Mittelwerte und Zahlenfolgen Beat Jaggi,

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Mittelwerte und Zahlenfolgen Beat Jaggi, beat.jaggi@phbern.ch"

Transkript

1 vsmp sspmp ssimf Mittelwete ud Zhlefolge Bet Jggi, Eileitug Ds Bilde vo Mittelwete ist ei zetles Kozept i de Mthemtik: Lgemsse i de Sttistik (Mittelwet, Medi, Modus); Mitte, Mittelliie ode Schwepukte i geometische Figue; Mittelwetstz de Di eetilechug, Mittelwetstz de Iteglechug, etc. Klssische Mittelwete wie ds ithmetische, ds geometische ud ds hmoische Mittel tuche beeits i de Atike uf. Zwische Mittelwete ud Zhlefolge besteht ei ege Zusmmehg: So ist bei eie ithmetische Zhlefolge jedes Folgeglied (mit Aushme des este) ds ithmetische Mittel seie Nchbgliede. Aloges gilt fü geometische ud hmoische Zhlefolge. Mittelwete. Aithmetisches, geometisches ud hmoisches Mittel Fü positive eelle Zhle,,..., ist: A (,,..., ) + + G (,,..., ) p H (,,..., ) Beim Spezilfll wid Bemekuge: A (, b) + b Y i X i i! P i i ds ithmetische Mittel; ds geometische Mittel; ds hmoische Mittel. ; G (, b) p b ; H (, b) b + b + b. Ds ithmetische Mittel ist fü beliebige eelle Zhle defiiet, ds hmoische Mittel fü Zhle ugleich Null. Beim geometische Mittel df ds Podukt Q i fü gedes icht egtiv sei. De Eifchheit hlbe beschäke wi us im Folgede usschliesslich uf positive eelle Zhle.. Ds hmoische Mittel hägt mit dem ithmetische Mittel zusmme: H (, b) + b A, b De Kehwet des hmoische Mittels zweie Zhle ud b ist gleich dem ithmetische Mittel de Kehwete vo ud b. Numme 3 Septembe 03

2 Bulleti Behuptug: Es gilt: H (, b) ppleg(, b) pplea(, b) mit Gleichheit geu d, we b Beweis: Die beide Ugleichuge egebe sich us elemete Rechuge. 0 pple ( b) 0 pple b + b 4b pple +b + b ( + b) Dus folgt eieseits b pple ( + b) 4 + b ) p b pple + b deseits 4b ( + b) pple ) 4 b pple b ) ( + b) b pple b ) b + b + b pple p b Fü b wid A (, b) G (, b) H (, b) b. Die obige Rechuge zeige umgekeht, dss us A (, b) G (, b) esp.g (, b) H (, b) jeweils0( b) ud dhe b folgt. Fü Zhle beweist m die Ugleichuge H (,,..., ) pple G(,,..., ) pple A(,,..., ) mit vollstädige Iduktio (siehe z.b. []).. Itepettioe des ithmetische, geometische ud hmoische Mittels vo Zhle Die dei Mittelwete köe uf veschiedee Ate gedeutet wede: Aithmetisches Mittel: m + m {z + + m } () m Summde Geometisches Mittel: m m {z m} () m p Fktoe Hmoisches Mittel: m + m {z m} () m Summde Bemekug: Beim geometische Mittel liefet ds Bilde vo Kehwete ichts Neues: m m {z m} Fktoe ) m p. Septembe 03 Numéo 3 3

3 vsmp sspmp ssimf Geometische Itepettioe des ithmetische, geometische ud hmoische Mittels vo zwei Zhle Sid zwei Zhle ud b positiv, d köe sie ls Läge vo Stecke itepetiet wede, ud dmit d uch die Mittelwete A (, b) +b, G (, b) p b ud H (, b) b +b.. At: Übe de Stecke AB de Läge + b wid ei Hlbkeis mit Mittelpukt M gezeichet. De Pukt C uf AB ist so gewählt, dss AC ud CB b gilt. Duch C wid die Sekechte zu AB eichtet; diese scheidet de Hlbkeis im Pukt D. Vo C us wid die Sekechte CE zu MD eichtet. Beweis: Aithmetisches Mittel: D gilt: MD A (, b) + b CD G (, b) p b DE H (, b) b + b + b MA MB MD +b ( Rdius de Hlbkeises). Geometisches Mittel: Ds ist de Höhestz: Die Deiecke ACD ud DCB sid ählich, lso gilt AC CD ud somit CD CB CD AC CB,esp.CD b ode CD p b. Hmoisches Mittel: Die Deiecke MCD ud CED sid ählich, lso gilt DE CD CD MD esp. DE CD MD b +b b +b.. At: Die dei obe beschiebee Mittelwete köe uch i eiem Tpez dgestellt wede. Dzu wid ds Tpez mit eie Stecke pllel zu de beide pllele Seite des Tpezes i zwei Teiltpeze geteilt. 4 Numme 3 Septembe 03

