7.1.1 Zusammenhang zwischen der w.e. Funktion und den Momenten Da G X (s) := Pr[X = k] s k = E[s X ], k Pr[X = k] = E[X].

Größe: px
Ab Seite anzeigen:

Download "7.1.1 Zusammenhang zwischen der w.e. Funktion und den Momenten Da G X (s) := Pr[X = k] s k = E[s X ], k Pr[X = k] = E[X]."

Transkript

1 7.1.1 Zusammenhang zwischen der w.e. Funktion und den Momenten Da G X (s) := gilt G X(1) = Pr[X = k] s k = E[s X ], k=0 k Pr[X = k] = E[X]. k=1 DWT 7.1 Einführung 182/476

2 Beispiel 73 Sei X binomialverteilt mit X Bin(n, p), also Dann gilt und somit G X (s) = (1 p + ps) n. G X(s) = n (1 p + ps) n 1 p E[X] = G X(1) = np. DWT 183/476

3 Beispiel 73 Ebenso ergibt sich E[X(X 1)... (X k + 1)] = G (k) X (1), also etwa Var[X] = E[X(X 1)] + E[X] E[X] 2 = G X(1) + G X(1) (G X(1)) 2. Andere Momente von X kann man auf ähnliche Art und Weise berechnen. DWT 7.1 Einführung 183/476

4 Momenterzeugende Funktionen Definition 74 Zu einer Zufallsvariablen X ist die momenterzeugende Funktion gemäß M X (s) := E[e Xs ] definiert. Es gilt und [ ] M X (s) = E[e Xs (Xs) i ] = E = i! i=0 i=0 E[X i ] i! M X (s) = E[e Xs ] = E[(e s ) X ] = G X (e s ). s i DWT 7.1 Einführung 184/476

5 7.2 Summen von Zufallsvariablen Satz 75 (Erzeugende Funktion einer Summe) Für unabhängige Zufallsvariablen X 1,..., X n und die Zufallsvariable Z := X X n gilt G Z (s) = G X1 (s)... G Xn (s). Ebenso gilt M Z (s) = M X1 (s)... M Xn (s). Beweis: Wegen der Unabhängigkeit von X 1,..., X n gilt G Z (s) = E[s X X n ] = E[s X 1 ]... E[s Xn ] = G X1 (s)... G Xn (s). DWT 7.2 Summen von Zufallsvariablen 185/476

6 Beispiel 76 Seien X 1,... X k mit X i Bin(n i, p) unabhängige Zufallsvariable und Z := X X k. Dann gilt k G Z (s) = (1 p + ps) n i = (1 p + ps) k i=1 n i und somit i=1 Z Bin( k n i, p) (vgl. Satz 56). Seien X 1,..., X k Po(λ) unabhängige Zufallsvariablen. Dann folgt für Z := X X k k G Z (s) = e λ(s 1) = e kλ(s 1) und somit Z Po(kλ) (vgl. Satz 59). i=1 i=1 DWT 7.2 Summen von Zufallsvariablen 186/476

7 7.2.1 Zufällige Summen Wir betrachten die Situation, dass Z := X X N, wobei N ebenfalls eine Zufallsvariable ist. Satz 77 Seien X 1, X 2,... unabhängige und identisch verteilte Zufallsvariablen mit der wahrscheinlichkeitserzeugenden Funktion G X (s). N sei ebenfalls eine unabhängige Zufallsvariable mit der wahrscheinlichkeitserzeugenden Funktion G N (s). Dann besitzt die Zufallsvariable Z := X X N die wahrscheinlichkeitserzeugende Funktion G Z (s) = G N (G X (s)). DWT 7.2 Summen von Zufallsvariablen 187/476

8 Beweis: Nach Voraussetzung ist W N N 0. Deshalb folgt mit Satz 36 G Z (s) = = = = E[s Z N = n] Pr[N = n] n=0 E[s X X n ] Pr[N = n] n=0 E[s X 1 ]... E[s Xn ] Pr[N = n] n=0 (G X (s)) n Pr[N = n] n=0 = E[(G X (s)) N ] = G N (G X (s)). DWT 7.2 Summen von Zufallsvariablen 188/476

9 7.3 Rekurrente Ereignisse Beispiel 78 (Random Walk im d-dimensionalen Gitter Z d ) Wir betrachten ein Partikel, das sich zufällig auf den Punkten aus Z bewegt. Es starte im Punkt 0 und bewege sich in jedem Zeitschritt jeweils mit Wahrscheinlichkeit 1/2 vom Punkt i zum Punkt i + 1 ( nach rechts ) bzw. i 1 ( nach links ). Man nennt dieses Experiment auch Random Walk auf den ganzen Zahlen. Abbildung 1 veranschaulicht diesen Prozess. ¾ ½ ¼ ½ ¾ Abbildung: Random Walk auf den ganzen Zahlen DWT 7.3 Rekurrente Ereignisse 189/476

10 Für k N bezeichne H k das Ereignis H k := Partikel befindet sich im k-ten Schritt im Punkt 0. Die Anzahl der Schritte nach rechts bzw. nach links bis zum k-ten Schritt ist binomialverteilt mit den Parametern n = k und p = 1/2. Für die Wahrscheinlichkeit h k := Pr[H k ] erhalten wir deshalb ( ) k h k = 2 k, k/2 falls k gerade ist und h k = 0 sonst. Verallgemeinerung auf Z d, d N: h k = (( ) ) k d 2 k für k gerade. k/2 DWT 7.3 Rekurrente Ereignisse 190/476

11 Sei h k die Wahrscheinlichkeit, dass das Partikel im k-ten Schritt zum ersten Mal zum Punkt 0 d zurückkehrt, und sei r := k=1 h k die Wahrscheinlichkeit, dass das Partikel irgendwann zum Startpunkt zurückkehrt. Wie hängt r von d ab? DWT 7.3 Rekurrente Ereignisse 191/476

