Statistisches Programmieren

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Statistisches Programmieren"

Transkript

1 Statistisches Programmieren Session 1 1 Was ist R R ist eine interaktive, flexible Software-Umgebung in der statistische Analysen durchgeführt werden können. Zahlreiche statistische Funktionen und Prozeduren werden zur Verfügung gestellt und die Software ist frei erhältlich. Der Syntax und der grundlegende Aufbau orientiert sich an der kommerziellen Software S. R bietet außer der Möglichkeit statistische Analysen durchzuführen 1. Stukturen einer Programmiersprache (Loops, Branches, Funktionskonstrukt) 2. Möglichkeiten der graphischen Datenanalyse. 3. Schnittstellen zu Datenbanken, Excel,... 2 Die R Console - ein besserer Taschenrechner In der R-Konsole hat man die Möglichkeit einfache Rechnungen durchzuführen und Funktionen aufzurufen. Arithmetische Operationen werden mit den Symbolen +, -, *, / bzw ˆ notiert. > 1+1 [1] 2 > 2^{0.5} [1] > (1+1)*7 [1] 14 > 1+1*7 [1] 8 > 2.1/2 [1] 1.05 Funktionsaufrufe sind von der Form funktionsname(argument1, argument2,... ). Zum Beispiel kann man 2 auch durch den Befehl 1

2 > sqrt(2) [1] berechnen. Andere Beispiele sind > exp(2) [1] > log( ) [1] 2 > factorial(100) [1] e+157 > sin(sqrt(2)) [1] Achtung: R ist case sensitve, d.h. SQRT(2) oder Sqrt(2) würden eine Fehlermeldung produzieren. > Sqrt(2) Fehler: konnte Funktion Sqrt nicht finden R kennt eine Vielzahl von Funktionen. Um die genaue Funktionsweise einer Funktion herauszufinden, kann man sich der Funktion help bedienen. Der Syntax ist help(funktionsname). Zum Beispiel > help(sqrt) Hat eine Funktion mehr als ein Argument, so muss man entweder die genaue Reihenfolge der Argumente kennen oder man benennt die übergebenen Werte entsprechend der Argumentnamen. Die Funktion round() hat zum Beispiel die Argumente x und digits. Nach dem Gesagten sind also folgende Befehle gleichbedeutend > round(sqrt(2),2) [1] 1.41 > round(x=sqrt(2), digits=2) [1] 1.41 > round(digits=2, x=sqrt(2)) [1] 1.41 Manche Argumente in einem Funktionsaufruf werden unbedingt benötigt, während andere Argumente optional sind. Optionale Argumente haben immer 2

3 einen Standardwert, der verwendet wird, wenn das Argument nicht spezifiziert wird. Das Argument digits der Funktion round() ist zum Beispiel ein optionales Element mit Standardwert 0. > round(sqrt(2)) [1] 1 Die Namen der Argumente und welche Argumente optional sind, ist der sogenannten Signatur der Funktion (Funktionsname und Argumente) zu entnehmen. Die Signatur einer Funktion findet sich in dem entsprechenden Eintrag in der Hilfe. Die Signatur von round() ist zum Beispiel: round(x, digits = 0). Die Tatsache das dem Argument Digits der Wert 0 zugewiesen wird, signalisiert, dass das Argument den Standardwert 0 hat und daher ein optionales Element ist. 3 Variablen und Zuweisungen R bietet die Möglichkeit, Ergebnisse von Berechnungen in Variablen zu speichern. Dies ist offensichtlich bei Rechnungen, die aus mehreren Teilschritten bestehen, eine Notwendigkeit. R kennt folgende grundlegende (atomare) Typen von Variablen 1. numeric: Integer und Double Datentyp, mögliche Werte: Zahlen x zwischen mit x <= und (64 bit, double precision) 2. complex: complexe Zahlen 3. logical: logischer Datentyp, mögliche Werte: TRUE und FALSE 4. character: Zeichen, mögliche Werte: Buchstaben, Zahlen, Satzzeichen,... Zuweisungen erfolgen mittels der Operatoren < oder > Operatoren. Der Inhalt einer Variable kann überprüft werden, indem man den Variablennamen eingibt. Wie auch bei Funktionsnamen gilt auch für Variablennamen, dass R case sensitive ist. 3

4 (> a <- 1) [1] 1 > (sqrt(2) -> b) [1] > (c <- a>b) [1] FALSE > (d <- a<b) [1] TRUE > (e = :) ) [1] :) Um zu überprüfen, von welchem Datentyp eine bestimmte Variable ist, verwendet man die Funktion mode() oder alternativ is.type(). > mode(a) [1] numeric > is.numeric(a) [1] TRUE > is.logical(a) [1] FALSE > is.logical(is.numeric(a)) [1] TRUE Die erzeugte Variablen bleiben im Speicher bis R beendet wird. Um sich einen Überblick über die sich im Speicher befindlichen Variablen zu verschaffen, kann man die Funktion ls() verwenden. Um eine detailliertere Liste zu erhalten, verwendet man ls.str(). > a <- 1 > b <- TRUE > c <- 1:100 > ls() [1] a b c > ls.str() a : num 1 b : logi TRUE c : int [1:100] Um Variablen aus dem Speicher zu löschen, verwendet man den Befehl rm(variablenname). Angewandt auf die obige Situation: 4

5 rm(a) ls() [1] b c Man kann statt einem Variablennamen auch eine Liste von Variablennamen übergeben. Insbesondere löscht der Befehl rm(list=ls()) alle momentan definierten Variablen aus dem Workspace. 4 Vektoren, Matrizen und Arrays 4.1 Vektoren Einzelne Variablen können zu Vektoren zusammengefasst werden. Hierbei kann man sich der Funktion c() auf folgende Weise bedienen > (a <- c(1,2,3)) [1] > c(a, 4, 5) [1] Mit numerischen Vektoren kann man genauso wie mit Zahlen rechnen. Operationen werden hierbei Punktweise durchgeführt. 5

