Vorlesung Informationssysteme

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Vorlesung Informationssysteme"

Transkript

1 Saarbrücke, Iformatio Systems Group Vorlesug Iformatiossysteme Vertiefug Kapitel 4: Vo (E)ER is Relatioemodell Erik Buchma Foto: M. Strauch

2 Aus de Videos wisse Sie......welche Bestadteile das relatioale Modell aufweist Ud wie sich diese i ER ud EER modelliere lasse...dass bei der Überführug vo ER is Relatioemodell Schlüssel besoders beachtet werde müsse machmal Relatioe verschmolze werde dürfe es machmal mehrere Optioe gibt, um de gleiche Sachverhalt auszudrücke Vertiefug heute: Mehr zur Umwadlug vo EER-Modelle zu UML-Klassediagramme Abbilde vo schwierige Fälle im ER-Modell auf das Relatioemodell Umwadlug vo EER-Modelle i das Relatioemodell (Amerkug: Im Folgede wurde die Datetype weggelasse) 2 IfoSys - (E) ER ud Relatioemodell Uiversität des Saarlades

3 Foto: M. Strauch EER UML-Klassediagramm

4 Das Klassediagramm Übersicht über Aufbau ud Zusammespiel vo objektorietiert verwaltete Date Im Datebakkotext wichtig für Mit OO-Etwicklugsumgebug kompatible Schemadefiitio Katzefutter Trockefutter Wasserateil 4 IfoSys - (E) ER ud Relatioemodell Uiversität des Saarlades

5 Laufedes Beispiel Etwickel Sie daraus ei UML-Klassediagramm Perso m Katzefutter hat Aschrift Trockefutter Straße Wasserateil 5 IfoSys - (E) ER ud Relatioemodell Uiversität des Saarlades

6 Schritt vo 5 Etitätstype i Klasse umwadel Küstliche Schlüssel köe weggelasse werde, we sie ur eigeführt wurde, weil das EER-Modell sie erzwigt Perso m Katzefutter Perso Katzefutter hat Aschrift Aschrift Trockefutter Straße Trockefutter Straße Wasserateil Wasserateil 6 IfoSys - (E) ER ud Relatioemodell Uiversität des Saarlades

7 Schritt 2 vo 5 Beziehugstype i Assoziatioe umwadel Kardialitäte zu UML-Multiplizitäte Perso hat m Katzefutter Perso 0..* 0..* Katzefutter Aschrift Aschrift Trockefutter Straße Trockefutter Straße Wasserateil Wasserateil 7 IfoSys - (E) ER ud Relatioemodell Uiversität des Saarlades

8 Schritt 3 vo 5 Alle existezabhägige Etitytype werde zu Kompositioe ebeso wie ER immer Kardialität Perso hat m Katzefutter Perso hat 0..* 0..* 0..* Katzefutter Aschrift Aschrift Trockefutter Straße Trockefutter Straße Wasserateil Wasserateil 8 IfoSys - (E) ER ud Relatioemodell Uiversität des Saarlades

9 Schritt 4 vo 5 A B C Alle Spezialisieruge, Geeralisieruge, Partitioieruge werde zu Vererbuge Prüfe Sie, welche Zusicherug geeiget ist {icomplete}/{complete}, {overlappig}/{disjoit} {icomplete}: Außer B ud C och weiter Uterklasse vo A möglich {complete}: icht möglich {overlappig}: Istaze vo A dürfe gleichzeitig i B ud C sei {disjoit}: dürfe icht Perso hat m Katzefutter Perso hat 0..* Aschrift 0..* 0..* Katzefutter {overlappig} {icomplete} Aschrift Trockefutter Straße Trockefutter Straße Wasserateil Wasserateil 9 IfoSys - (E) ER ud Relatioemodell Uiversität des Saarlades

10 Schritt 5 vo 5 Prüfe Sie, ob Sie besteht aus -Beziehugstype i eie Aggregatio umwadel köe (hier icht der Fall) Prüfe Sie, ob Ihr UML-Modell dasselbe ausdrückt wie Ihr (E)ER-Modell Gazes Teil Perso hat m Katzefutter Perso hat 0..* Aschrift 0..* 0..* Katzefutter {overlappig} {icomplete} Aschrift Trockefutter Straße Trockefutter Straße Wasserateil Wasserateil 0 IfoSys - (E) ER ud Relatioemodell Uiversität des Saarlades

11 Foto: M. Strauch ER Relatioemodell

12 Kapazitätserhaltede Abbildug Abbildug is Relatioemodell soll soviele Zustäde erlaube wie modelliert! Was ist der Schlüssel i hat? Halter hat Erik Jes [Halter]: {[]} Auto Kez. KA-23 SB-456 SB-789 [Auto]: {[Kez.]} Kapazitätsvermiderd [hat]: {[, Kez.]} Kapazitätserhöhed [hat]: {[, Kez.]} Problem: Jes ka kei zweites Auto habe Problem: Ei Auto ka mehrere Halter habe Kapazitätserhalted Richtig [hat]: {[, Kez.]} 2 IfoSys - (E) ER ud Relatioemodell Uiversität des Saarlades

13 Zusammefassug der Abbildugsvorschrifte ER-Kozept Etitytyp E i Attribute A i vo E i Primärschlüssel P i vo E i abgebildet auf Relatioemodell Relatioeschema R i Attribute A i vo R i Primärschlüssel P i vo R i Beziehugstyp B zwische E, E 2 Relatioeschema R b mit Attribute P, P 2 : P 2 wird Primärschlüssel vo R b : P oder P 2 wird Primärschlüssel vo R b m: P ud P 2 werde Primärschlüssel vo R b E B E 2 P P 2 A... A 2... [E ]: { [P, A... ] } [E 2 ]: { [P 2, A 2... ] } [R b ]: { [P, P 2 ] } 3 IfoSys - (E) ER ud Relatioemodell Uiversität des Saarlades