4 Bulleti Behuptug: Wid ds Tpez mit de pllele Seite ud c so geteilt, dss die beide Teiltpeze gleich hoch sid, d ist die Läge de Teliie gleich dem ithmetische Mittel vo ud c. Beweis: Ds ist eie wohlbekte Ttsche fü die Mittelpllele eies Tpezes. Behuptug: Wid ds Tpez mit de pllele Seite ud c so geteilt, dss die beide Teiltpeze ählich sid, d ist die Läge de Teliie gleich dem geometische Mittel vo ud c. Beweis: Sid die beide Tpeze ählich, d muss G (, c) p c G(,c) G(,c) c gelte, lso Behuptug: Wid ds Tpez mit de pllele Seite ud c so geteilt, dss die Mittelliie duch de Digoleschittpukt geht, d ist die Läge de Teliie gleich dem hmoische Mittel vo ud c. Beweis: Mit de chfolgede Bezeichuge ud de Sthlesätze gilt: Also ist c m c c m e + f e + f e +c ud folglich m. Aus de este Gleichug folgt: c m +c + c ud c g + h + h g g +c ) c m( + c) ) m c + c Die gesuchte Läge hägt lso u vo ud c b ud betägt m + c H (, c) + c Bemekug: Ds ithmetische Mittel ist ute deem wichtig i de Sttistik (Mittelwet), ds geometische zum Beispiel beim Höhestz. Auch ds hmoische Mittel tucht i estulich viele Kotexte uf (siehe [3]). Septembe 03 Numéo 3 5

5 vsmp sspmp ssimf 5 3 Zhlefolge Wie i de Eileitug ewäht, besteht zwische de obe beschiebee Mittelwete ud gewisse Zhlefolge ei heliegede Zusmmehg. 3. Defiitio vo Zhlefolge duch Mittelwete Defiitio: Eie Zhlefolge,, 3,... heisst ithmetisch, we + + gilt fü geometisch, we p + gilt fü hmoisch, we gilt fü Bei eie ithmetische, geometische esp. hmoische Folge ist lso jedes Folgeglied (mit Aushme des este) ds ithmetische, geometische esp. hmoische Mittel seie Nchbgliede. Auflöse de obige Fomel ch + liefet zuest ekusive Bescheibuge diese Folge. Dus lsse sich schliesslich uch explizite Bescheibuge bleite. Folge ekusive Bescheibug explizite Bescheibug ithmetisch + +( )( )( ) ( ) geometisch + hmoisch + ud sid jeweils vozugebe. Bemekuge: +( ) ( ) ( ). Setze wi bei de ithmetische Folge d ud bei de geometische Folge q, so ehlte wi die wohlbekte explizite Bescheibuge +( )d esp. q.. Zu explizite Bescheibug de hmoische Zhlefolge: Fü udfü liefet die gegebee Fomel ( ) ( ) gede esp.. Eie ziemlich ufwädige Rechug zeigt fee, dss ( ) ( ) gleich dem hmoische Mittel vo ( ) ( 3) ud + ( ) ist. 3. Bei eie hmoische Zhlefolge sid ud so vozugebe, dss de Nee des Buches ( ) ( ) icht gleich Null wid: ( ) ( ) ( ) 6 6 Numme 3 Septembe 03