6 > (a <- 1:3) [1] > a+5 [1] > (b = 4:6) [1] > a*b [1] > a+b [1] > a-b [1] > a/b [1] > fahrenheit <- c( 17, 32, 0, 104, -12) > (celsius <- (fahrenheit - 32) * 5/9) [1] > a+b==5 [1] TRUE FALSE FALSE Für logische Vektoren sind die logischen Operatoren & (und), (oder) und! (nicht) definiert. Die Funktion xor() liefert das exklusive Oder. > a <- c(false, TRUE, TRUE, TRUE, FALSE) > b <- c(true, TRUE, TRUE, FALSE, FALSE) > a b [1] TRUE TRUE TRUE TRUE FALSE > a&b [1] FALSE TRUE TRUE FALSE FALSE >!a [1] TRUE FALSE FALSE FALSE TRUE > xor(a,b) [1] TRUE FALSE FALSE TRUE FALSE R bietet zahlreiche Methoden zur Datenkonversion an. Konversionen werden mit der Funktion as.type() durchgeführt. 6

7 > (a <- 1:10) [1] > as.character(a) [1] > as.numeric(a) [1] > b <- c(0, 1, 2, 3, 0, 0) > as.logical(b) [1] FALSE TRUE TRUE TRUE FALSE FALSE 4.2 Matrizen Matrizen können in R zum Beispiel mit der Funktion matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL) generiert werden. Das Argument data sollte hierbei eine Vektor sein, der die Einträge der Matrix enthält. Die Argumente nrow und ncol bestimmen die Form der Matrix. > matrix(1:16, ncol=4, nrow=4) [,1] [,2] [,3] [,4] [1,] [2,] [3,] [4,] > matrix(1:16, ncol=8, nrow=2) [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [1,] [2,] Das logische Argument byrow kann verwendet werden, um zu bestimmen, ob Matrizen spalten- oder zeilenweise eingelesen werden sollen (default: spaltenweise). Matrizen können mit den Funktionen cbind und rbind spalten- bzw zeilenweise zusammengefügt werden (siehe Hilfe). In R erlaubt es mit Matrizen wie gewohnt zu rechnen. Die Operatoren +, funktionieren wie erwartet (punktweise), während bei zwischen punktweiser Multiplikation mit und Matrixmultiplikation mit % % unterschieden wird. 7

8 > A = matrix(1:4, nrow=2, ncol=2) > A%*%A [,1] [,2] [1,] 7 15 [2,] > A*A [,1] [,2] [1,] 1 9 [2,] Arrays Vektoren können als eindimensionale Arrays und Matrizen als zweidimensionale Arrays aufgefasst werden. R bietet die Möglichkeit auch Arrays höherer Dimension zu definieren. Analog zu Matrizen gibt kann ein Array mittels der Funktion array(data = NA, dim = length(data), dimnames = NULL) erzeugt werden. Zu beachten ist hierbei, dass die Dimensionen des Arrays hier mittels des Vektors dim spezifiziert werden (vergleiche nrows und ncols im Falle einer Matrix). 4.4 Indizierung Um auf Elemente einer Matrix zugreifen zu könne,n bedient man sich der eckigen Klammern. Die Indizierungsmechanismen sind prinzipiell für Vektoren, Matrizen und Arrays gleich. Es gibt grundsätzlich zwei Arten der Indizierung. Einerseits kann man die Positionen der Werte angeben, die man ansehen oder ändern will... 8

9 > x=8:1 > x[2] [1] 7 > x[c(2,4)] [1] 7 5 > A = matrix(x, nrow=2, ncol=4) > A[1,3] [1] 4 > A[2, 4] [1] 1 > A[3,1] Fehler: Indizierung außerhalb der Grenzen > A[cbind(c(1,2), c(2,2))] [1] 6 5 > B = array(x, c(2,2,2)) > B[1,2,1] [1] 6... andererseits kann man sich der logischen Indizierung bedienen. Bei der logischen Indizierung wird eine Datenstruktur (Vektor, Matrix, Array) von logischen Variablen übergeben, die die selbe Dimension hat wie die zu indizierende Struktur. Die logische Variable wählt die Elemente aus, an deren Position sie selbst den Wert TRUE aufweist. > x[c(true, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE)] [1] > x[x<=3] [1] > x[x%%3 == 0] [1] 6 3 > A[x<=4 & x%%2==1] [1] 3 1 9

10 5 Beispiele 1. Generiere einen Vektor, der alle Geraden Zahlen von 2 bis 20 enthält (a) mittels dem : Operator (b) mittels der Funktion seq 2. Generiere die Vektoren aus Beispiel 1 in umgekehrter Reihenfolge. 3. Generiere einen Vektor, der aus allen durch 5 teilbaren und allen durch 3 teilbaren Zahlen von 1 bis 20, und keine Zahl doppelt enthält. Benutze zur Lösung die Funkion union(), um die Vektoren der Zahlen, die durch 3 bzw 5 teilbar sind, zu vereinigen. 4. Löse Beispiel 3 mittels logischer Indizierung des Vektors 1:20. Erstelle hierzu mittels des Modulo-Operators %% einen logischen Indexvektor. 5. Benutze die Funktion sort(), um den Vektor [1, 13, 4, 8, 5, 2] aufsteigend bzw absteigend zu sortieren. 6. Berechne die Stichprobenvarianz von [ ], mittels der Funktion sum() und Vektoroperationen. 7. (a) Erzeuge eine (n n) Matrix A = (a ij ) n i,j=1 mit a ij = (j 1) n + i. Benutze die Funktion matrix(). (b) Verwende die Matrix A, um eine Matrix B zu erzeugen, die punktweise multipliziert mit einer beliebigen (n n) Matrix C = (c ij ) n i,j=1, folgendes Ergebnis produziert { c ij, i j B.C = 0, sonst Also die entsprechende obere Dreiecksmatrix extrahiert. 8. Erzeuge eine (n n) Matrix B die punktweise multipliziert mit einer beliebigen Matrix A, eine Matrix C ergibt in der alle Einträge außerhalb eines Bandes um die Diagonale 0 sind und alle Einträge innerhalb des Bandes mit den entsprechenden Einträgen von A übereinstimmen. Zum Beispiel π e B = extrahiert B 1 aus einer (5 5) Matrix das entsprechende Band der Breite 3. 10

11 9. Gegeben seien die Datenpunkte y = (17.899, 14.62, 12.79, ) und x 1 = (12, 19, 22, 12). Bestimme den OLS Schätzer (mit Intercept) ˆβ = ( ˆβ 1, ˆβ 2 ) des linearen Modelles y = Xβ + u durch geeignete Matrixoperationen. 11

R-Wörterbuch Ein Anfang... ein Klick auf einen Begriff führt, sofern vorhanden, zu dessen Erklärung.