14 Zusammefassug der Abbildugsvorschrifte ER-Kozept Etitytyp E i Attribute A i vo E i Primärschlüssel P i vo E i abgebildet auf Relatioemodell Relatioeschema R i Attribute A i vo R i Primärschlüssel P i vo R i Beziehugstyp B zwische E, E 2 Relatioeschema R b mit Attribute P, P 2 : P 2 wird Primärschlüssel vo R b : P oder P 2 wird Primärschlüssel vo R b m: P ud P 2 werde Primärschlüssel vo R b E B E 2 P P 2 A... A 2... [E ]: { [P, A... ] } [E 2 ]: { [P 2, A 2... ] } [R b ]: { [P, P 2 ] } ODER [R b ]: { [P, P 2 ] } 4 IfoSys - (E) ER ud Relatioemodell Uiversität des Saarlades

15 Zusammefassug der Abbildugsvorschrifte ER-Kozept Etitytyp E i Attribute A i vo E i Primärschlüssel P i vo E i abgebildet auf Relatioemodell Relatioeschema R i Attribute A i vo R i Primärschlüssel P i vo R i Beziehugstyp B zwische E, E 2 Relatioeschema R b mit Attribute P, P 2 : P 2 wird Primärschlüssel vo R b : P oder P 2 wird Primärschlüssel vo R b m: P ud P 2 werde Primärschlüssel vo R b E m B E 2 P P 2 A... A 2... [E ]: { [P, A... ] } [E 2 ]: { [P 2, A 2... ] } [R b ]: { [P, P 2 ] } 5 IfoSys - (E) ER ud Relatioemodell Uiversität des Saarlades

16 : oder :-Beziehugstyp verschmelze Fuktioiert ur, we Fremdschlüssel NULL sei darf, d.h., Dateobjekt muss icht zwiged existiere E (0,*) B (0,) E 2 P P 2 Verschmelze mit der -Seite [E ]: { [P, A... ] } [E 2 ]: { [P 2, A 2..., P ] } A... A 2... E (0,) B (0,) E 2 P P 2 A... A 2... Aussuche, mit welcher Seite verschmolze wird [E ]: { [P, A... ] } [E 2 ]: { [P 2, A 2..., P ] } oder [E ]: { [P, A..., P 2 ] } [E 2 ]: { [P 2, A 2... ] } 6 IfoSys - (E) ER ud Relatioemodell Uiversität des Saarlades

17 Foto: M. Strauch Schwierige Abbilduge

18 Rekursive Beziehuge Beispiel: Arbeiter ist Chef vo adere Arbeiter [Arbeiter]: { [P, ] } [Chefvo]: { [P, P2] } Alterativ [Arbeiter]: { [P,, hatchefp] } Arbeiter P Chef vo Was möchte ich ausdrücke? Ei Chef ka mehrere Arbeiter uter sich habe Ei Arbeiter ka geau eie Chef habe Alterativ: Ei Arbeiter muss geau eie Chef habe Ei Chef darf icht sich selber als Chef habe 8 IfoSys - (E) ER ud Relatioemodell Uiversität des Saarlades

19 Kardialitäte jeseits vo 0,, I eier Maschaft spiele geau Spieler Umsetzug wie ebe besproche [Spieler]: { [S, ] } [Maschaft]: { [M,, Liga] } [spielti]: { [S, M] } geau Spieler so icht abbildbar Spieler spielt i S Maschaft M Liga 9 IfoSys - (E) ER ud Relatioemodell Uiversität des Saarlades

20 Kardialitäte jeseits vo 0,, Umsetzug mit Iliig [Spieler]: { [S, ] } [Maschaft]: { [M,, Liga, S, S2, S3, S4, S5, S6, S7, S8, S9, S0, S] } Spieler abbildbar, aber icht sichergestellt dass uterschiedliche Spieler jeder Spieler ur eie Maschaft Reihefolge der Ss spielt eie Rolle bitte icht achmache Spieler spielt i S Maschaft M Liga 20 IfoSys - (E) ER ud Relatioemodell Uiversität des Saarlades

21 Foto: M. Strauch EER Relatioemodell

22 Das EER-Modell: Typkostruktor Modellierugskostrukt ergäzt das ER-Modell um Spezialisierug / Ist-Beziehug Eigabetyp Ausgabetyp Geeralisierug Eigabetyp Eigabetyp 2... Eigabetyp Ausgabetyp Ausgabetyp 2 Partitioierug Eigabetyp Ausgabetyp 2... Auf dieser Seite steht der Schlüssel! Ausgabetyp 22 IfoSys - (E) ER ud Relatioemodell Uiversität des Saarlades

23 Spezialisierug ER-Modell Perserkatze ist Katze Stammbaum Äquivalete Darstellug im EER-Modell Perserkatze Stammbaum Katze Alter Umwadlug is Relatioemodell daher ebeso wie ER-Spezialisierug, drei Alterative: Alter. [Katze]: { [, Alter] }, [Perserkatze]: { [, Stammbaum] } 2. [Katze]: { [, Alter] }, [Perserkatze]: { [, Alter, Stammbaum] } 3. [Katze]: { [, Alter, Stammbaum] } Nullwerte, keie gute Idee 23 IfoSys - (E) ER ud Relatioemodell Uiversität des Saarlades