6 Bulleti 6 Die Afgsgliede ud sid lso so vozugebe, dss de Buch tu liche Zhl ist. keie 4. Die Vewdtschft vo ithmetischem ud hmoischem Mittel u bet gt sich uch uf die Zhlefolge: Eie Zhlefolge,, 3,... mit i 6 0 fu i,,... ist geu d hmoisch, we die Folge de Kehwete,, 3,... ithmetisch ist. Beweis: + ( ) () + ( ) Rechts steht die explizite Bescheibug eie ithmetische Folge mit de Afgsgliede ud. 3. Beispiele hmoische Folge Aithmetische ud geometische Zhlefolge wede i viele Schulbu che usfu hlich behdelt; hmoische ehe selte. Deshlb betchte wi dei Beispiele. Beispiel : Ds beu hmteste Beispiel eie hmoische Folge ist, lso,, 3,.... I de llgemeie Fomel de explizite Dstellug eie hmoische Folge setze wi ud ud bekomme ( ) ( ) Ds hmoische Mittel vo ud ( ) ( ) + ist tts chlich ++ Beispiel : Pespektivisches Sehe Septembe 03 Nume o 3 7

7 vsmp sspmp ssimf Behuptug: Die Läge de Bäume esp. de Holzschwelle bei de Geleise bilde bei pespektivische Abbildug eie hmoische Folge. Begüdug: Betchte dei ufeide folgede Bäume ud ds vo ihe ufgespte Tpez. Die Läge jede Bumes (mit Aushme des este) ist gleich dem hmoische Mittel de Läge de Nchbbäume (siehe m Ede vo Abschitt.). Beispiel 3: Die Bücke Die (koguete) Qude Q, Q, Q 3, Q4,...,Q sid so geodet, dss sie gede icht heuteflle. Behuptug: Die Stecke OP, P P, P P 3, P 3 P 4,... bilde eie hmoische Zhlefolge. (Wi ehme, dss theoetisch uedlich viele Qude ufgestpelt sid.) Begüdug: Zuest etws Physik: Sid homogee Qude zu eiem Stpel ufgeschichtet, d ist die x-koodite des Schwepuktes des Stpels gleich dem ithmetische Mittel de x-koodite de Schwepukte (Mittelpukte) m, m,...,m de eizele Qude. 8 Numme 3 Septembe 03

8 Bulleti 8 Wi köe ohe Eischäkug ehme, dss die Läge de Qude gleich ist. Die Qude seie ufgestpelt wie i de obige Zeichug: l i ist de like Rd, m i de Schwepukt des i-te Qudes. Folglich ist l i m i +. Wi wähle de Zhlesthl so, dss l 0 ud dmit m ist. Dmit de Stpel icht heutefällt, muss sich de like Rd des (i + )-te Qudes beim Schwepukt des Stpels de este i Qude befide, lso ist l i+ m + m + + m i i l + l + l i i + (D l i m i + fü jede eizele Qude gilt, gilt die etspechede Gleichug uch fü de gze Stpel.) Behuptug: Es ist l i (i ) mit i, 3, 4,... Begüdug: Mit vollstädige Iduktio: Fü i stimmt die Behuptug: l l +. Die Behuptug stimme fü,, 3,..., i. D wid l + l + + l i + pple 0+ + i i (i ) pple (i ) i +(i ) 4 + +(i (i )) + (i ) pple i i + i i i + (i ) 4 (i ) pple (i ) i i (i ) + i (i ) + i l i+ Die Stecke OP, P P, P P 3, P 3 P 4,... (siehe Bild uf Seite 7) bilde ttsächlich eie hmoische Zhlefolge, ämlich, 4, 6,... Septembe 03 Numéo 3 9