12 Der gerade beschriebene Prozess hat die Eigenschaft, dass sich das Experiment nach jedem Besuch im Zustand 0 wieder genauso verhält wie beim Start des Prozesses im Zustand 0. Mit solchen Ereignissen beschäftigt sich die Erneuerungstheorie (engl. renewal theory). Definition 79 Die Ereignisse H 1, H 2,... heißen rekurrent, wenn für i, j N mit i > j gilt, dass Pr[H i H 1... H j 1 H j ] = Pr[H i j ]. Die Zufallsvariable Z mit W Z = N { } messe die Wartezeit bis zum Auftreten des ersten Ereignisses H k. Die Dichte von Z ist definiert durch Pr[Z = k] = Pr[ H 1... H k 1 H k ], für k N und Pr[Z = ] = 1 k=0 Pr[Z = k]. DWT 7.3 Rekurrente Ereignisse 192/476

13 Definition 80 Für i N bezeichne h i := Pr[H i ] die Auftrittswahrscheinlichkeit im i-ten Zeitschritt. Wir setzen h 0 := 1 und erhalten die erzeugende Funktion der Auftrittswahrscheinlichkeiten gemäß H(s) := h k s k. k=0 Ferner sei die erzeugende Funktion der Wartezeit Z gegeben durch T (s) := Pr[Z = k] s k. k=0 DWT 7.3 Rekurrente Ereignisse 193/476

14 Bemerkung: H(s) ist keine wahrscheinlichkeitserzeugende Funktion im Sinne der Definition. So gilt i.a. nicht H(1) = 1. Auch T (s) stellt keine echte wahrscheinlichkeitserzeugende Funktion dar, da Pr[Z = ] = 1 k N 0 Pr[Z = k] = 1 T (1) fehlt! DWT 7.3 Rekurrente Ereignisse 194/476

15 Satz 81 Für rekurrente Ereignisse gilt H(s) = 1 1 T (s). Beweis: [Skizze]Nach dem Satz von der totalen Wahrscheinlichkeit gilt für die Auftrittswahrscheinlichkeit h n (n N) h n = Pr[H n ] = Pr[H n Z = k] Pr[Z = k]. k=1 Gemäß der Definition eines rekurrenten Ereignisses gilt für k < n Pr[H n Z = k] = Pr[H n H 1... H k 1 H k ] = Pr[H n k ] DWT 7.3 Rekurrente Ereignisse 195/476

16 Beweis (Forts.): sowie Pr[H n Z = n] = 1 Pr[H n Z = k] = 0 für k > n. Damit folgt für n N h n = n h n k Pr[Z = k] = k=1 n h n k Pr[Z = k]. Für n = 0 ergibt die rechte Seite dieser Gleichung 0. Damit entsteht durch Faltung der beiden Folgen (h 0, h 1,...) und (Pr[Z = 0], Pr[Z = 1],...) die Folge (0, h 1, h 2,...). Für die erzeugenden Funktionen gilt deshalb H(s) 1 = H(s)T (s). k=0 DWT 7.3 Rekurrente Ereignisse 196/476

17 Beispiel 82 In dem einfachen Fall, dass die Ereignisse H 1, H 2,... unabhängig mit Wahrscheinlichkeit p eintreten, ist die Wartezeit geometrisch verteilt. Daraus folgt H(s) = 1 + ps k = 1 + sp 1 s = sp + 1 s. 1 s k=1 T (s) = 1 1 H(s) = 1 1 s sp + 1 s = sp 1 (1 p)s. T (s) ist also die w.e. Funktion der geometrischen Verteilung mit Erfolgswahrscheinlichkeit p. DWT 7.3 Rekurrente Ereignisse 197/476

18 Korollar 83 Für rekurrente Ereignisse gilt Pr[Z < ] = 1 genau dann, wenn H(1) = ist, wenn also die Summe k=1 h k der Auftrittswahrscheinlichkeiten divergiert. Beweis: Nach Satz 81 gilt T (s) = (H(s) 1)/H(s). Daraus folgt Pr[Z < ] = T (1) = 1 1/H(1). DWT 7.3 Rekurrente Ereignisse 198/476

19 Beispiel 84 Wir wenden Korollar 83 auf den Random Walk im Z d an. Aus der Stirlingformel folgt n! = Θ( n(n/e) n ) und damit für d = 1 ( ) 2n = (2n)! n ( 2n(2n) 2n (n!) 2 = Θ e 2n ( ) 2 2n = Θ. n ( ) ) e n 2 nn n DWT 7.3 Rekurrente Ereignisse 199/476

20 Beispiel (Forts.) Also H(1) = h k = k=0 k=0 ( ) 2k 2 2k = k Θ(k 1/2 ) =, da die Summe k=0 1/kα für α 1 divergiert. Nach Korollar 83 kehrt das Partikel also mit Wahrscheinlichkeit 1 immer wieder zum Ausgangspunkt zurück. k=0 DWT 7.3 Rekurrente Ereignisse 200/476

21 Beispiel (Forts.) Für d N gilt allgemein H(1) = h k = k=0 Θ(k (1/2)d ). Für d = 1 und d = 2 divergiert diese Summe, während sie für d 3 konvergiert. Das Partikel kehrt also im ein- und im zweidimensionalen Raum mit Wahrscheinlichkeit 1 zum Ausgangspunkt zurück, im drei- oder höherdimensionalen Raum jedoch nicht mehr. Im dreidimensionalen Fall gilt Pr[ Partikel kehrt nie zum Ausgangspunkt zurück ] ( ) 2k = Pr[Z = ] = 1/H(1) = 1/ ( 2 2k ) 3 k 0,7178. k=0 k=0 DWT 7.3 Rekurrente Ereignisse 201/476