24 EER-Partitioierug Katzefutter Bio-Futter Herkuft Juior Alter Relatioemodell idetisch zur ER-Geeralisierug Alterative [Katzefutter]: { [, ] } [Bio-Futter]: { [, Herkuft] } [Juior]: { [, Alter] } Alterative 2 [Katzefutter]: { [, ] } [Bio-Futter]: { [,, Herkuft] } [Juior]: { [,, Alter] } Alterative 3 Nullwerte, keie gute Idee [Katzefutter]: { [,, Herkuft, Alter] } 24 IfoSys - (E) ER ud Relatioemodell Uiversität des Saarlades

25 EER-Geeralisierug (/2) Trockefutter Typ Bezeichug Wasserateil (...) m Katzefutter falsch: Attribute vo Katzefutter i Trockefutter, überehme [Trockefutter]: { [Typ,,, ] } []: { [Bezeichug, Wasserateil,, ] } Problem: es gibt keie Schlüssel für die -Beziehug 25 IfoSys - (E) ER ud Relatioemodell Uiversität des Saarlades

26 EER-Geeralisierug (2/2) Trockefutter Typ Bezeichug Wasserateil (...) m Katzefutter fuktioiert: küstlicher Schlüssel bei Katzefutter, :-Bez. mit Trocke- ud verschmelze (etspricht mehrfacher Spezialisierug) [Katzefutter]: { [K,, ] } [Trockefutter]: { [Typ,, K] } []: { [Bezeichug, Wasserateil, K] } Nachteil: Fremdschlüssel muss NULL sei dürfe, ud dassselbe Katzefutter darf mehrere Trockefutter / sei. 26 IfoSys - (E) ER ud Relatioemodell Uiversität des Saarlades

27 Komplexes Beispiel Etwickel Sie daraus ei Relatioemodell Perso m Katzefutter hat Aschrift Trockefutter Straße Wasserateil 27 IfoSys - (E) ER ud Relatioemodell Uiversität des Saarlades

28 Etitytype i Relatioe [Perso]: { [] } [Aschrift]: { [, Straße] } [Katzefutter]: { [, ] } [Trockefutter]: { [, ] } []: { [, Wasserateil] } Perso m Katzefutter hat Als Arbeitsgrudlage eifach alle Attribute ud Schlüssel aus dem Modell überehme Aschrift Trockefutter Straße Wasserateil 28 IfoSys - (E) ER ud Relatioemodell Uiversität des Saarlades

29 Spezialisieruge, Geeralisieruge, Partitioieruge [Perso]: { [] } [Aschrift]: { [, Straße] } [Katzefutter]: { [K,, ] } [Trockefutter]: { [,, K] } []: { [, Wasserateil, K] } Perso m Katzefutter hat Aschrift Trockefutter Straße Wasserateil 29 IfoSys - (E) ER ud Relatioemodell Uiversität des Saarlades

30 Beziehugstype i Relatioe umwadel [Perso]: { [] } [Aschrift]: { [, Straße] } [Katzefutter]: { [K,, ] } [Trockefutter]: { [,, K] } []: { [, Wasserateil, K] } []: {K, } [hat]: {, } Perso m Katzefutter hat Beziehugsrelatio erhält jeweils Primärschlüssel der beteiligte Relatioe Aschrift Trockefutter Straße Wasserateil 30 IfoSys - (E) ER ud Relatioemodell Uiversität des Saarlades

31 : ud : Beziehuge verschmelze falls möglich [Perso]: { [] } [Aschrift]: { [,, Straße] } [Katzefutter]: { [K,, ] } [Trockefutter]: { [,, K] } []: { [, Wasserateil, K] } []: {K, } Perso m Katzefutter hat Beim Verschmelze vo hat mit Aschrift muss als Primärschlüssel ethalte sei, damit Existezabhägigkeit erhalte bleibt Aschrift Trockefutter Straße Wasserateil 3 IfoSys - (E) ER ud Relatioemodell Uiversität des Saarlades

32 Foto: M. Strauch Zum Abschluss

33 Wie geht es weiter? bis Sotag, , 2 Uhr Abgabe der vierte Gruppeaufgabe als PDF-Datei i Moodle bis Motag, , 2 Uhr Quiz: Relatioealgebra Diestag, , GHH 2-4 Uhr: Tutoriumstermi Besprechug vo Aufgabeblatt 4: UML-Klassediagramm ächstes Aufgabeblatt: Umwadlug (E)ER is Relatioemodell Doertag, , GHH 0-2 Uhr: Präseztermi Schwierige Fälle bei der relatioale Algebra 33 IfoSys - (E) ER ud Relatioemodell Uiversität des Saarlades

Kunde. Kontobewegung

Kunde. Kontobewegung Techische Uiversität Müche WS 2003/04, Fakultät für Iformatik Datebaksysteme I Prof. R. Bayer, Ph.D. Lösugsblatt 4 Dipl.-Iform. Michael Bauer Dr. Gabi Höflig 17.11. 2003 Abbildug E/R ach relatioal - Beispiel:

Mehr

Universität Stuttgart Fachbereich Mathematik. 1 Lineare Abbildungen und Matrizen. 1.1 Um was geht es?

Universität Stuttgart Fachbereich Mathematik. 1 Lineare Abbildungen und Matrizen. 1.1 Um was geht es? Uiversität Stuttgart Fachbereich Mathematik Prof Dr C Hesse PD Dr P H Lesky Dipl Math D Zimmerma Msc J Köller FAQ 4 Höhere Mathematik 724 el, kyb, mecha, phys Lieare Abbilduge ud Matrize Um was geht es?