9 vsmp sspmp ssimf 9 4 Vellgemeiete Mittelwet ud vellgemeiete Zhlefolge Die obe beschiebee Mittelwete lsse sich zu eiem llgemeie Mittelwet zusmmegefsse. (siehe z.b. []) Defiitio: Fü zwei positive eelle Zhle ud b ud eie eelle Zhl defiiee wi + b m Eie eifche Rechug zeigt, dss m ds ithmetische ud m ds hmoische Mittel vo ud b ist. De Fll 0 ist besodes iteesst: Mit de Regel vo Beoulli-de l Hôpitl k m zeige, dss m 0 ds geometische Mittel ist! (Siehe [] ode [4]). Gleich wie im Abschitt 3. köe wi mit dem llgemeie Mittelwet Zhlefolge defiiee. Jedes Folgeglied soll gleich dem vellgemeiete Mittelwet seie Nchbgliede sei: + + hägt jetzt vo b, us Güde de Übesichtlichkeit vezichte wi be uf eie Apssug de Nottio. Auflöse de Gleichug ch + liefet die ekusive Bescheibug + Dus lässt sich ebeflls eie explizite Dstellug gewie: [( ) ( ) ] [ + ( )] Ausgehed vo zwei Afgsgliede ud liefet diese Fomel im Pizip fü jede eelle Zhl eie Zhlefolge: Fü eie ithmetische, fü eie hmoische ud fü 0 eie geometische. Diese Folge() ud eie dus bgeleitete ziemlich llgemeie Fuktio ist i [] geue beschiebe. De Auto dieses Atikels füht i seiem Mthemtikuteicht m Gymsium Zhlefolge wie obe beschiebe ei ud themtisiet vo llem hmoische Zhlefolge ud ds hmoische Mittel.. Litetu [] Hdy G., J.E. Littlewood J.E., Polyá G., Iequlities, Secod editio, Cmbidge Mthemticl Liby, 95 [] Jggi Bet, Übe eie ziemlich llgemeie Zhlefolge ud eie ziemlich llgemeie Fuktio, Bulleti de Schweizeische Mthemtik- ud Physiklehkäfte, Jui 0 [3] Jggi Bet, Plädoye fü ds hmoische Mittel, Bulleti de Schweizeische Mthemtik- ud Physiklehkäfte, Ju 03 [4] Vo Mgold ud Kopp, Höhee Mthemtik, Wisseschftliche Velgsgesellschft Stuttgt, Numme 3 Septembe 03

8.3. Komplexe Zahlen

8.3. Komplexe Zahlen 8.. Komplee Zhle Wie bereits i 8.. drgestellt, wurde die fortlufede Erweiterug der Zhlbereiche durch die Eiführug immer kompleerer Recheopertioe otwedig:. Auf de türliche Zhle führte der Wusch ch iverse

Mehr

Über eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion

Über eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion Übe eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion Beat Jaggi, beat.jaggi@phben.ch Abstact Ausgehend von einem veallgemeineten Mittelwet wid eine Zahlenfolge definiet, die eine

Mehr

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen Fchbereich Mthemtik Algebr ud Zhletheorie Christi Curill Grudlge der Mthemtik LPSI/LS-M) Lösuge Bltt WiSe 00/ - Curill/Koch/Ziegehge Präsezufgbe P3)-d) Für jede der vier Mege gilt, dss die dri ethltee

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

( 3) k ) = 3) k 2 3 für k gerade

( 3) k ) = 3) k 2 3 für k gerade Aufgbe : ( Pute Zeige Sie mithilfe des Biomische Lehrstzes: ( 3 ( 3 ist für lle N eie türliche Zhl Lösug : Nch dem biomische Lehrstz gilt: ( 3 Somit ergibt sich ( 3 ( 3 ( ( 3 bzw ( 3 ( ( 3 ( ( 3 ( ( 3

Mehr

Teilfolgen aus und fragen nach deren Rekursionsformel. Die Ideen gehen auf Édouard Lucas zurück.

Teilfolgen aus und fragen nach deren Rekursionsformel. Die Ideen gehen auf Édouard Lucas zurück. Hs Wlser, [0090331] Teilfolge der Fibocci-Folge 1 Worum geht es? Wir wähle us der Fibocci-Folge 1 3 4 5 6 7 8 9 10 11 1 13 14 1 1 3 5 8 13 1 34 55 89 144 33 377 Teilfolge us ud frge ch dere Rekursiosformel.

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 2

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 2 D-MATH, D-PHYS, D-CHAB Alysis II FS 28 Prof. Mfred Eisiedler Lösug 2 Hiweise. Gehe Sie log zum Kochrezept zur Treug der Vrible i liere Differetilgleichuge vor (siehe Abschitt 7.5.3 im Skript). 2. Bemerke

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VM Schuljhr 7/8 Zusmmefssug Folge ud Kovergez Ihltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 7 Defiitioe ud Beispiele für

Mehr

Musteraufgaben mit Lösungen zur Zinseszins- und Rentenrechnung

Musteraufgaben mit Lösungen zur Zinseszins- und Rentenrechnung Musteaufgabe mit Lösuge zu Ziseszis- ud Reteechug Dieses Dokumet ethält duchgeechete Musteaufgabe zu Ziseszis- ud Reteechug mit Lösuge, die ma mit eiem hadelsübliche Schultascheeche (mit LO- ud y x -Taste