22 Beispiel (Forts.) 1,0 0,9 0,8 0,7 0,6 0, WS( Keine Rückkehr zum Anfang ) für den Random Walk in Z d DWT 7.3 Rekurrente Ereignisse 202/476

23 8. Formelsammlung 8.1 Gesetze zum Rechnen mit Ereignissen Im Folgenden seien A und B, sowie A 1,..., A n Ereignisse. Die Notation A B steht für A B und zugleich A B = (disjunkte Vereinigung). A 1... A n = Ω bedeutet also, dass die Ereignisse A 1,..., A n eine Partition der Ergebnismenge Ω bilden. Pr[ ] = 0 0 Pr[A] 1 Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/476

24 i j : A i A j = = Pr [ n i=1 A i] = n i=1 Pr[A i] Pr[A B] = Pr[A] + Pr[B] Pr[A B] allgemeine Form: siehe Satz 9 Pr [ n i=1 A i] n i=1 Pr[A i] Additionssatz Inklusion/Exklusion, Siebformel Boolesche Ungleichung Pr[A B] = Pr[A B] Pr[B] für Pr[B] > 0 Def. bedingte Ws. DWT 8.1 Gesetze zum Rechnen mit Ereignissen 204/476

25 B A 1... A n = Pr[B] = n i=1 Pr[B A i] Pr[A i ] Pr[B] > 0, B A 1... A n = Pr[A i B] = Pr[B A i] Pr[A i ] n i=1 Pr[B A i] Pr[A i ] Satz von der totalen Wahrscheinlichkeit Satz von Bayes Pr[A 1... A n ] = Pr[A 1 ] Pr[A 2 A 1 ]... Pr[A n A 1... A n 1 ] A und B unabhängig Pr[A B] = Pr[A] Pr[B] Multiplikationssatz Definition Unabhängigkeit DWT 8.1 Gesetze zum Rechnen mit Ereignissen 205/476

26 8.2 Erwartungswert und Varianz diskreter Zufallsvariablen Sei X eine diskrete Zufallsvariable. Für Erwartungswert und Varianz gelten die folgenden Formeln (sofern E[X] und Var[X] existieren). E[X] = ( x W X x Pr[X = x] = ω Ω X(ω) Pr[ω] = ) Pr[X i], falls W X N 0 i=1 Erwartungswert Var[X] = E[(X E[X]) 2 ] = x W X Pr[X = x] (x E[X]) 2 Varianz DWT 8.2 Erwartungswert und Varianz diskreter Zufallsvariablen 206/476

27 8.3 Gesetze zum Rechnen mit Zufallsvariablen Seien a, b, a 1,..., a n R, f 1,..., f n : R R. X 1,..., X n unabhängig für alle (a 1,..., a n ): Pr[X 1 = a 1,..., X n = a n ] = Pr[X 1 = a 1 ]... Pr[X n = a n ] X 1,..., X n unabhängig = f 1 (X 1 ),..., f n (X n ) unabhängig E[a X + b] = a E[X] + b DWT 8.3 Gesetze zum Rechnen mit Zufallsvariablen 207/476

28 X(ω) Y (ω) für alle ω Ω = E[X] E[Y ] Monotonie des Erwartungswerts E[X] = n i=1 E[X A i] Pr[A i ] Var[X] = E[X 2 ] E[X] 2 Var[a X + b] = a 2 Var[X] DWT 8.3 Gesetze zum Rechnen mit Zufallsvariablen 208/476

29 E[a 1 X a n X n ] = a 1 E[X 1 ] a n E[X n ] X 1,..., X n unabhängig = E[X 1... X n ] = E[X 1 ]... E[X n ] X 1,..., X n unabhängig = Var[X X n ] = Var[X 1 ] Var[X n ] Linearität des Erwartungswerts Multiplikativität des Erwartungswerts Varianz einer Summe DWT 8.3 Gesetze zum Rechnen mit Zufallsvariablen 209/476

30 X 0 = Pr[X t] E[X]/t für t > 0 Pr[ X E[X] t] Var[X]/t 2 für t > 0 siehe Satz 63 Markov Chebyshev Gesetz der großen Zahlen DWT 8.3 Gesetze zum Rechnen mit Zufallsvariablen 210/476

p k (1 p) n k s k = (1 p + ps) n. k p(1 p) k 1 s k ((1 p)s) k 1 =

p k (1 p) n k s k = (1 p + ps) n. k p(1 p) k 1 s k ((1 p)s) k 1 = Binomialverteilung Für X Bin(n, p) gilt nach der binomischen Formel G X (s) = E[s X ] = n ( ) n p k (1 p) n k s k = (1 p + ps) n. k Geometrische Verteilung Sei X eine geometrisch verteilte Zufallsvariable

Mehr

Anzahl der Versuche, bei denen A eingetreten ist : Anzahl aller Versuche Mit Hilfe des obigen Gesetzes der groen Zahlen folgt Z = Pr[jZ pj ] ";

Anzahl der Versuche, bei denen A eingetreten ist : Anzahl aller Versuche Mit Hilfe des obigen Gesetzes der groen Zahlen folgt Z = Pr[jZ pj ] ; Wahrscheinlichkeit und relative Haugkeit. Sei X eine Indikatorvariable fur ein Ereignis A, Pr[A] = p. Somit ist X Bernoulli-verteilt mit E[X] = p. Z = 1 n (X 1 + : : : + X n ) gibt die relative Haugkeit

Mehr

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W.