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Aussagenlogik Schnelldurchlauf

Aussagenlogik Schnelldurchlauf Aussagelogik Schelldurchlauf Michael Leuschel Softwaretechik ud Programmiersprache Lecture 3 Teil 1: Sprache (Sytax) Bestadteile Atomare Aussage (atomic propositios) Etweder wahr oder falsch (Wahrheitswert,

Mehr

Das Digitale Archiv des Bundesarchivs

Das Digitale Archiv des Bundesarchivs Das Digitale Archiv des Budesarchivs 2 3 Ihaltsverzeichis Das Digitale Archiv des Budesarchivs 4 Techische Ifrastruktur 5 Hilfsmittel zur Archivierug 5 Archivierugsformate 6 Abgabe vo elektroische Akte

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

1 Informationsmodellierung mit dem Entity-Relationship-Modell

1 Informationsmodellierung mit dem Entity-Relationship-Modell Iformatiosmodellierug mit dem Etity-Relatioship-Modell McAcid's beötigt ei eues Burgastisches Kassesystem, bei dem eie relatioale Datebak verwedet werde soll. [5 P.] Erfasse Sie die im Folgede beschriebee

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

1 Informationsmodellierung mit dem Entity-Relationship-Modell

1 Informationsmodellierung mit dem Entity-Relationship-Modell Aufgabezettel 2 (Lösugsvorschläge) Gesamtpuktzahl 40 Iformatiosmodellierug mit dem Etity-Relatioship-Modell Ei ahegelegeer Tierpark möchte ei eues System zur Verwaltug der Tierpopulatioe eiführe, bei dem

Mehr

Kombinatorik. Alexander (Axel) Straschil. 8. Dezember Begrie. 2 Permutationen, Kombinationen und Variationen

Kombinatorik. Alexander (Axel) Straschil. 8. Dezember Begrie. 2 Permutationen, Kombinationen und Variationen Kombiatori Alexader (Axel Straschil 8. Dezember 2006 Diese urze Zusammefassug über Permutatioe, Variatioe, Kombiatioe ud de Biomische Lehrsatz etstad im laufe meies Iformatistudiums a der Techische Uiversität

Mehr

ER Modell Relationenmodell

ER Modell Relationenmodell ER Modell Relatioemodell II Orgaisatio Orgaisatioseiheite Date Steuerug Fuktio ` Iformatiosobjekte Itegratio Aufgabe 0.06.006 Das Etity-Relatioship-Modell (ERM) Erster Schritt zum Aufbau eies datebakbasierede

Mehr

Einleitung. Aufgabe 1a/1b. Übung IV

Einleitung. Aufgabe 1a/1b. Übung IV Übug IV Eileitug Etity-Relatioship-Modell: Modellierug zu Aalyse- ud Etwurfszwecke (Phase 2 i Wasserfallodell). "diet dazu, de projektierte Awedugsbereich zu strukturiere." [Keper/Eickler: Datebaksystee]

Mehr

(gesprochen n über k ) sind für n k, n, k N0 wie folgt definiert: n n. (k + 1)!(n k 1)! (n + 1)!

(gesprochen n über k ) sind für n k, n, k N0 wie folgt definiert: n n. (k + 1)!(n k 1)! (n + 1)! Aufgabe.4 Die Verallgemeierug der biomische Formel für (x y ist der Biomische Lehrsatz: (x y x y, x, y R, N. (a Zeige Sie die Beziehug ( ( ( zwische de Biomialoeffiziete. (b Beweise Sie de Biomische Lehrsatz.

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id,

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id, Kreisabbilduge Im Folgede sehe wir us eie gaz spezielle Klasse vo dyamische Systeme a: Abbilduge auf dem Kreis. Diese sid eifach geug, so dass wir sie och recht leicht aalysiere köe, habe aber adererseits

Mehr

Die Forschungsdatenbank zu Inschriften/Scans/Bildern im. Institut für Urchristentum und Antike

Die Forschungsdatenbank zu Inschriften/Scans/Bildern im. Institut für Urchristentum und Antike Gebhard Dettmar Istitut für Urchristetum ud Atike www2.hu-berli.de/ura Die Forschugsdatebak zu Ischrifte/Scas/Bilder im Istitut für Urchristetum ud Atike Eie Etwurfsdokumetatio zum Datebaketwurf ach dem

Mehr

Lösungsvorschläge zu den Aufgaben der Lernsituation 20 (S. 64, 65)

Lösungsvorschläge zu den Aufgaben der Lernsituation 20 (S. 64, 65) Lösugsvorschläge zu de Aufgabe der Lersituatio 20 (S. 64, 65) Aufgabe : a ERM für die Vermittlug vo Fahrradreise Kudeummer Vorame Nachame Straße ud Hausr. Telefoummer IBAN (FS) Buchugsummer Kudeummer (FS)

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8 Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir

Mehr

Gruppe 108: Janina Bär Christian Hörr Robert Rex

Gruppe 108: Janina Bär Christian Hörr Robert Rex TEHNIHE UNIVEITÄT HEMNITZ FAULTÄT FÜ INFOMATI Hardwarepraktikum im W /3 Versuch 3 equetielle ysteme I Gruppe 8: aia Bär hristia Hörr obert ex hemitz, 7. November Hardwarepraktikum equetielle ysteme I Aufgabe

Mehr

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac Die Gasgesetze Die Beziehug zwische olume ud Temeratur (Gesetz vo J.-L. Gay-Lussac ud J. Charles): cost. T oder /T cost. cost.. hägt h vo ud Gasmege ab. Die extraolierte Liie scheidet die Temeratur- skala

Mehr

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3 INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Normierte Vektorräume

Normierte Vektorräume Normierte Vektorräume Wir betrachte im Folgede ur Vektorräume über R 1. Sei also V ei Vektorraum. Wir möchte Metrike auf V betrachte, die im folgede Sie mit der Vektorraumstruktur verträglich sid:, y,