Mehr

Lösen einer Gleichung 3. Grades

Lösen einer Gleichung 3. Grades Lösen eine Gleichung Gdes We sich uf dieses Abenteue einlssen will, bucht einige Kenntnisse übe komlee Zhlen Es eicht be, wenn mn folgende Schvehlte kennt und kochezettig (mn nehme) nwenden knn: Es gibt

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

Termin vereinbaren. Patient abrufen. Befund erstellen. Befund lesen

Termin vereinbaren. Patient abrufen. Befund erstellen. Befund lesen Grphische Repräsettio vo Iterktiosusdrücke Christi Heilei, Abt. DBIS Jui 1997 1. Eileitug Dieser Bericht stellt eie eifche grphische Nottio für Iterktiosusdrücke vor, wie sie i de Berichte Grudlge vo Iterktiosusdrücke

Mehr

Mathematik Geometrie. Inhalt. Berner Fachhochschule. Hochschule für Technik und Informatik Burgdorf. Autor: Niklaus Burren Datum: 7.

Mathematik Geometrie. Inhalt. Berner Fachhochschule. Hochschule für Technik und Informatik Burgdorf. Autor: Niklaus Burren Datum: 7. Bee Fchhochschule Hochschule fü Techik ud Ifomtik Bugdof Mthemtik Geometie Auto: Niklus Bue Dtum: 7. Septeme 4 Ihlt. Mtize ud Detemite..... Defiitio..... Detemite..... Ivese eie Mti....4. Cmeegel... 4.5.

Mehr

7 Ungleichungen und Intervalle

7 Ungleichungen und Intervalle Mthemtik. Klsse 7 Ugleichuge ud Itervlle Aufgbe 0 Löse Sie folgede Ugleichuge > + 8 < 5 + + 7. Itervlle Um gze Bereiche vo reelle Zhle zugebe, wird die Schreibweise mit Itervlle verwedet. Beispiele [,

Mehr

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a.

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a. HUNKLOIHDWKHPDWLN Dies ist keie Fomelsmmlug im klssische Si - die vewedete Bezeichuge wede icht eklät ud Voussetzuge fü die ültigkeit de Fomel wede i de Regel icht gegee. 7HLO,6WRIIJHELHWHHULWWHOVWXIH

Mehr

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen Them 8 Kovergez vo Fuktioe-Folge ud - Reihe Defiitio Sei (f ) eie Folge vo Fuktioe vo D R i R. Wir sge, dß f puktweise gege eie Fuktio f kovergiert, flls gilt: f () f() für jedes D. Dies ist der türliche

Mehr

5.7. Aufgaben zu Folgen und Reihen

5.7. Aufgaben zu Folgen und Reihen 5.7. Aufgbe zu Folge ud Reihe Aufgbe : Lieres ud beschrätes Wchstum Aus eiem Qudrt mit der Seiteläge dm gehe uf die rechts gedeutete Weise eue Figure hervor. Die im -te Schritt gefügte Qudrte sid jeweils

Mehr

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2 1

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2 1 Vorkurs Mthemtik Fchhochschule Frkfurt, Fchbereich 1 Reche mit Poteze N bezeichet die Mege der türliche Zhle, Q die Mege der rtiole Zhle ud R die Mege der reelle Zhle. N bedeutet: ist eie türliche Zhl.

Mehr

Jeder Käufer der Zeitschrift darf auszugsweise Kopien für den eigenen Unterricht anfertigen.

Jeder Käufer der Zeitschrift darf auszugsweise Kopien für den eigenen Unterricht anfertigen. Mthemtikiformtio Vom Potezreche zum Logrithmus Nr. Zweite korrigierte Auflge. Jur 00 ISSN -9 Mthemtikiformtio ist eie Zeitschrift vo Begbteförderug Mthemtik e.v. Herusgbe ud Redktio: Professor Dr. Hrld

Mehr

War Benjamin Franklin Magier?