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W. 8. Formelsammlung 8.1 Gesetze zum Rechnen mit Ereignissen Im Folgenden seien A und B, sowie A 1,..., A n Ereignisse. Die Notation A B steht für A B und zugleich A B = (disjunkte Vereinigung). A 1... A

Mehr

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass f Z (z) = Pr[Z = z] = x W X Pr[X + Y = z X = x] Pr[X = x] = x W X Pr[Y = z x] Pr[X = x] = x W X f X (x) f Y (z x). Den Ausdruck

Mehr

Zentralübung Diskrete Wahrscheinlichkeitstheorie

Zentralübung Diskrete Wahrscheinlichkeitstheorie Zentralübung Diskrete Wahrscheinlichkeitstheorie Christian Ivicevic (christian.ivicevic@tum.de) Technische Universität München 14. Juni 2017 Agenda Disclaimer und wichtige Hinweise Übungsaufgaben Disclaimer

Mehr

Lemma 23 Die (paarweise verschiedenen) Ereignisse A 1,..., A n sind genau dann unabhängig,

Lemma 23 Die (paarweise verschiedenen) Ereignisse A 1,..., A n sind genau dann unabhängig, Lemma 23 Die (paarweise verschiedenen) Ereignisse A 1,..., A n sind genau dann unabhängig, wenn für alle (s 1,..., s n ) {0, 1} n gilt, dass wobei A 0 i = Āi und A 1 i = A i. Pr[A s 1 1... Asn n ] = Pr[A

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

Satz 61 (Chebyshev-Ungleichung)

Satz 61 (Chebyshev-Ungleichung) Die folgende Abschätzung ist nach Pavnuty Lvovich Chebyshev (1821 1894) benannt, der ebenfalls an der Staatl. Universität in St. Petersburg wirkte. Satz 61 (Chebyshev-Ungleichung) Sei X eine Zufallsvariable,

Mehr

Die Funktion f X;Y (x; y) := Pr[X = x; Y = y] heit gemeinsame Dichte der Zufallsvariablen X und Y. Aus der gemeinsamen Dichte f X;Y kann man ableiten

Die Funktion f X;Y (x; y) := Pr[X = x; Y = y] heit gemeinsame Dichte der Zufallsvariablen X und Y. Aus der gemeinsamen Dichte f X;Y kann man ableiten Die Funktion f ;Y (x; y) := Pr[ = x; Y = y] heit gemeinsame Dichte der Zufallsvariablen und Y. Aus der gemeinsamen Dichte f ;Y kann man ableiten f (x) = y2w Y f ;Y (x; y) bzw. f Y (y) = Die Funktionen

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Paarweise Unabhängigkeit vs. Unabhängigkeit

Paarweise Unabhängigkeit vs. Unabhängigkeit Paarweise Unabhängigkeit vs. Unabhängigkeit Beispiel: Wir betrachten das Szenario von zuvor. Wissen bereits, dass A 1, A 2 und A 1, B unabhängig sind. Analog folgt, dass A 2 und B unabhängige Ereignisse

Mehr

Wie groß ist die Wahrscheinlichkeit Pr[X > y + x X > x]? Da bei den ersten x Versuchen kein Erfolg eintrat, stellen wir uns vor, dass das

Wie groß ist die Wahrscheinlichkeit Pr[X > y + x X > x]? Da bei den ersten x Versuchen kein Erfolg eintrat, stellen wir uns vor, dass das Sei X geometrisch verteilt mit Erfolgswahrscheinlichkeit p. Dann ist Pr[X = k] die Wahrscheinlichkeit, dass wir bei einem binären Experiment mit Erfolgswahrscheinlichkeit p genau in der k-ten unabhängigen

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

DWT 6.1 Die Ungleichungen von Markov und Chebyshev 157/467 Ernst W. Mayr

DWT 6.1 Die Ungleichungen von Markov und Chebyshev 157/467 Ernst W. Mayr Die Markov-Ungleichung ist nach Andrey Andreyevich Markov (1856 1922) benannt, der an der Universität von St. Petersburg bei Chebyshev studierte und später dort arbeitete. Neben seiner mathematischen Tätigkeit

Mehr

Dichte der geometrischen Verteilung

Dichte der geometrischen Verteilung 0,8 Ô ¼ 0,8 Ô ¼ 0,6 0,6 0,4 0,4 0,2 0,2 0,0 1 2 3 4 5 6 7 8 9 10 0,0 1 2 3 4 5 6 7 8 9 10 0,8 Ô ¼ 0,8 Ô ¼ ¾ 0,6 0,6 0,4 0,4 0,2 0,2 0,0 0,0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 Dichte der geometrischen

Mehr

Satz 18 (Satz von der totalen Wahrscheinlichkeit)

Satz 18 (Satz von der totalen Wahrscheinlichkeit) Ausgehend von der Darstellung der bedingten Wahrscheinlichkeit in Gleichung 1 zeigen wir: Satz 18 (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse A 1,..., A n seien paarweise disjunkt und es gelte

Mehr

Diskrete Zufallsvariable

Diskrete Zufallsvariable Diskrete Zufallsvariablen Slide 1 Diskrete Zufallsvariable Wir gehen von einem diskreten W.-raum Ω aus. Eine Abbildung X : Ω Ê heißt diskrete (numerische) Zufallsvariable oder kurz ZV. Der Wertebereich

Mehr

Dichte der geometrischen Verteilung

Dichte der geometrischen Verteilung 0,8 Ô ¼ 0,8 Ô ¼ 0,6 0,6 0,4 0,4 0,2 0,2 0,0 1 2 3 4 5 6 7 8 9 10 0,0 1 2 3 4 5 6 7 8 9 10 0,8 Ô ¼ 0,8 Ô ¼ ¾ 0,6 0,6 0,4 0,4 0,2 0,2 0,0 1 2 3 4 5 6 7 8 9 10 0,0 1 2 3 4 5 6 7 8 9 10 Dichte der geometrischen

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

Denition 57 Eine geometrisch verteilte Zufallsvariable X mit Parameter (Erfolgswahrscheinlichkeit) p 2 (0; 1] und q := 1 p hat die Dichte

Denition 57 Eine geometrisch verteilte Zufallsvariable X mit Parameter (Erfolgswahrscheinlichkeit) p 2 (0; 1] und q := 1 p hat die Dichte 5.3 Geometrische Verteilung Man betrachte ein Experiment, das so lange wiederholt wird, bis Erfolg eintritt. Gelingt ein einzelner Versuch mit Wahrscheinlichkeit p, so ist die Anzahl der Versuche bis zum

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Wiederholung. Einführung in die Wahrscheinlichkeitstheorie Wahrscheinlichkeitsraum Ergebnismenge Ω = {ω 1, ω 2, } mit ω Ω Pr[ω]=1.