R-Wörterbuch Ein Anfang... ein Klick auf einen Begriff führt, sofern vorhanden, zu dessen Erklärung. R-Wörterbuch Ein Anfang... ein Klick auf einen Begriff führt, sofern vorhanden, zu dessen Erklärung. Carsten Szardenings c.sz@wwu.de 7. Mai 2015 A 2 B 3 C 4 D 5 F 6 R 16 S 17 V 18 W 19 Z 20 H 7 I 8 K 9

Mehr

Statistische Software (R) Konstanten. Datentypen in R. Aufruf der Hilfeseiten zu grundlegende Operatoren und Funktionen: Paul Fink, M.Sc.

Statistische Software (R) Konstanten. Datentypen in R. Aufruf der Hilfeseiten zu grundlegende Operatoren und Funktionen: Paul Fink, M.Sc. Grundlegende Operatoren und Funktionen Statistische Software (R) Paul Fink, M.Sc. Institut für Statistik Ludwig-Maximilians-Universität München Vektoren,, Listen und Data Frames Aufruf der Hilfeseiten

Mehr

Wertebereich und Genauigkeit der Zahlendarstellung

Wertebereich und Genauigkeit der Zahlendarstellung Wertebereich und Genauigkeit der Zahlendarstellung Sowohl F als auch C kennen bei ganzen und Floating Point-Zahlen Datentypen verschiedener Genauigkeit. Bei ganzen Zahlen, die stets exakt dargestellt werden

Mehr

Informationsverarbeitung im Bauwesen

Informationsverarbeitung im Bauwesen V14 1 / 30 Informationsverarbeitung im Bauwesen Markus Uhlmann Institut für Hydromechanik WS 2009/2010 Bemerkung: Verweise auf zusätzliche Information zum Download erscheinen in dieser Farbe V14 2 / 30

Mehr

Java Einführung Operatoren Kapitel 2 und 3

Java Einführung Operatoren Kapitel 2 und 3 Java Einführung Operatoren Kapitel 2 und 3 Inhalt dieser Einheit Operatoren (unär, binär, ternär) Rangfolge der Operatoren Zuweisungsoperatoren Vergleichsoperatoren Logische Operatoren 2 Operatoren Abhängig

Mehr

Reihungen. Martin Wirsing. in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03

Reihungen. Martin Wirsing. in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03 Reihungen Martin Wirsing in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03 2 Ziele Die Datenstruktur der Reihungen verstehen: mathematisch und im Speicher Grundlegende Algorithmen auf Reihungen

Mehr

Einfaches Datenmanagement in R

Einfaches Datenmanagement in R Einfaches Datenmanagement in R Achim Zeileis 2009-02-20 1 Daten einlesen Datensätze werden in R typischerweise als Objekte der Klasse "data.frame" dargestellt. In diesen entsprechen die Zeilen den Beobachtungen

Mehr

Eine Einführung in R: Grundlagen I

Eine Einführung in R: Grundlagen I Eine Einführung in R: Grundlagen I Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws11/r-kurs/

Mehr

Lineare Algebra mit dem Statistikprogramm R

Lineare Algebra mit dem Statistikprogramm R SEITE 1 Lineare Algebra mit dem Statistikprogramm R 1. Verwendung von Variablen Variablen werden in R definiert, indem man einem Variablennamen einen Wert zuweist. Bei Variablennamen wird zwischen Groß

Mehr

Erwin Grüner 15.12.2005

Erwin Grüner 15.12.2005 FB Psychologie Uni Marburg 15.12.2005 Themenübersicht Mit Hilfe der Funktionen runif(), rnorm() usw. kann man (Pseudo-) erzeugen. Darüber hinaus gibt es in R noch zwei weitere interessante Zufallsfunktionen:

Mehr

2. Programmierung in C

2. Programmierung in C 2. Programmierung in C Inhalt: Überblick über Programmiersprachen, Allgemeines zur Sprache C C: Basisdatentypen, Variablen, Konstanten Operatoren, Ausdrücke und Anweisungen Kontrollstrukturen (Steuerfluss)

Mehr

Wahrscheinlichkeitsrechnung und Mathematische Statistik für Informatiker Software Folien von JProf. Uwe Ligges. Jörg Rahnenführer WS 2013/2014

Wahrscheinlichkeitsrechnung und Mathematische Statistik für Informatiker Software Folien von JProf. Uwe Ligges. Jörg Rahnenführer WS 2013/2014 Wahrscheinlichkeitsrechnung und Mathematische Statistik für Informatiker Software Folien von JProf. Uwe Ligges Jörg Rahnenführer WS 2013/2014 1 Statistiksoftware (R) 1.0 Statistiksoftware R R http://www.r-project.org

Mehr

R-Tutorial. R bietet zahlreiche Hilfe-Funktionen an. Informiere Dich über die Funktion log():

R-Tutorial. R bietet zahlreiche Hilfe-Funktionen an. Informiere Dich über die Funktion log(): Statistik für Bioinformatiker SoSe 2005 R-Tutorial Aufgabe 1: Hilfe. Logge Dich ein. Username und Passwort stehen auf dem Aufkleber am jeweiligen Bildschirm. Öffne eine Shell und starte R mit dem Befehl

Mehr

2.3 Univariate Datenanalyse in R

2.3 Univariate Datenanalyse in R 2.3. UNIVARIATE DATENANALYSE IN R 47 2.3 Univariate Datenanalyse in R Wir wollen nun lernen, wie man in R Daten elementar analysiert. R bietet eine interaktive Umgebung, Befehlsmodus genannt, in der man

Mehr

Eine Einführung in R: Grundlagen I

Eine Einführung in R: Grundlagen I Eine Einführung in R: Grundlagen I Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig 14. Oktober 2009 Bernd Klaus, Verena Zuber Grundlagen

Mehr

Der Aufruf von DM_in_Euro 1.40 sollte die Ausgabe 1.40 DM = 0.51129 Euro ergeben.

Der Aufruf von DM_in_Euro 1.40 sollte die Ausgabe 1.40 DM = 0.51129 Euro ergeben. Aufgabe 1.30 : Schreibe ein Programm DM_in_Euro.java zur Umrechnung eines DM-Betrags in Euro unter Verwendung einer Konstanten für den Umrechnungsfaktor. Das Programm soll den DM-Betrag als Parameter verarbeiten.