Mehr

Datenbanksysteme 1 Herbst-/Wintersemester Oktober 2014

Datenbanksysteme 1 Herbst-/Wintersemester Oktober 2014 Lehrstuhl für Praktische Iformatik III Prof. Dr. Guido Moerkotte Email: moer@db.iformatik.ui-maheim.de Marius Eich Email: marius.eich@ui-maheim.de Fisik Kastrati Email: kastrati@iformatik.ui-maheim.de

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

FIBU Kontoauszugs- Manager

FIBU Kontoauszugs- Manager FIBU Kotoauszugs- Maager Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Highlights... 4 2.1 Buchugsvorschläge i der Buchugserfassug... 4 2.2 Vergleichstexterstellug zur automatische Vorkotierug... 5 2.3

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Kreuztabellenanalyse und Assoziationsmaße

Kreuztabellenanalyse und Assoziationsmaße FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkomme zur Vorlesug Statistik Zusammehäge zwische omiale (ud/oder ordiale) Merkmale: aalyse ud FB 1 W. Ludwig-Mayerhofer Statistik 2 eige sich zur Darstellug

Mehr

KASSENBUCH ONLINE Online-Erfassung von Kassenbüchern

KASSENBUCH ONLINE Online-Erfassung von Kassenbüchern KASSENBUCH ONLINE Olie-Erfassug vo Kassebücher Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Itegratio i das Ageda-System... 4 3 Highlights... 5 3.1 Ituitive Olie-Erfassug des Kassebuchs... 5 3.2 GoB-sicher

Mehr

Mit Ideen begeistern. Mit Freude schenken.

Mit Ideen begeistern. Mit Freude schenken. Mehr Erfolg. I jeder Beziehug. Mit Idee begeister. Mit Freude scheke. Erfolgreiches Marketig mit Prämie, Werbemittel ud Uterehmesausstattuge. Wo Prämie ei System habe, hat Erfolg Methode. Die Wertschätzug

Mehr

Abb. 1: Woher kommen die schwarzen Quadrate?

Abb. 1: Woher kommen die schwarzen Quadrate? Has Walser, [0160916], [0161009] Umögliche pythagoreische Dreiecke Idee: Chr. Z., B. 1 Schwarze Quadrate Woher komme die beide schwarze Quadrate? Abb. 1: Woher komme die schwarze Quadrate? Sachverhalt

Mehr

10 Aussagen mit Quantoren und

10 Aussagen mit Quantoren und 0 Aussage mit Quatore ud 0.6. Eisatz vo (bereits bekater) Eistezaussage Bisher hatte wir Eistezbeweise geführt, idem wir ei passedes Objekt agegebe habe ( Setze... ). Stattdesse ka ma auch auf bereits

Mehr

Grundlagen der Mathematik (LPSI/LS-M1)

Grundlagen der Mathematik (LPSI/LS-M1) Fachbereich Mathematik Algebra ud Zahletheorie Christia Curilla Grudlage der Mathematik (LPSI/LS-M1) Übugsklausur WiSe 2010/11 - C. Curilla/S. Koch/S. Ziegehage Liebe Studierede, im Folgede fide Sie eiige

Mehr

Projektmanagement Solarkraftwerke

Projektmanagement Solarkraftwerke Projektmaagemet Solarkraftwerke Solar Forum - St. Veit 2013 Mauel Uterweger 1 Ihalt des Impulsvortrages eie Überblick über Projektmaagemet bei Solarkraftwerke zu gebe gewoee Erfahruge aufgrud eies reale

Mehr

Vorlesung Informationssysteme

Vorlesung Informationssysteme Saarbrücken, 07.05.2015 Information Systems Group Vorlesung Informationssysteme Vertiefung zu Kapitel 3: Von (E)ER nach UML Erik Buchmann (buchmann@cs.uni-saarland.de) Foto: M. Strauch Aus den Videos wissen

Mehr

1. Zahlenfolgen und Reihen

1. Zahlenfolgen und Reihen . Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

Tutorial zum Grenzwert reeller Zahlenfolgen

Tutorial zum Grenzwert reeller Zahlenfolgen MAE Mathematik: Aalysis für Igeieure Herbstsemester 206 Dr. Christoph Kirsch ZHAW Witerthur Tutorial zum Grezwert reeller Zahlefolge I diesem Tutorial lere Sie, die logische Aussage i der Defiitio des

Mehr

4.3 Relationen [ Partee 27-30, 39-51, McCawley , Chierchia ]

4.3 Relationen [ Partee 27-30, 39-51, McCawley , Chierchia ] 4 Elemetare Megetheorie 43 Relatioe [ Partee 7-30, 39-5, McCawley 48-49, Chierchia 534-536 ] Relatioe köe als spezielle Mege verstade werde Hierfür muss zuächst der Begriff eies weitere megetheoretische

Mehr

Entwurf von Datenbanken (Normalisierung)

Entwurf von Datenbanken (Normalisierung) Grudlage MS-Access97 Exkurs Datebake-Theorie 1/6 Etwurf vo Datebake (Normalisierug) Bevor ma mit der Implemetierug eier Datebak i eiem real existierede Datebaksystem begit, ist es otwedig, die Datebak

Mehr

FH Bingen 1 EnDa SS 2003

FH Bingen 1 EnDa SS 2003 FH Bige 1 EDa SS 2003 1.Grudkozepte für die Architektur vo Datebaksysteme (DaBa) 1.1Ausgagssituatio Frühere Awedugssysteme sid gekezeichet, dass zusammegehörige Programme auf viele Dateie operiere. : Verwalte

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

Organisatorische Strukturen und Stammdaten in ERP-Systemen

Organisatorische Strukturen und Stammdaten in ERP-Systemen Attributame Beschreibug Name des Lerobjekts Autor/e Zielgruppe Vorwisse Lerziel Beschreibug Dauer der Bearbeitug Keywords Orgaisatorische Strukture ud Stammdate i ERP-Systeme FH Vorarlberg: Gasser Wirtschaftsiformatik