Wiederholung. Einführung in die Wahrscheinlichkeitstheorie Wahrscheinlichkeitsraum Ergebnismenge Ω = {ω 1, ω 2, } mit ω Ω Pr[ω]=1. Wiederholung Einführung in die Wahrscheinlichkeitstheorie Wahrscheinlichkeitsraum Ergebnismenge Ω = {ω 1, ω, } mit ω Ω Pr[ω]=1. Berechnung von Pr[ n i=1 A i ]: A i disjunkt: Additionssatz n i=1 Pr[A i

Mehr

Korollar 116 (Grenzwertsatz von de Moivre)

Korollar 116 (Grenzwertsatz von de Moivre) Ein wichtiger Spezialfall das Zentralen Grenzwertsatzes besteht darin, dass die auftretenden Zufallsgrößen Bernoulli-verteilt sind. Korollar 116 (Grenzwertsatz von de Moivre) X 1,..., X n seien unabhängige

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Haug verwendet man die Denition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A \ B] = Pr[BjA] Pr[A] = Pr[AjB] Pr[B] : (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1 ; : : : ; A n

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Kapitel I Diskrete Wahrscheinlichkeitsräume

Kapitel I Diskrete Wahrscheinlichkeitsräume Kapitel I Diskrete Wahrscheinlichkeitsräume 1. Grundlagen Definition 1 1 Ein diskreter Wahrscheinlichkeitsraum ist durch eine Ergebnismenge Ω = {ω 1, ω 2,...} von Elementarereignissen gegeben. 2 Jedem

Mehr

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume Kapitel II Kontinuierliche Wahrscheinlichkeitsräume 1. Einführung 1.1 Motivation Interpretation der Poisson-Verteilung als Grenzwert der Binomialverteilung. DWT 1.1 Motivation 211/476 Beispiel 85 Wir betrachten

Mehr

1 1 e x2 =2 d x 1. e (x2 +y 2 )=2 d x d y : Wir gehen nun zu Polarkoordinaten uber und setzen x := r cos und y := r sin.

1 1 e x2 =2 d x 1. e (x2 +y 2 )=2 d x d y : Wir gehen nun zu Polarkoordinaten uber und setzen x := r cos und y := r sin. Lemma 92 Beweis: Wir berechnen zunachst I 2 : I 2 = Z 1 I := e x2 =2 d x p = 2: 1 Z 1 1 Z 1 Z 1 = 1 1 Z 1 e x2 =2 d x 1 e (x2 +y 2 )=2 d x d y : e y2 =2 d y Wir gehen nun zu Polarkoordinaten uber und setzen

Mehr

Denition 101 Zwei kontinuierliche Zufallsvariablen X und Y heien unabhangig, wenn

Denition 101 Zwei kontinuierliche Zufallsvariablen X und Y heien unabhangig, wenn Denition 101 Zwei kontinuierliche Zufallsvariablen X und Y heien unabhangig, wenn fur alle x; y 2 R gilt. Pr[X x; Y y] = Pr[X x] Pr[Y y] Dies ist gleichbedeutend mit F X;Y (x; y) = F X (x) F Y (y) : Dierentiation

Mehr

Erwartungswert und Varianz von Zufallsvariablen

Erwartungswert und Varianz von Zufallsvariablen Kapitel 7 Erwartungswert und Varianz von Zufallsvariablen Im Folgenden sei (Ω, A, P ) ein Wahrscheinlichkeitsraum. Der Erwartungswert von X ist ein Lebesgue-Integral (allerdings allgemeiner als in Analysis

Mehr

DWT 3.3 Warteprobleme mit der Exponentialverteilung 275/467 Ernst W. Mayr

DWT 3.3 Warteprobleme mit der Exponentialverteilung 275/467 Ernst W. Mayr Poisson-Prozess Wir hatten bei der Diskussion der geometrischen und der Poisson-Verteilung festgestellt: Wenn der zeitliche Abstand der Treffer geometrisch verteilt ist, so ist ihre Anzahl in einer festen

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 22. September 2015 Evelina Erlacher 1 Mengen Es sei Ω eine Menge (die Universalmenge ) und A, B seien Teilmengen von Ω. Dann schreiben

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

Satz 105 (Gedächtnislosigkeit) Beweis: Sei X exponentialverteilt mit Parameter λ. Dann gilt Pr[X > x + y X > y] = Pr[X > y] Pr[X > x + y] = Pr[X > y]

Satz 105 (Gedächtnislosigkeit) Beweis: Sei X exponentialverteilt mit Parameter λ. Dann gilt Pr[X > x + y X > y] = Pr[X > y] Pr[X > x + y] = Pr[X > y] Gedächtnislosigkeit Satz 105 (Gedächtnislosigkeit) Eine (positive) kontinuierliche Zufallsvariable X mit Wertebereich R + ist genau dann exponentialverteilt, wenn für alle x, y > 0 gilt, dass Pr[X > x