Mehr

Tag 9: Datenstrukturen

Tag 9: Datenstrukturen Tag 9: Datenstrukturen A) Datenstrukturen B) Cell Arrays C) Anwendungsbeispiel: Stimulation in einem psychophysikalischen Experiment A) Datenstrukturen Wenn man komplizierte Datenmengen verwalten möchte,

Mehr

PPS "Bits on Air" 1. Teil, Matlab-Tutorial Vorbereitungsaufgaben (Lösungsvorschläge)

PPS Bits on Air 1. Teil, Matlab-Tutorial Vorbereitungsaufgaben (Lösungsvorschläge) Institut für Kommunikationstechnik Prof. Dr. H. Bölcskei Sternwartstrasse 7 CH-8092 Zürich PPS "Bits on Air" 1. Teil, Matlab-Tutorial Vorbereitungsaufgaben (Lösungsvorschläge) Markus Gärtner, Samuel Brändle

Mehr

Excel Funktionen durch eigene Funktionen erweitern.

Excel Funktionen durch eigene Funktionen erweitern. Excel Funktionen durch eigene Funktionen erweitern. Excel bietet eine große Anzahl an Funktionen für viele Anwendungsbereiche an. Doch es kommt hin und wieder vor, dass man die eine oder andere Funktion

Mehr

Übungspaket 23 Mehrdimensionale Arrays

Übungspaket 23 Mehrdimensionale Arrays Übungspaket 23 Mehrdimensionale Arrays Übungsziele: Skript: Deklaration und Verwendung mehrdimensionaler Arrays Kapitel: 49 Semester: Wintersemester 2016/17 Betreuer: Kevin, Matthias, Thomas und Ralf Synopsis:

Mehr

Sructred Query Language

Sructred Query Language Sructred Query Language Michael Dienert 11. November 2010 Inhaltsverzeichnis 1 Ein kurzer Versionsüberblick 1 2 SQL-1 mit einigen Erweiterungen aus SQL-92 2 3 Eine Sprache zur Beschreibung anderer Sprachen

Mehr

IDE Grundlagen Vektoren Matrizen Faktoren Dataframes Visualisierung Tips. Quick & dirty

IDE Grundlagen Vektoren Matrizen Faktoren Dataframes Visualisierung Tips. Quick & dirty Quick & dirty Eine pragmatische Einführung in R (Seminar Forschungsevaluation, Universität Wuppertal) Stephan Holtmeier kibit GmbH, stephan@holtmeier.de 31. Mai 2013 1 / 24 Unsere Entwicklungsumgebung:

Mehr

Programmierkurs Java

Programmierkurs Java Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen

Mehr

Deklarationen in C. Prof. Dr. Margarita Esponda

Deklarationen in C. Prof. Dr. Margarita Esponda Deklarationen in C 1 Deklarationen Deklarationen spielen eine zentrale Rolle in der C-Programmiersprache. Deklarationen Variablen Funktionen Die Deklarationen von Variablen und Funktionen haben viele Gemeinsamkeiten.

Mehr

Das einfachste Objekt ist ein Vektor, der aus mehreren Elementen besteht. Ein Vektor wird auf diese Weise erzeugt:

Das einfachste Objekt ist ein Vektor, der aus mehreren Elementen besteht. Ein Vektor wird auf diese Weise erzeugt: Die Grundlagen der R-Programmiersprache Jonathan Harrington 1. Vektoren 1.1 Elemente Es gibt verschiedene Sorten von Objekten in R, in denen Daten gespeichert werden können. In R können Objekte beliebige

Mehr

Modul 122 VBA Scribt.docx

Modul 122 VBA Scribt.docx Modul 122 VBA-Scribt 1/5 1 Entwicklungsumgebung - ALT + F11 VBA-Entwicklungsumgebung öffnen 2 Prozeduren (Sub-Prozeduren) Eine Prozedur besteht aus folgenden Bestandteilen: [Private Public] Sub subname([byval

Mehr

Arrays. Theorieteil. Inhaltsverzeichnis. Begriffe. Programmieren mit Java Modul 3. 1 Modulübersicht 3

Arrays. Theorieteil. Inhaltsverzeichnis. Begriffe. Programmieren mit Java Modul 3. 1 Modulübersicht 3 Programmieren mit Java Modul 3 Arrays Theorieteil Inhaltsverzeichnis 1 Modulübersicht 3 2 Eindimensionale Arrays 3 2.1 Arrays deklarieren.............................. 3 2.2 Arrays erzeugen................................

Mehr

Praktikum Funktionale Programmierung Teil 1: Lexen und Parsen

Praktikum Funktionale Programmierung Teil 1: Lexen und Parsen Praktikum Funktionale Programmierung Teil 1: Lexen und Parsen Professur für Künstliche Intelligenz und Softwaretechnologie Sommersemester 2009 Überblick Teil 1: Lexen und Parsen Die Sprache LFP +C Professur

Mehr

Eine Kurzanleitung zu Mathematica

Eine Kurzanleitung zu Mathematica MOSES Projekt, GL, Juni 2003 Eine Kurzanleitung zu Mathematica Wir geben im Folgenden eine sehr kurze Einführung in die Möglichkeiten, die das Computer Algebra System Mathematica bietet. Diese Datei selbst

Mehr

VisualBasic - Variablen

VisualBasic - Variablen Typisch für alle Basic-Dialekte ist die Eigenschaft, dass Variablen eigentlich nicht deklariert werden müssen. Sobald Sie einen Bezeichner schreiben, der bisher nicht bekannt war, wird er automatisch angelegt

Mehr

5 DATEN. 5.1. Variablen. Variablen können beliebige Werte zugewiesen und im Gegensatz zu

5 DATEN. 5.1. Variablen. Variablen können beliebige Werte zugewiesen und im Gegensatz zu Daten Makro + VBA effektiv 5 DATEN 5.1. Variablen Variablen können beliebige Werte zugewiesen und im Gegensatz zu Konstanten jederzeit im Programm verändert werden. Als Variablen können beliebige Zeichenketten

Mehr

Kurze Einführung in die Programmiersprache C++ und in Root

Kurze Einführung in die Programmiersprache C++ und in Root Kurze Einführung in die Programmiersprache C++ und in Root Statistik, Datenanalyse und Simulation; 31.10.2006 Inhalt 1 Einführung in die Programmiersprache C++ Allgemeines Variablen Funktionen 2 1 Einführung

Mehr

Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung.

Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung. Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung. Die heutige Sitzung dient dem ersten Kennenlernen von MATLAB. Wir wollen MATLAB zuerst

Mehr

2 Einfache Rechnungen

2 Einfache Rechnungen 2 Einfache Rechnungen 2.1 Zahlen Computer, auch bekannt als Rechner, sind sinnvoller eingesetzt, wenn sie nicht nur feste Texte ausgeben, sondern eben auch rechnen. Um das Rechnen mit Zahlen zu verstehen,

Mehr

Übung 4: Einführung in die Programmierung mit MATLAB

Übung 4: Einführung in die Programmierung mit MATLAB Übung 4: Einführung in die Programmierung mit MATLAB AUFGABE 1 Was bewirkt der Strichpunkt? - Der Strichpunkt (Semikola) unterdrück die Anzeige der (Zwischen-) Resultate. Welche Rolle spielt ans? - Wenn

Mehr

Prozess und Statistik. Einführung in. Eine R-Übersicht und Motivation R in der täglichen Arbeit zu nutzen. Günter Faes faes.de.

Prozess und Statistik. Einführung in. Eine R-Übersicht und Motivation R in der täglichen Arbeit zu nutzen. Günter Faes faes.de. Einführung in Eine R-Übersicht und Motivation R in der täglichen Arbeit zu nutzen Seite: 1 Präsentationsthemen Was ist R? R Installation R Grundlagen Das Menü Die ersten Schritte R Daten-Objekte und deren

Mehr

Einführung in die Programmierung (MA8003)

Einführung in die Programmierung (MA8003) Theorie 2.1: Relationale und logische Operatoren, Funktionen Dr. Lorenz John Technische Universität München Fakultät Mathematik, Lehrstuhl für Numerische Mathematik M2 05.10.2016 Ablauf Theorie 1.1+1.2

Mehr

Einführung in die formale Demographie Übung

Einführung in die formale Demographie Übung Einführung in die formale Demographie Übung Roland Rau mailto:roland.rau@uni-rostock.de 10. Oktober 2016 Inhaltsverzeichnis 1 Überblick 2 2 Erste Schritte in R 2 2.1 Woher erhalte ich R?...............................

Mehr

Einführung in die Java- Programmierung

Einführung in die Java- Programmierung Einführung in die Java- Programmierung Dr. Volker Riediger Tassilo Horn riediger horn@uni-koblenz.de WiSe 2012/13 1 Wichtig... Mittags Pommes... Praktikum A 230 C 207 (Madeleine) F 112 F 113 (Kevin) E

Mehr

Zugriff auf Matrizen. Anhängen von Elementen. Punktweise Operatoren. Vektoren und Matrizen in MATLAB II

Zugriff auf Matrizen. Anhängen von Elementen. Punktweise Operatoren. Vektoren und Matrizen in MATLAB II Zugriff auf Matrizen. Anhängen von Elementen. Punktweise Operatoren. Vektoren und Matrizen in MATLAB II Matrixzugriff Wir wollen nun unsere Einführung in die Arbeit mit Vektoren und Matrizen in MATLAB

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Programmieren. Aufgabe 1 (Eine erste Datenstruktur)

Programmieren. Aufgabe 1 (Eine erste Datenstruktur) Prof. Dr. S.-J. Kimmerle (Vorlesung) Dipl.-Ing. (FH) V. Habiyambere (Übung) Institut BAU-1 Fakultät für Bauingenieurwesen und Umweltwissenschaften Herbsttrimester 2016 Aufgabe 1 (Eine erste Datenstruktur)

Mehr

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Statistische Auswertungen mit R Universität Kassel, FB 07 Wirtschaftswissenschaften Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Beispiele 2. Sitzung Wertzuweisungen zu Objekten, Vektoren, Matrizen,

Mehr

WiMa-Praktikum 1. Woche 8

WiMa-Praktikum 1. Woche 8 WiMa-Praktikum 1 Universität Ulm, Sommersemester 2017 Woche 8 Lernziele In diesem Praktikum sollen Sie üben und lernen: Besonderheiten der For-Schleife in Matlab Wiederholung des Umgangs mit Matrizen und

Mehr

Einführung in MATLAB

Einführung in MATLAB Kapitel 4 Einführung in MATLAB 41 Allgemeines MATLAB ist eine kommerzielle mathematische Software zur Lösung mathematischer Probleme und zur graphischen Darstellung der Ergebnisse Die Verfahren in MATLAB

Mehr

Matrizen. Jörn Loviscach. Versionsstand: 12. April 2010, 19:00 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung.

Matrizen. Jörn Loviscach. Versionsstand: 12. April 2010, 19:00 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Matrizen Jörn Loviscach Versionsstand: 12. April 2010, 19:00 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. 1 Matrix Ein rechteckige Anordnung von mathematischen Objekten

Mehr

Running R. Windows Aus Menü. Lese R Code ein führt den Code auch gleich aus, eventuell muss vorher das Verzeichnis gewechselt werden.

Running R. Windows Aus Menü. Lese R Code ein führt den Code auch gleich aus, eventuell muss vorher das Verzeichnis gewechselt werden. Einführung 1 / 1 Einführung 2/1 Running R Windows Aus Menü Linux Lese R Code ein führt den Code auch gleich aus, eventuell muss vorher das Verzeichnis gewechselt werden. Auf der Konsole/Eingabeaufforderung:

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

Matrizen. Jörn Loviscach

Matrizen. Jörn Loviscach Matrizen Jörn Loviscach Versionsstand: 7. April 2010, 14:27 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.youtube.com/joernloviscach 1 Matrix Ein

Mehr

II. Grundlagen der Programmierung. 9. Datenstrukturen. Daten zusammenfassen. In Java (Forts.): In Java:

II. Grundlagen der Programmierung. 9. Datenstrukturen. Daten zusammenfassen. In Java (Forts.): In Java: Technische Informatik für Ingenieure (TIfI) WS 2005/2006, Vorlesung 9 II. Grundlagen der Programmierung Ekkart Kindler Funktionen und Prozeduren Datenstrukturen 9. Datenstrukturen Daten zusammenfassen

Mehr

Objektorientierte Programmierung

Objektorientierte Programmierung Objektorientierte Programmierung 1 Geschichte Dahl, Nygaard: Simula 67 (Algol 60 + Objektorientierung) Kay et al.: Smalltalk (erste rein-objektorientierte Sprache) Object Pascal, Objective C, C++ (wiederum

Mehr

Algorithmen und ihre Programmierung

Algorithmen und ihre Programmierung Veranstaltung Pr.-Nr.: 101023 Algorithmen und ihre Programmierung Veronika Waue WS 07/08 Einführung Definition: Algorithmus Ein Algorithmus ist eine genau definierte Folge von Anweisungen zur Lösung eines

Mehr

Projekt 3 Variablen und Operatoren

Projekt 3 Variablen und Operatoren Projekt 3 Variablen und Operatoren Praktisch jedes Programm verarbeitet Daten. Um mit Daten programmieren zu können, muss es Möglichkeiten geben, die Daten in einem Programm zu verwalten und zu manipulieren.