Mehr

Potenzial-Evaluations-Programm

Potenzial-Evaluations-Programm T e l. + 4 1 3 1 3 1 2 0 8 8 0 i m d e @ i m d e. e t w w w. i m d e. e t Potezial-Evaluatios-Programm für Maagemet, Verkauf ud Sachbearbeitug vo Persoalexperte für Persoalexperte. Vorauswahl (MiiPEP)

Mehr

1 Randomisierte Bestimmung des Medians

1 Randomisierte Bestimmung des Medians Praktikum Diskrete Optimierug (Teil 0) 0.07.006 Radomisierte Bestimmug des Medias. Problemstellug ud Ziel I diesem Abschitt stelle wir eie radomisierte Algorithmus zur Bestimmug des Medias vor, der besser

Mehr

2. Datenbankentwurf mittels. Entity-Relationship - Modell (ERM) 2.1. Entities. Definitionen:

2. Datenbankentwurf mittels. Entity-Relationship - Modell (ERM) 2.1. Entities. Definitionen: - 2 - - 22-2. Datebaketwurf mittels Etity-Relatioship - Modell (ERM) Ursprug: Che 976, heute viele Variate Bedeutug: grafisches Hilfsmittel zur sematische Modellierug der Diskurswelt (Awedugsgebiet) (d.h.

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann I. Iformatio ud Nachricht 1. Iformatio ud Nachricht - Nachricht (Sytax), Sigale, Zeiche - Iformatio (Sematik), bit - Rausche 2. digitale Nachrichte - digitale Sigale (Sigalparameter aus edlicher Zeichevorrat)

Mehr

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT Qualitätskezahle für IT-Verfahre i der öffetliche Verwaltug Lösugsasätze zur Vo Stefa Bregezer Der Autor arbeitet im Bereich Softwaretest ud beschäftigt sich als Qualitätsbeauftragter mit Theme zu Qualitätssicherug

Mehr

Investitionsentscheidungsrechnung Annuitäten Methode

Investitionsentscheidungsrechnung Annuitäten Methode Mit Hilfe der köe folgede Ivestitioe beurteilt werde: eizele Ivestitioe alterative Ivestitiosobjekte optimale Ersatzzeitpukte Seite 1 Folgeder Zusammehag besteht zwische der Kapitalbarwertmethode ud der

Mehr

Die Wurzel einer Zahl a ist die Zahl, die mit sich selbst malgenommen wieder a ergibt.

Die Wurzel einer Zahl a ist die Zahl, die mit sich selbst malgenommen wieder a ergibt. Wurzel Wurzelexpoet Radikad oder auch Basis Die Wurzel eier Zahl a ist die Zahl, die mit sich selbst malgeomme wieder a ergibt. Die -te Wurzel et ma auch Quadratwurzel, dabei lässt ma die (als Wurzelexpoet)

Mehr

PrivatKredit. Direkt ans Ziel Ihrer Wünsche

PrivatKredit. Direkt ans Ziel Ihrer Wünsche PrivatKredit Direkt as Ziel Ihrer Wüsche Erlebe Sie eue Freiräume. Leiste Sie sich, was Ihe wichtig ist. Sie träume scho seit lagem vo eier eue Aschaffug, wie z. B.: eiem eue Auto eue Möbel Oder es stehe

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen . Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

Elektrotechnik und Informatik Faculty of Electrical Engineering and Computer Science

Elektrotechnik und Informatik Faculty of Electrical Engineering and Computer Science 2.4 Sematische Modelle 2.4. Der sematische Asatz Ebee des Datebaketwurfs (Wdh.): kozeptioelle Ebee logische Gesamtsicht des Aweders auf die Date uabhägig vom eigesetzte DBS-Typ Implemetierugsebee kozeptioelle

Mehr

Zur Definition. der wirksamen. Wärmespeicherkapazität

Zur Definition. der wirksamen. Wärmespeicherkapazität Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč, Büro für Bauphysik, Schöberg a Kap, Österreich Zur Defiitio der wirksae Wärespeicherkapazität vo Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč Büro für Bauphysik

Mehr

Die allgemeinen Daten zur Einrichtung von md cloud Sync auf Ihrem Smartphone lauten:

Die allgemeinen Daten zur Einrichtung von md cloud Sync auf Ihrem Smartphone lauten: md cloud Syc / FAQ Häufig gestellte Frage Allgemeie Date zur Eirichtug Die allgemeie Date zur Eirichtug vo md cloud Syc auf Ihrem Smartphoe laute: Kototyp: Microsoft Exchage / ActiveSyc Server/Domai: mailsyc.freeet.de

Mehr

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n.

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n. Reeller Vektorraum Kapitel Vektorräume Die Mege aller Vektore x mit Kompoete bezeiche wir mit x R =. : x i R, i x ud wird als -dimesioaler (reeller) Vektorraum bezeichet. Defiitio Ei Vektorraum V ist eie

Mehr

Wiederkehrende XML-Inhalte in Adobe InDesign importieren

Wiederkehrende XML-Inhalte in Adobe InDesign importieren Wiederkehrede XML-Ihalte i Adobe IDesig importiere Dieses Tutorial soll als Quick & Dirty -Kurzaleitug demostriere, wie wiederkehrede XML-Ihalte (z. B. aus Datebake) i Adobe IDesig importiert ud formatiert

Mehr

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1 Istitut für Aalysis ud Algebra Mathematik I für Studierede der E-Techik Prof Dr Volker Bach WiSe 06/7 M Sc Birgit Komader M Sc Christoph Brauer Theme: Groe Übug - Lösuge Vollstädige Iduktio - Teleskopsumme

Mehr

Nachtrag. Alternatives Buch zum Satz von Fermat 1999 bei amazon nur noch gebraucht

Nachtrag. Alternatives Buch zum Satz von Fermat 1999 bei amazon nur noch gebraucht Nachtrag Alteratives Buch zum Satz vo Fermat 1999 bei amazo ur och gebraucht 1 Uedliche (Zahle-) Mege 2 Wiederholug Steuer Bei eiem Eikomme vo ud eiem Steuersatz vo 33% müsse Sie Steuer zahle. Da werde

Mehr

Factoring. Alternative zur Bankfinanzierung?