Mehr

67 Zufallsvariable, Erwartungswert, Varianz

67 Zufallsvariable, Erwartungswert, Varianz 67 Zufallsvariable, Erwartungswert, Varianz 67.1 Motivation Oft möchte man dem Resultat eines Zufallsexperiments eine reelle Zahl zuordnen. Der Gewinn bei einem Glücksspiel ist ein Beispiel hierfür. In

Mehr

Wiederholungsklausur DWT

Wiederholungsklausur DWT LÖSUNG Wiederholungsklausur DWT Sommersemester 2008 Hinweis: Alle Antworten sind zu begründen. Insbesondere sollte bei nicht-trivialen Umformungen kurz angegeben werden, weshalb diese Umformungen erlaubt

Mehr

Stochastik Wiederholung von Teil 1

Stochastik Wiederholung von Teil 1 Stochastik Wiederholung von Teil 1 Andrej Depperschmidt Sommersemester 2016 Wahrscheinlichkeitsraum Definition Das Tripple (Ω, A, P) heißt Wahrscheinlichkeitsraum, falls gilt: (i) A ist eine σ-algebra,

Mehr

Diskrete Strukturen II

Diskrete Strukturen II SS 2004 Diskrete Strukturen II Ernst W. Mayr Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2004ss/ds/index.html.de 18. Juni 2004 Exponentialverteilung als Grenzwert der geometrischen

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 112 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

Die Probabilistische Methode

Die Probabilistische Methode Die Probabilistische Methode Wladimir Fridman 233827 Hauptseminar im Sommersemester 2004 Extremal Combinatorics Zusammenfassung Die Probabilistische Methode ist ein mächtiges Werkzeug zum Führen von Existenzbeweisen.

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

i Pr(X = i). Bsp: Sei X die Summe zweier Würfe eines Würfels. Dann gilt E[X] =

i Pr(X = i). Bsp: Sei X die Summe zweier Würfe eines Würfels. Dann gilt E[X] = Erwartungswert Definition Erwartungswert Der Erwartungswert einer diskreten ZV ist definiert als E[X] = i i Pr(X = i). E[X] ist endlich, falls i i Pr(X = i) konvergiert, sonst unendlich. Bsp: Sei X die

Mehr

KAPITEL 5. Erwartungswert

KAPITEL 5. Erwartungswert KAPITEL 5 Erwartungswert Wir betrachten einen diskreten Wahrscheinlichkeitsraum (Ω, P) und eine Zufallsvariable X : Ω R auf diesem Wahrscheinlichkeitsraum. Die Grundmenge Ω hat also nur endlich oder abzählbar

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

6: Diskrete Wahrscheinlichkeit

6: Diskrete Wahrscheinlichkeit Stefan Lucks Diskrete Strukturen (WS 2009/10) 219 6: Diskrete Wahrscheinlichkeit 6: Diskrete Wahrscheinlichkeit Stefan Lucks Diskrete Strukturen (WS 2009/10) 220 Wahrscheinlichkeitsrechnung Eines der wichtigsten

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Das Zweikinderproblem

Das Zweikinderproblem Das Zweikinderproblem Definition Zweikinderproblem Eine Familie besitzt zwei Kinder. Wie groß ist die Wahrscheinlichkeit Pr[ Beide Kinder sind Mädchen. Eines der Kinder ist ein Mädchen ]? Lösung: Sei A

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19 Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik PD Dr. U. Ludwig Vorlesung 7 1 / 19 2.2 Erwartungswert, Varianz und Standardabweichung (Fortsetzung) 2 / 19 Bedingter Erwartungswert

Mehr

DWT 2.3 Ankunftswahrscheinlichkeiten und Übergangszeiten 400/467 Ernst W. Mayr

DWT 2.3 Ankunftswahrscheinlichkeiten und Übergangszeiten 400/467 Ernst W. Mayr 2. Ankunftswahrscheinlichkeiten und Übergangszeiten Bei der Analyse von Markov-Ketten treten oftmals Fragestellungen auf, die sich auf zwei bestimmte Zustände i und j beziehen: Wie wahrscheinlich ist es,

Mehr

Vorlesung 9b. Bedingte Wahrscheinlichkeiten und bedingte Erwartungswerte

Vorlesung 9b. Bedingte Wahrscheinlichkeiten und bedingte Erwartungswerte Vorlesung 9b Bedingte Wahrscheinlichkeiten und bedingte Erwartungswerte 1 Definition. Seien E 1, E 2 Ereignisse. Dann ist die bedingte Wahrscheinlichkeit von E 2, gegeben E 1, definiert als P(E 2 E 1 )

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 240/476 c Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 240/476 c Ernst W. Mayr 1.4.4 Laplace-Prinzip in kontinuierlichen Wahrscheinlichkeitsräumen Das folgende Beispiel zeigt, dass im kontinuierlichen Fall die Bedeutung von gleichwahrscheinlich nicht immer ganz klar sein muss. Bertrand

Mehr

Einführung in die angewandte Stochastik

Einführung in die angewandte Stochastik Einführung in die angewandte Stochastik Fabian Meyer 5. April 2018 Inhaltsverzeichnis 1 Wahrscheinlichkeitsrechnung 3 1.1 Definitionen................................... 3 1.2 Wahrscheinlichkeitsmaß, Wahrscheinlichkeitsverteilung,

Mehr

Satz 105 Seien X und Y unabhangige kontinuierliche Zufallsvariablen. Fur die Dichte von Z := X + Y gilt f Z (z) = f X (x) f Y (z x) d x :

Satz 105 Seien X und Y unabhangige kontinuierliche Zufallsvariablen. Fur die Dichte von Z := X + Y gilt f Z (z) = f X (x) f Y (z x) d x : 3.4 Summen von Zufallsvariablen Satz 105 Seien X und Y unabhangige kontinuierliche Zufallsvariablen. Fur die Dichte von Z := X + Y gilt Z 1 f Z (z) = f X (x) f Y (z x) d x : 1 Beweis: Nach Denition der