Mehr

Java Kurs für Anfänger Einheit 2 Datentypen und Operationen

Java Kurs für Anfänger Einheit 2 Datentypen und Operationen Java Kurs für Anfänger Einheit 2 Datentypen und Operationen Ludwig-Maximilians-Universität München (Institut für Informatik: Programmierung und Softwaretechnik von Prof.Wirsing) 16. Mai 2009 Inhaltsverzeichnis

Mehr

VBA-Programmierung: Zusammenfassung

VBA-Programmierung: Zusammenfassung VBA-Programmierung: Zusammenfassung Programmiersprachen (Definition, Einordnung VBA) Softwareentwicklung-Phasen: 1. Spezifikation 2. Entwurf 3. Implementierung Datentypen (einfach, zusammengesetzt) Programmablaufsteuerung

Mehr

In der Computersprache C ist die Standardmethode zur Behandlung von Matrizen durch

In der Computersprache C ist die Standardmethode zur Behandlung von Matrizen durch Kapitel Matrizen in C++ In der Computersprache C ist die Standardmethode zur Behandlung von Matrizen durch 1 const int n=10; 3 double a[n][n]; gegeben. Allerdings gibt es bei dieser Methode eine Reihe

Mehr

Matrizenoperationen mit FORTRAN

Matrizenoperationen mit FORTRAN Kapitel 2 Matrizenoperationen mit FORTRAN 21 Grundlagen Bei vielen Anwendungen müssen große zusammenhängende Datenmengen gespeichert und verarbeitet werden Deshalb ist es sinnvoll, diese Daten nicht als

Mehr

Grundlagen der Programmiersprache C++

Grundlagen der Programmiersprache C++ / TU Braunschweig Grundlagen der Programmiersprache C++ Um den Studierenden den Einstieg in die FE-Programmierung zu erleichtern werden die wesentlichen Elemente eines C-Programmes beschrieben, soweit

Mehr

MATLAB Eine Einführung

MATLAB Eine Einführung MATLAB Eine Einführung Samuel Ferraz-Leite Institut für Analysis und Scientific Computing Technische Universität Wien 1 MATLAB-Buch Christoph Überhuber Stefan Katzenbeisser Dirk Praetorius MATLAB 7 Eine

Mehr

float: Fließkommazahl nach IEEE 754 Standard mit 32 bit

float: Fließkommazahl nach IEEE 754 Standard mit 32 bit Primitive Datentypen Fließkommazahlen float: Fließkommazahl nach IEEE 754 Standard mit 32 bit Vorzeichen Exponent 8 bit Mantisse 23 bit double: Fließkommazahl nach IEEE 754 Standard mit 64 bit Vorzeichen

Mehr

Datentypen. Agenda für heute, 4. März, 2010. Pascal ist eine streng typisierte Programmiersprache

Datentypen. Agenda für heute, 4. März, 2010. Pascal ist eine streng typisierte Programmiersprache Agenda für heute, 4. März, 2010 Zusammengesetzte if-then-else-anweisungen Datentypen Pascal ist eine streng typisierte Programmiersprache Für jeden Speicherplatz muss ein Datentyp t (Datenformat) t) definiert

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

Arbeiten mit Arrays. 4.1 Eigenschaften. 4.1.1 Schlüssel und Element. Kapitel 4

Arbeiten mit Arrays. 4.1 Eigenschaften. 4.1.1 Schlüssel und Element. Kapitel 4 Arbeiten mit s Eine effiziente Programmierung mit PHP ohne seine s ist kaum vorstellbar. Diese Datenstruktur muss man verstanden haben, sonst brauchen wir mit weitergehenden Programmiertechniken wie der

Mehr

2. Grundlagen der technischen Software - Beispiel: MathCAD 2.1 Einführung 2.2 Grundlagen an Beispielen

2. Grundlagen der technischen Software - Beispiel: MathCAD 2.1 Einführung 2.2 Grundlagen an Beispielen Gliederung 2. Grundlagen der technischen Software - Beispiel: MathCAD 2.1 Einführung 2.2 Grundlagen an Beispielen 2.1 Einführung 2-01 MathCAD im Überblick Taschenrechner für numerische Berechnungen Industriestandard-Rechensoftware

Mehr

Dr. Monika Meiler. Inhalt

Dr. Monika Meiler. Inhalt Inhalt 5 Referenzdatentypen - Felder... 5-2 5.1 Eindimensionale Felder - Vektoren... 5-3 5.1.1 Vereinbarung... 5-3 5.1.2 Referenzen sind keine Felder... 5-4 5.1.3 Kopieren eindimensionaler Felder... 5-6

Mehr

PHP 5.4 ISBN 978-3-86249-327-2. Stephan Heller, Andreas Dittfurth 1. Ausgabe, September 2012. Grundlagen zur Erstellung dynamischer Webseiten GPHP54

PHP 5.4 ISBN 978-3-86249-327-2. Stephan Heller, Andreas Dittfurth 1. Ausgabe, September 2012. Grundlagen zur Erstellung dynamischer Webseiten GPHP54 PHP 5.4 Stephan Heller, Andreas Dittfurth 1. Ausgabe, September 2012 Grundlagen zur Erstellung dynamischer Webseiten ISBN 978-3-86249-327-2 GPHP54 5 PHP 5.4 - Grundlagen zur Erstellung dynamischer Webseiten

Mehr

Einführung in Matlab Was ist MATLAB? Hilfe Variablen

Einführung in Matlab Was ist MATLAB? Hilfe Variablen Einführung in Matlab Was ist MATLAB? MATLAB (Matrix Laboratory) ist eine interaktive Interpreter-Sprache, die einen einfachen Zugang zu grundlegenden numerischen Verfahren - wie beispielsweise der Lösung