Factoring. Alternative zur Bankfinanzierung? Factorig Alterative zur Bakfiazierug? Beschreibug Factorig Im Factorigverfahre schließ e Uterehme ud Factor eie Vertrag, auf desse Grudlage alle kü ftige Forderuge des Uterehmes laufed gekauft werde. Zuvor

Mehr

Skriptum zur ANALYSIS 1

Skriptum zur ANALYSIS 1 Skriptum zur ANALYSIS 1 Güter Lettl WS 2017/2018 1. Grudbegriffe der Megelehre ud der Logik 1.1 Naive Megelehre [Sch-St 4.1] Defiitio eier Mege ach Georg Cator (1845 1918):,,Eie Mege M ist eie Zusammefassug

Mehr

Kombinatorik. Systematisches Abzählen und Anordnen einer endlichen Menge von Objekten unter Beachtung vorgegebener Regeln.

Kombinatorik. Systematisches Abzählen und Anordnen einer endlichen Menge von Objekten unter Beachtung vorgegebener Regeln. Systematisches Abzähle ud Aorde eier edliche Mege vo Objekte uter Beachtug vorgegebeer Regel Permutatioe Variatioe Kombiatioe Permutatioe: Eie eieideutige (bijektive) Abbildug eier edliche Mege i sich

Mehr

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel.

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel. Uiversität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dr. D. Zimmerma MSc. J. Köller MSc. R. Marczizik FDSA 4 Höhere Mathematik II 30.04.2014 el, kyb, mecha, phys 1 Kovergezkriterie

Mehr

LTN-Newsletter. Evaluation 2011

LTN-Newsletter. Evaluation 2011 LTN-Newsletter Evaluatio 211 LTN-BBiT LearTechNet Bereich Bildugstechologie Uiversität Basel Vizerektorat Lehre Petersgrabe 3 CH-43 Basel ifo.ltn@uibas.ch www.ltn.uibas.ch - 2 - Ihaltsverzeichis Durchführug

Mehr

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

5. Übungsblatt Aufgaben mit Lösungen

5. Übungsblatt Aufgaben mit Lösungen 5. Übugsblatt Aufgabe mit Lösuge Aufgabe 2: Bestimme Sie alle Häufugspukte der komplexe) Folge mit de Glieder a) a = ) 5 + 7 + 2 ) b) b = i Lösug 2: a) Die Folge a ) zerfällt vollstädig i die beide Teilfolge

Mehr

Beispiel 4 (Die Urne zu Fall 4 mit Zurücklegen und ohne Beachten der Reihenfolge ) das Sitzplatzproblem (Kombinationen mit Wiederholung) Reihenfolge

Beispiel 4 (Die Urne zu Fall 4 mit Zurücklegen und ohne Beachten der Reihenfolge ) das Sitzplatzproblem (Kombinationen mit Wiederholung) Reihenfolge 1 Beispiel 4 (Die Ure zu Fall 4 mit Zurücklege ud ohe Beachte der Reihefolge ) das Sitzplatzproblem (Kombiatioe mit Wiederholug) 1. Übersicht Ziehugsmodus ohe Zurücklege des gezogee Loses mit Zurücklege

Mehr

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes.

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes. Prof. Dr. H. Breer Osabrück S 2010/2011 Mathematik III Vorlesug 81 Eigeschafte des Dachprodukts Die folgede Aussage beschreibt die uiverselle Eigeschaft des Dachproduktes. Satz 81.1. Es sei K ei Körper,

Mehr

cubus EV als Erweiterung für Oracle Business Intelligence

cubus EV als Erweiterung für Oracle Business Intelligence cubus EV als Erweiterug für Oracle Busiess Itelligece... oder wie Oracle-BI-Aweder mit Essbase-Date vo cubus outperform EV Aalytics (cubus EV) profitiere INHALT 01 cubus EV als Erweiterug für die Oracle

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

ICM Internationales Congress Center München Details Saal 12 inkl. technische Informationen und Bestuhlungsvarianten

ICM Internationales Congress Center München Details Saal 12 inkl. technische Informationen und Bestuhlungsvarianten Details ikl. techische Iformatioe ud Bestuhlugsvariate Fläche/ Räume Fläche i m² Reihe Parlamet Bakett U-Form Block 130 125 68 72 54 oder 32 40 a 30 40 16 24 b 30 40 16 24 : Perfekt für Verastaltuge bis

Mehr

SQL. Grundlagen und Datenbankdesign. Elmar Fuchs. 2. Ausgabe, April 2012 SQL

SQL. Grundlagen und Datenbankdesign. Elmar Fuchs. 2. Ausgabe, April 2012 SQL SQL Elmar Fuchs 2. Ausgabe, April 202 Grudlage ud Datebakdesig SQL 3 SQL - Grudlage ud Datebakdesig 3 Der Datebaketwurf I diesem Kapitel erfahre Sie wie sich der Datebak-Lebeszyklus vollzieht welche Etwurfsphase

Mehr

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe.