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 8. Vorlesung - 2017 Bemerkung: Sei X = (X 1,..., X n ) Zufallsvektor. Der n dimensionale Vektor ( ) E(X ) = E(X 1 ),..., E(X n ) ist der Erwartungswert des Zufallsvektors X. Beispiel: Seien X, Y N (0,

Mehr

13 Grenzwertsätze Das Gesetz der großen Zahlen

13 Grenzwertsätze Das Gesetz der großen Zahlen 13 Grenzwertsätze 13.1 Das Gesetz der großen Zahlen Der Erwartungswert einer zufälligen Variablen X ist in der Praxis meist nicht bekannt. Um ihn zu bestimmen, sammelt man Beobachtungen X 1,X 2,...,X n

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

Vorlesung 3b. Der Erwartungswert

Vorlesung 3b. Der Erwartungswert Vorlesung 3b Der Erwartungswert von diskreten reellwertigen Zufallsvariablen Teil 2 0. Wiederholung X sei eine diskrete reellwertige Zufallsvariable X S R E[X] := a S a P(X = a). heißt Erwartungswert von

Mehr

DWT 1 Grundlagen 17/476 c Ernst W. Mayr

DWT 1 Grundlagen 17/476 c Ernst W. Mayr Ē heißt komplementäres Ereignis zu E. Allgemein verwenden wir bei der Definition von Ereignissen alle bekannten Operatoren aus der Mengenlehre. Wenn also A und B Ereignisse sind, dann sind auch A B, A

Mehr

Diskrete Strukturen II

Diskrete Strukturen II SS 2006 Diskrete Strukturen II Ernst W. Mayr Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2006ss/ds2/ Sommersemester 2006 c Ernst W. Mayr 3. Einleitung Was bedeutet Zufall? Große Menge

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 0/ 5.03.0 Dr. Sebastian Petersen Klausur: Diskrete Strukturen I Aufgabe. (8 Punkte) a) Sei X = {0, }. Geben Sie die Potenzmenge P (X) (durch Auflisten ihrer Elemente) an.

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Diskrete Wahrscheinlichkeitstheorie

Diskrete Wahrscheinlichkeitstheorie SS 2010 Diskrete Wahrscheinlichkeitstheorie Ernst W. Mayr Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2010ss/dwt/ Sommersemester 2010 DWT Kapitel 0 Organisatorisches Vorlesungen: Di

Mehr

Diskrete Wahrscheinlichkeitstheorie

Diskrete Wahrscheinlichkeitstheorie SS 2011 Diskrete Wahrscheinlichkeitstheorie Ernst W. Mayr Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ss/dwt/ Sommersemester 2011 DWT Kapitel 0 Organisatorisches Vorlesungen: Di

Mehr

Vorlesung 5a. Die Varianz

Vorlesung 5a. Die Varianz Vorlesung 5a Die Varianz 1 1. Varianz und Standardabweichung: Elementare Eigenschaften (Buch S. 24) 2 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ. Die Varianz von X ist definiert

Mehr

Satz 104 (Skalierung exponentialverteilter Variablen)

Satz 104 (Skalierung exponentialverteilter Variablen) 2.3.1 Eigenschaften der Exponentialverteilung Satz 104 (Skalierung exponentialverteilter Variablen) Sei X eine exponentialverteilte Zufallsvariable mit dem Parameter λ. Für a > 0 ist die Zufallsvariable

Mehr

Diskrete Wahrscheinlichkeitstheorie

Diskrete Wahrscheinlichkeitstheorie SS 2018 Diskrete Wahrscheinlichkeitstheorie Susanne Albers Fakultät für Informatik TU München http://wwwalbers.in.tum.de/lehre/2018ss/dwt/index.html.de Sommersemester 2018 DWT Kapitel 0 Organisatorisches

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun http://blog.ruediger-braun.net Heinrich-Heine-Universität Düsseldorf 07. Januar 2015 Klausuranmeldung Prüflinge müssen sich bis spätestens 14 Tage vor

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen Vorlesung 3a Der Erwartungswert von diskreten reellwertigen Zufallsvariablen X sei eine Zufallsvariable, deren Zielbereich R (die Menge der reellen Zahlen) (oder eine Teilmenge davon) ist. Es existiere

Mehr

Zufallsvariablen rekapituliert

Zufallsvariablen rekapituliert Zufallsvariablen rekapituliert Wolfgang Konen TH Köln, Campus Gummersbach April 2016 Mai 2017 Wolfgang Konen (TH Köln) Zufallsvariablen April 2016 Mai 2017 1 / 12 1 Einleitung 2 Zufallsvariablen 3 Linearität

Mehr

Vorlesung 9b. Bedingte Verteilungen und bedingte Wahrscheinlichkeiten

Vorlesung 9b. Bedingte Verteilungen und bedingte Wahrscheinlichkeiten Vorlesung 9b Bedingte Verteilungen und bedingte Wahrscheinlichkeiten 1 Voriges Mal: Aufbau der gemeinsamen Verteilung von X 1 und X 2 aus der Verteilung ρ von X 1 und Übergangswahrscheinlichkeiten P(a

Mehr

Diskrete Wahrscheinlichkeitstheorie TUM Sommersemester 2012 Dozent: Javier Esparza. Janosch Maier 25. Juli 2012

Diskrete Wahrscheinlichkeitstheorie TUM Sommersemester 2012 Dozent: Javier Esparza. Janosch Maier 25. Juli 2012 Diskrete Wahrscheinlichkeitstheorie TUM Sommersemester 2012 Dozent: Javier Esparza Janosch Maier 25. Juli 2012 1 Inhaltsverzeichnis I Diskrete Wahrscheinlichkeitsräume 6 1 Grundlagen 6 1.1 Markov-Diagram...........................