Mehr

1.4.12 Sin-Funktion vgl. Cos-Funktion

1.4.12 Sin-Funktion vgl. Cos-Funktion .4. Sgn-Funktion Informatik. Semester 36 36.4.2 Sin-Funktion vgl. Cos-Funktion Informatik. Semester 37 37 .4.3 Sqr-Funktion Informatik. Semester 38 38.4.4 Tan-Funktion Informatik. Semester 39 39 .5 Konstanten

Mehr

EigenMath Howto. Beispiele: Was erhält man, wenn man 100 mal die Zahl 2 mit sich multipliziert? Antwort 1267650600228229401496703205376

EigenMath Howto. Beispiele: Was erhält man, wenn man 100 mal die Zahl 2 mit sich multipliziert? Antwort 1267650600228229401496703205376 EigenMath Howto EigenMath ist ein kleines Programm, das als 'Taschenrechner' für die Mathematik der Oberstufe verwendet werden kann. Es ist viel weniger mächtig als die großen Brüder Sage, Maxima, Axiom

Mehr

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen. Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems

Mehr

Einführung in die Programmierung (MA8003)

Einführung in die Programmierung (MA8003) Theorie 1.2: Vektoren & Matrizen II, Funktionen, Indizierung Dr. Lorenz John Technische Universität München Fakultät Mathematik, Lehrstuhl für Numerische Mathematik M2 04.10.2016 Theorie 1.2: Inhalt 1

Mehr

Einführung in die Programmierung (MA8003)

Einführung in die Programmierung (MA8003) Theorie 1.2: Vektoren & Matrizen II, Funktionen, Indizierung Dr. Laura Scarabosio Technische Universität München Fakultät Mathematik, Lehrstuhl für Numerische Mathematik M2 04.10.2017 Theorie 1.2: Inhalt

Mehr

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER. Advanced Matlab. living knowledge WWU Münster. Mario Ohlberger, Martin Drohmann, Stefan Girke 10/05/2012

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER. Advanced Matlab. living knowledge WWU Münster. Mario Ohlberger, Martin Drohmann, Stefan Girke 10/05/2012 MÜNSTER Advanced Matlab Mario Ohlberger Martin Drohmann Stefan Girke 10/05/2012 Cell Array MÜNSTER 2 /12 Datentyp der beliebige Werte (nicht nur Zahlen) in Zellen speichert die wie einer Matrix oder einem

Mehr

Einführung Datentypen Verzweigung Schleifen Funktionen Dynamische Datenstrukturen. Java Crashkurs. Kim-Manuel Klein (kmk@informatik.uni-kiel.

Einführung Datentypen Verzweigung Schleifen Funktionen Dynamische Datenstrukturen. Java Crashkurs. Kim-Manuel Klein (kmk@informatik.uni-kiel. Java Crashkurs Kim-Manuel Klein (kmk@informatik.uni-kiel.de) May 7, 2015 Quellen und Editoren Internet Tutorial: z.b. http://www.java-tutorial.org Editoren Normaler Texteditor (Gedit, Scite oder ähnliche)

Mehr

Einführung in die Programmiersprache C

Einführung in die Programmiersprache C Einführung in die Programmiersprache C Marcel Arndt arndt@ins.uni-bonn.de Institut für Numerische Simulation Universität Bonn Der Anfang Ein einfaches Programm, das Hello World! ausgibt: #include

Mehr

Unterprogramme, Pointer und die Übergabe von Arrays

Unterprogramme, Pointer und die Übergabe von Arrays Unterprogramme, Pointer und die Übergabe von Arrays Unterprogramme Wie schon im Abschnitt über Funktionen erwähnt, versteht man unter einem Unterprogramm im engeren Sinn eine Prozedur, welche die Werte

Mehr

Grundlagen und Konzepte von C Datenstrukturen

Grundlagen und Konzepte von C Datenstrukturen Grundlagen und Konzepte von C Datenstrukturen Ausarbeitung von Andreas Gadelmaier Proseminar C Grundlagen und Konzepte Arbeitsbereich Wissenschaftliches Rechnen Fachbereich Informatik Fakultät für Mathematik,

Mehr

Typdeklarationen. Es gibt in Haskell bereits primitive Typen:

Typdeklarationen. Es gibt in Haskell bereits primitive Typen: Typdeklarationen Es gibt in bereits primitive Typen: Integer: ganze Zahlen, z.b. 1289736781236 Int: ganze Zahlen mit Computerarithmetik, z.b. 123 Double: Fließkommazahlen, z.b. 3.14159 String: Zeichenketten,

Mehr

Einfache Arrays. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Einfache Arrays. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative student"

Mehr

Ein Array ist eine Liste mit Einträgen, fast wie eine Einkaufsliste. Man kann darin also mehr als einen Eintrag in eine einzige Variable speichern.

Ein Array ist eine Liste mit Einträgen, fast wie eine Einkaufsliste. Man kann darin also mehr als einen Eintrag in eine einzige Variable speichern. 04 Arrays Arrays 1/7 Was ist ein Array? Ein Array ist eine Liste mit Einträgen, fast wie eine Einkaufsliste. Man kann darin also mehr als einen Eintrag in eine einzige Variable speichern. Stell dir vor,

Mehr

Das Typsystem von Scala. L. Piepmeyer: Funktionale Programmierung - Das Typsystem von Scala

Das Typsystem von Scala. L. Piepmeyer: Funktionale Programmierung - Das Typsystem von Scala Das Typsystem von Scala 1 Eigenschaften Das Typsystem von Scala ist statisch, implizit und sicher 2 Nichts Primitives Alles ist ein Objekt, es gibt keine primitiven Datentypen scala> 42.hashCode() res0:

Mehr

R Einstieg. Manuel Eugster, Armin Monecke, Faban Scheipl. Institut für Statistik Ludwig-Maximilians-Universität München.