War Benjamin Franklin Magier? Wr Bejmi Frkli Mgier? Zusmmefssug Es wird eie Methode etwickelt, ei (fst) mgisches Qudrt der Ordug 8 k ( k ) mit fsziierede Eigeschfte herzustelle. Eileitug I seiem überus leseswerte ud bwechslugsreiche

Mehr

Analysis ZAHLENFOLGEN Teil 4 : Monotonie

Analysis ZAHLENFOLGEN Teil 4 : Monotonie Aalysis ZAHLENFOLGEN Teil 4 : Mootoie Datei Nr. 40051 Friedrich Buckel Juli 005 Iteretbibliothek für Schulmathematik Ihalt 1 Eiführugsbeispiele 1 Mootoie bei arithmetische Folge Defiitioe 3 3 Welche Beweistechik

Mehr

Terme und Formeln Potenzen II

Terme und Formeln Potenzen II Terme ud Formel Poteze II Die eizige schriftliche Überlieferug der Mthemtik der My stmmt us dem Dresder Kodex. Ds Zhlesystem der Mys beruht uf der Bsis 0. Als Grud dfür wird vermutet, dss die Vorfhre der

Mehr

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl.

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl. Algebr/Arithmetik 1. Grudbegriffe Geometrie: Lehre vo de Rumgrösse Algebr: Lehre vo de Gleichuge Arithmetik: Lehre vo de Zhlegrösse (Zhle, Vrible) Defiitio: Eie Vrible ist ei Pltzhlter oder ei Stellvertreter

Mehr

A 2 Die Cramersche Regel

A 2 Die Cramersche Regel Die Crmersche egel Mtrixschreibweise eies liere Gleichugssystems Die Crmersche egel 5 Wir gehe vo der llgemei Gestlt eies liere Gleichugssystems us : Gegebe seie m (reelle oder komplexe) Zhle ik (i,,,

Mehr

Cristian Rosca & Timm Kruse: Ungleichungen II (Proseminar Mathematisches Problemlösen SS 2006: Dozent - Natalia Grinberg) UNGLEICHUNGEN II

Cristian Rosca & Timm Kruse: Ungleichungen II (Proseminar Mathematisches Problemlösen SS 2006: Dozent - Natalia Grinberg) UNGLEICHUNGEN II Cisti Ros & Timm Kuse: Ugleihuge II (Posemi Mthemtishes Polemlöse SS 006: Dozet - tli Gieg) Posemi Mthemtishes Polemlöse Uivesität Klsuhe SS 006 UGLEICHUGE II Youg-Ugleihug... Hölde-Ugleihug...6 Miowsi-Ugleihug...0

Mehr

Die g-adische Bruchdarstellung. 1 Die g-adische Bruchdarstellung

Die g-adische Bruchdarstellung. 1 Die g-adische Bruchdarstellung Die g-adische Buchdastellug Votag im Rahme des Posemias zu Aalysis, 24.03.2006 Michael Heste Ziel dieses Votags ist eie kokete Dastellug de elle Zahle, wie etwa die allgemei bekate ud gebäuchliche Dezimaldastellug

Mehr

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik DIFFERENTIATION Ableitugsregel (f + g) = f + g (cf) = c f, c R ( ) = (c) =, c R Dmit köe wir Polyome bleite: Beispiel. ( 5 + 3 + ) = ( 5 ) + 3( ) + () = 5 4 + 3 = 5 4 + 6 Produkte- ud

Mehr

Die effektive Zinssatzberechnung bei Krediten. Dr. Jürgen Faik. - Bielefeld, 22.03.2007 -

Die effektive Zinssatzberechnung bei Krediten. Dr. Jürgen Faik. - Bielefeld, 22.03.2007 - Die effektive issatzbeechug bei edite D Jüge Faik - Bielefeld, 22327 - Eileitug: um isbegiff Ich wede i de kommede Stude zum Thema Die effektive issatzbeechug bei edite votage Nach eileitede Wote zum isbegiff

Mehr

AT AB., so bezeichnet man dies als innere Teilung von

AT AB., so bezeichnet man dies als innere Teilung von Teilverhältisse Aus der Geometrie der Dreiecke ket ma die Aussage, dass der Schwerpukt T eies Dreiecks die Seitehalbierede im Verhältis : teilt. Für die Strecke AT ud TM gilt gemäß der Abbildug AT : TM

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB 2004 Ihltsverzeichis Ihltsverzeichis... Folge ud Grezwerte... 2 Aäherug eie Grezwert... 2 Die Fläche des 5 Ecks... 3 Nährugsweise Berechug vo Pi... 4 Die Folge... 5 Defiitio der Folge... 5 Beispiele

Mehr

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt.