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

Vorlesung 9b. Bedingte Verteilung, bedingte Wahrscheinlichkeiten

Vorlesung 9b. Bedingte Verteilung, bedingte Wahrscheinlichkeiten Vorlesung 9b Bedingte Verteilung, bedingte Wahrscheinlichkeiten 1 1. Zerlegung der gemeinsamen Verteilung (Buch S. 111) 2 Bisher legten wir das Hauptaugenmerk auf den Aufbau der gemeinsamen Verteilung

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Kapitel II Kontinuierliche Wahrscheinlichkeitsraume

Kapitel II Kontinuierliche Wahrscheinlichkeitsraume Kapitel II Kontinuierliche Wahrscheinlichkeitsraume 1. Einfuhrung 1.1 Motivation Interpretation der Poisson-Verteilung als Grenzwert der Binomialverteilung. DWT 1.1 Motivation 195/460 Beispiel 78 Wir betrachten

Mehr

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen Vorlesung 3a Der Erwartungswert von diskreten reellwertigen Zufallsvariablen X sei eine diskrete reellwertige Zufallsvariable, d.h. eine ZV e mit Wertebereich R (oder einer Teilmenge davon), sodass eine

Mehr

Zufallsvariablen rekapituliert

Zufallsvariablen rekapituliert Zufallsvariablen rekapituliert Wolfgang Konen TH Köln, Campus Gummersbach April 2016 Wolfgang Konen (TH Köln) Zufallsvariablen April 2016 1 / 11 1 Einleitung 2 Zufallsvariablen 3 Linearität und Varianz

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 15. Jänner 2017 Evelina Erlacher Inhaltsverzeichnis 1 Mengen 2 2 Wahrscheinlichkeiten 3 3 Zufallsvariablen 5 3.1 Diskrete Zufallsvariablen............................

Mehr

Kapitel 10 VERTEILUNGEN

Kapitel 10 VERTEILUNGEN Kapitel 10 VERTEILUNGEN Fassung vom 18. Januar 2001 130 VERTEILUNGEN Zufallsvariable. 10.1 10.1 Zufallsvariable. HäuÞg wird statt des Ergebnisses ω Ω eines Zufalls-Experiments eine zugeordnete Zahl X(ω)

Mehr

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte Kapitel 8 Parameter multivariater Verteilungen 8.1 Erwartungswerte Wir können auch bei mehrdimensionalen Zufallsvariablen den Erwartungswert betrachten. Dieser ist nichts anderes als der vektor der Erwartungswerte

Mehr

Pr[A] = Pr[C (A B)] = Pr[C] + Pr[A B]. Wegen A B = C B folgt daraus. Pr[A B] = Pr[C B] = Pr[C] + Pr[B] = Pr[A] Pr[A B] + Pr[B]

Pr[A] = Pr[C (A B)] = Pr[C] + Pr[A B]. Wegen A B = C B folgt daraus. Pr[A B] = Pr[C B] = Pr[C] + Pr[B] = Pr[A] Pr[A B] + Pr[B] Beweis: Wir betrachten zunächst den Fall n = 2. Dazu setzen wir C := A \ B = A \ (A B). Gemäß dieser Definition gilt, dass C und A B sowie C und B disjunkt sind. Deshalb können wir Eigenschaft 5 von Lemma

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Vorlesung 5a. Varianz und Kovarianz

Vorlesung 5a. Varianz und Kovarianz Vorlesung 5a Varianz und Kovarianz 1 1. Varianz und Standardabweichung: Elementare Eigenschaften (Buch S. 24) 2 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ. Die Varianz von X ist

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 17. November 2010 1 Gesetze Das Gesetz der seltenen Ereignisse Das schwache Gesetz der großen Zahl 2 Verteilungsfunktionen

Mehr

Lösungsskizzen zur Präsenzübung 09

Lösungsskizzen zur Präsenzübung 09 Lösungsskizzen zur Präsenzübung 09 Hilfestellung zur Vorlesung Anwendungen der Mathematik im Wintersemester 2015/2016 Fakultät für Mathematik Universität Bielefeld Veröffentlicht am 07. Februar 2016 von:

Mehr

Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer«

Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer« Eine Auswahl wichtiger Definitionen und Aussagen zur Vorlesung»Stochastik für Informatiker und Regelschullehrer«Werner Linde WS 2008/09 Inhaltsverzeichnis 1 Wahrscheinlichkeiten 2 1.1 Wahrscheinlichkeitsräume...........................

Mehr

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten Kapitel 2 Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten 2.1 Stochastische Unabhängigkeit von Ereignissen Gegeben sei ein W-Raum (Ω, C, P. Der Begriff der stochastischen Unabhängigkeit von

Mehr

Vorlesung 7b. Der Zentrale Grenzwertsatz

Vorlesung 7b. Der Zentrale Grenzwertsatz Vorlesung 7b Der Zentrale Grenzwertsatz 1 Zentraler Grenzwertsatz (Tschebyscheff) Die standardisierte Summe von unabhängigen, identisch verteilten R-wertigen Zufallsvariablen konvergiert in Verteilung

Mehr

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7.1 Die Laplace-Verteilung Sei X eine gleich verteilte Zufallsvariable mit den Werten in der Menge Ω X = {x i R : i = 1,...,n}, d.h. f (x i = 1

Mehr

Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}.

Binomialverteilung. Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X : X = {0, 1, 2,..., n}. Binomialverteilung Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder nicht. X = Häufigkeit, mit

Mehr

Kapitel 6. Irrfahrten und Bernoullischemata

Kapitel 6. Irrfahrten und Bernoullischemata Kapitel 6 Irrfahrten und Bernoullischemata Ausgangspunkt dieses Kapitels ist das in den Abschnitten 2.5 und 3.3 vorgestellte mathematische Modell des mehrmals Werfens einer Münze. Die dort definierten

Mehr