaufgaben Teil 1 (Sie müssen nicht alle Aufgaben bearbeiten. Eine Auswahl der Lösungen wird in der letzten VL und Ü des Semesters besprochen) Aufgabe 1 Fassen Sie soweit möglich zusammen: 54 3

Mehr

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren Kapitel 13 Vektoren Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren 131 Denition: Vektoren im Zahlenraum Ein Vektor (im Zahlenraum) mit n Komponenten ist ein n-tupel reeller Zahlen,

Mehr

Variante A. Hinweise

Variante A. Hinweise Lehrstuhl C für Mathematik (Analsis Prof. Dr. Y. Guo Aachen, den 6..3 Klausur zur Höheren Mathematik I WS /3 Variante A Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche

Mehr