R Einstieg. Manuel Eugster, Armin Monecke, Faban Scheipl. Institut für Statistik Ludwig-Maximilians-Universität München. R Einstieg Manuel Eugster, Armin Monecke, Faban Scheipl Institut für Statistik Ludwig-Maximilians-Universität München Einführung in R Was ist S? S ist eine Sprache für Datenanalyse und Graphik, entwickelt

Mehr

Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 :

Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : Blockmatrizen Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : 2 1 3 1 1 0 1 0 1 0 0 2 1 1 11 1 1 4 0 1 0 1 0 1 4 1 0 2 1 0 1 0 1 0 3 1 2 1 = 2 4 3 5 11 1 1 4 0 1 0 1 0 1 5 1 2 1 2 4 3 5

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

In den USA verwendet man statt dessen eckige Klammern, was sich in der Software niederschlägt (mit Ausnahmen wie Wolfram Alpha):

In den USA verwendet man statt dessen eckige Klammern, was sich in der Software niederschlägt (mit Ausnahmen wie Wolfram Alpha): 3 Matrizen Jörn Loviscach Versionsstand: 20. März 2012, 16:02 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.j3l7h.de/videos.html This work is licensed

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 21 Einstieg in die Informatik mit Java Felder, eindimensional Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 21 1 Überblick: Was sind Felder? 2 Vereinbarung von Feldern

Mehr

Übungspaket 23 Mehrdimensionale Arrays

Übungspaket 23 Mehrdimensionale Arrays Übungspaket 23 Mehrdimensionale Arrays Übungsziele: Skript: Deklaration und Verwendung mehrdimensionaler Arrays Kapitel: 49 Semester: Wintersemester 2016/17 Betreuer: Kevin, Matthias, Thomas und Ralf Synopsis:

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 26 Einstieg in die Informatik mit Java Felder, mehrdimensional Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 26 1 Überblick: mehrdimensionale Felder 2 Vereinbarung

Mehr

Übungen 19.01.2012 Programmieren 1 Felix Rohrer. Übungen

Übungen 19.01.2012 Programmieren 1 Felix Rohrer. Übungen Übungen if / else / else if... 2... 2 Aufgabe 2:... 2 Aufgabe 3:... 2 Aufgabe 4:... 2 Aufgabe 5:... 2 Aufgabe 6:... 2 Aufgabe 7:... 3 Aufgabe 8:... 3 Aufgabe 9:... 3 Aufgabe 10:... 3 switch... 4... 4 Aufgabe

Mehr

In den USA verwendet man statt dessen eckige Klammern, was sich in der Software niederschlägt (mit Ausnahmen wie Wolfram Alpha):

In den USA verwendet man statt dessen eckige Klammern, was sich in der Software niederschlägt (mit Ausnahmen wie Wolfram Alpha): 3 Matrizen Jörn Loviscach Versionsstand: 28. März 2015, 21:32 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html This work is licensed

Mehr

Kontrollstrukturen, Pseudocode und Modulo-Rechnung

Kontrollstrukturen, Pseudocode und Modulo-Rechnung Kontrollstrukturen, Pseudocode und Modulo-Rechnung CoMa-Übung III TU Berlin 29.10.2012 CoMa-Übung III (TU Berlin) Kontrollstrukturen, Pseudocode und Modulo-Rechnung 29.10.2012 1 / 1 Themen der Übung 1

Mehr

Access Grundlagen. David Singh

Access Grundlagen. David Singh Access Grundlagen David Singh Inhalt Access... 2 Access Datenbank erstellen... 2 Tabellenelemente... 2 Tabellen verbinden... 2 Bericht gestalten... 3 Abfragen... 3 Tabellen aktualisieren... 4 Allgemein...

Mehr

Felder. Gerd Bohlender. Einstieg in die Informatik mit Java, Vorlesung vom

Felder. Gerd Bohlender. Einstieg in die Informatik mit Java, Vorlesung vom Einstieg in die Informatik mit Java, Vorlesung vom 9.5.07 Übersicht 1 Was sind? 2 Vereinbarung von n 3 Erzeugen von n 4 Zugriff auf Feldkomponenten 5 Mehrdimensionale 6 als Objekte, Referenzen Kopieren

Mehr

Einführung in die statistische Sprache R

Einführung in die statistische Sprache R Einführung in die statistische Sprache R M. Comp. Sc. Stefan Faußer Oktober 28, 2008 Überblick basiert auf der kommerziellen Sprache S, Source Code von R ist frei verfügbar (GPL) + teilweise objektorientierter,

Mehr

Filterregeln... 1. Einführung... 1. Migration der bestehenden Filterregeln...1. Alle eingehenden Nachrichten weiterleiten...2

Filterregeln... 1. Einführung... 1. Migration der bestehenden Filterregeln...1. Alle eingehenden Nachrichten weiterleiten...2 Jörg Kapelle 15:19:08 Filterregeln Inhaltsverzeichnis Filterregeln... 1 Einführung... 1 Migration der bestehenden Filterregeln...1 Alle eingehenden Nachrichten weiterleiten...2 Abwesenheitsbenachrichtigung...2

Mehr

620.900 Propädeutikum zur Programmierung

620.900 Propädeutikum zur Programmierung 620.900 Propädeutikum zur Programmierung Andreas Bollin Institute für Informatik Systeme Universität Klagenfurt Andreas.Bollin@uni-klu.ac.at Tel: 0463 / 2700-3516 Arrays Wiederholung (1/5) Array = GEORDNETE

Mehr

Zweiter Teil des Tutorials. Workspace M-files Matrizen Flow Control Weitere Datenstrukturen Gemeinsames Beispiel erarbeiten

Zweiter Teil des Tutorials. Workspace M-files Matrizen Flow Control Weitere Datenstrukturen Gemeinsames Beispiel erarbeiten Zweiter Teil des Tutorials Workspace M-files Matrizen Flow Control Weitere Datenstrukturen Gemeinsames Beispiel erarbeiten Workspace Im Workspace sind die Variablen mit ihrem jeweiligen Wert gespeichert.

Mehr

5.4 Klassen und Objekte

5.4 Klassen und Objekte 5.4 Klassen und Objekte Zusammenfassung: Projekt Figuren und Zeichner Figuren stellt Basisklassen für geometrische Figuren zur Verfügung Zeichner bietet eine übergeordnete Klasse Zeichner, welche die Dienstleistungen

Mehr

Modellierung und Programmierung 1

Modellierung und Programmierung 1 Modellierung und Programmierung 1 Prof. Dr. Sonja Prohaska Computational EvoDevo Group Institut für Informatik Universität Leipzig 19. November 2015 Gültigkeitsbereich (Scope) von Variablen { int m; {

Mehr