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe. Defiitioe ud Aussage zu ruppe Michael ortma Eie ruppe ist ei geordetes Paar (, ). Dabei ist eie icht-leere Mege, ist eie Verküpfug (Abbildug), wobei ma i.a. a b oder gar ur ab statt ( a, b) schreibt. Es

Mehr

Aufgaben und Lösungen der Probeklausur zur Analysis I

Aufgaben und Lösungen der Probeklausur zur Analysis I Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur

Mehr

Karten für das digitale Kontrollgerät

Karten für das digitale Kontrollgerät Karte für das digitale Kotrollgerät Wichtige Iformatioe TÜV SÜD Auto Service GmbH Die Fahrerkarte Im Besitz eier Fahrerkarte muss jeder Fahrer sei, der ei Kraftfahrzeug mit digitalem Kotrollgerät zur Persoebeförderug

Mehr

Liebe am Arbeitsplatz - die Ergebnisse

Liebe am Arbeitsplatz - die Ergebnisse Liebe am Arbeitsplatz - die Ergebisse Autor Viktoria Weber Datum der Geerierug 22. 0. 203 (5:28) Iformatioe zum Bericht BESCHREIBUNG UMFRAGESTART UMFRAGEENDE GESAMTSAMPLE NETTOBETEILIGUNG 22. 0. 203 (00:00)

Mehr

Aufgaben zur Übung und Vertiefung

Aufgaben zur Übung und Vertiefung Aufgabe zur Übug ud Vertiefug ARITHMETISCHE ZAHLENFOLGEN Berufliches Gymasium / Uterstufe () Stelle Sie fest, welche der gegebee Folge arithmetisch sid: Bestimme Sie zuächst die erste füf Folgeglieder,

Mehr

3. Taylorformel und Taylorreihen

3. Taylorformel und Taylorreihen Prof Dr Siegfried Echterhoff Aalysis Vorlesug SS 9 3 Taylorformel ud Taylorreihe Sei I R ei Itervall ud sei f : I R eie Fuktio Ziel: Wolle utersuche, wa sich die Fuktio f i eier Umgebug vo eiem Pukt I

Mehr

Vorlesung Informationssysteme

Vorlesung Informationssysteme Saarbrücken, 21.04.2015 Information Systems Group Vorlesung Informationssysteme Vertiefung zu Kapitel 2: ER-Modell Erik Buchmann (buchmann@cs.uni-saarland.de) Wer hat noch keine Gruppe? Bitte im Q&A-Forum

Mehr

Das Erstellen von Folgen mit der Last Answer Funktion

Das Erstellen von Folgen mit der Last Answer Funktion Schülerarbeitsblatt Wisseschaftlicher Recher EL-W5 WriteView Das Erstelle vo Folge mit der Last Aswer Fuktio 5 9 Die obige Folge wird ach eier eifache Regel gebildet: Zu jedem Glied wird addiert. Über

Mehr

Entity Relationship Modell

Entity Relationship Modell Etity Relatioship Modell A.Kaiser; WU-Wie MIS 90 Wahrehmug Systems vo Perso Wahrehmug Systems vo Perso 2 System (oder Ausschitt) Wahrehmug Systems vo Perso 3 Wahrehmug Systems vo Perso 4 Wahrehmug Systems

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

evohome Millionen Familien verfolgen ein Ziel: Energie zu sparen ohne auf Komfort zu verzichten

evohome Millionen Familien verfolgen ein Ziel: Energie zu sparen ohne auf Komfort zu verzichten evohome Eergie spare weiter gedacht Millioe Familie verfolge ei Ziel: Eergie zu spare ohe auf Komfort zu verzichte evohome Nie war es schöer Eergie zu spare Es gibt viele iteressate Möglichkeite, eergie-

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukture Prof. Dr. J. Esparza Lehrstuhl für Grudlage der Softwarezuverlässigkeit ud theoretische Iforatik Fakultät für Iforatik Techische Uiversität Müche http://www7.i.tu.de/u/courses/ds/ws0910

Mehr

inkl. technische Informationen und Bestuhlungsvarianten

inkl. technische Informationen und Bestuhlungsvarianten Details ikl. techische Iformatioe ud Bestuhlugsvariate Fläche/ Räume Fläche i m² Reihe Parlamet Bakett U-Form Block 130 125 68 72 54 oder 32 40 a 30 40 16 24 b 30 40 16 24 : Perfekt für Verastaltuge bis

Mehr

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik Prof. Dr. Güter Hellig lausureskript Fiazatheatik Ihalt: lausur vo WS 9/. Eifache Zise: Vorschüssigkeit ud Nachschüssigkeit. Reterechug: Reteedwert ud Retebarwert 3. Tilgugsrechug: Tilgugspla bei Ratetilgug

Mehr

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen Mathematik für Wirtschaftswisseschaftler Beispiele, Grake, Beweise c Uwe Jese 8. Oktober 2007 Ihaltsverzeichis 4 Folge, Reihe, Grezwerte, Stetigkeit 47 4. Folge ud Reihe............................ 47

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5 FU Berli: WiSe 13-14 (Aalysis 1 - Lehr.) Übugsaufgabe Zettel 9 Aufgabe 37 Idiziere Sie die folgede Summe ud Produte gemäß der Vorgabe um ud schreibe Sie sie eimal explizit aus: 5 (a) + 1) 0( Lösug. Die

Mehr

Datenbanken Entity-Relationship-Modell. Aufgabe 3:

Datenbanken Entity-Relationship-Modell. Aufgabe 3: Aufgabe 3: Datebake Etity-Relatioship-Modell a) Gebe sie die Komplexität der folgede Situatioe a. Erstelle Sie jeweils ei ER- Diagramm. Formuliere Sie sivolle Geschäftsregel.. Eie Ladekette möchte Iformatioe

Mehr