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt. Rdiziere 7 Rdiziere 7.1 Eiführug Uter der -te Wurzel us versteht eie Zhl x, die it poteziert ergibt. x x für 0 9 3 3 9 * : Wurzelexpoet, N ud 1 : Rdikd, 0 x: Wurzel(wer) t Poteziere: Bsis ud Expoet sid

Mehr

Musterlösung zur Musterprüfung 1 in Mathematik

Musterlösung zur Musterprüfung 1 in Mathematik Musterlösug zur Musterprüfug i Mthemtik Diese Musterlösug ethält usführliche Lösuge zu lle Aufgbe der Musterprüfug i Mthemtik sowie Hiweise zum Selbstlere. Literturhiweise ) Bosch: Brückekurs Mthemtik,

Mehr

Carmichaelzahlen und andere Pseudoprimzahlen

Carmichaelzahlen und andere Pseudoprimzahlen Crmichelzhle ud dere Pseudoprimzhle Christi Glus 26.05.2008 1 Der fermtsche Primzhltest Erierug 1 (Kleier Stz vo Fermt). Für p prim, Z, ggt(, p) 1 gilt: p 1 1 (mod p) Algorithmus 2 (Fermtscher Primzhltest).

Mehr

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen Diskrete Mthemtik Teilrkeit Christoph Dohme 7. Mi 2006 Diskrete Mthemtik Teilrkeit Ihltsverzeichis. Eileitug 2. Der größte gemeisme Teiler 3. Divisio mit Rest 4. Der Eukli sche Algorithmus 5. Ds kleiste,

Mehr

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen 9. M setze = ud bereche mit Hilfe der Folge (9.5) die dritte Wurzel us uf vier zählede Stelle geu. = + + =,, =,, =.75, 4 =,48889, =,449, =,4478 Jetzt ädert sich die dritte Stelle ch dem Komm icht mehr,

Mehr

AR: Grundlagen der Tensor-Rechung

AR: Grundlagen der Tensor-Rechung Auto: Walte Bisli vo walte.bislis.ch/doku/a 8..3 7:57 AR: Gudlage de Teso-Rechug Matheatisch wede Beechuge de Eegiedichte ud de zugehöige Rauzeitküug it de Wekzeug de Teso-Aalysis ausgefüht. Auf de folgede

Mehr

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel ALGEBRA Poteze ud Wurzel Grudlge Muskript zur Wiederholug Dtei Nr. Dezember 00 Friedrich W. Buckel Itertsgymsium Schloß Torgelow Ihlt Poteze mit türliche Expoete Potezgesetze Poteze mit egtive gze Expoete

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Agewdte Mthemtik ud Progrmmierug Eiführug i ds Kozept der objektorietierte Aweduge zu mthemtische Reches WS 2012/13 Ihlt Wiederholug (Eigeschfte vo Folge zusmmegefsst) Zhlereihe Kovergez vo Reihe Beweis

Mehr

Taylor Formel: f(x)p(x)dx = f(c)

Taylor Formel: f(x)p(x)dx = f(c) Tylor Formel Die Tylorsche Formel liefert eie Approximtio eier Fuktio durch ei Polyom, gemeism mit eier Abschätzug des Fehlerterms. Zwischewertstz: Eie stetige Fuktio f : [, b] R immt jede Wert γ zwische

Mehr

Folgen, Reihen und Grenzwert. Vorlesung zur Didaktik der Analysis

Folgen, Reihen und Grenzwert. Vorlesung zur Didaktik der Analysis Folge, Reihe ud Grezwert Vorlesug zur Didktik der Alysis Ihlt Motivtio Folge Spezielle Folge Grezwertdefiitio Wichtige Zusmmehäge ud Strtegie der Kovergezutersuchug Fuktioegrezwert Reihe Prdoxie ud Zusmmefssug

Mehr

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis.

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis. . Wurzel Ds Wurzelziehe (Rdiziere) ist die Umkehrug des Potezieres. Durch Berechug der etsprechede Wurzel etsteht wieder der Wert der Bsis. poteziere Wurzel ziehe. Die Qudrtwurzel Ds Ziehe der Qudrtwurzel

Mehr

Mathematik I für VIW - Prof. Dr. M. Ludwig. A x x n ist eine Abbildung von n in m.

Mathematik I für VIW - Prof. Dr. M. Ludwig. A x x n ist eine Abbildung von n in m. Mthemtik I für VIW - Prof. Dr. M. Ludwig.4 Liere Gleichugssysteme.4. Schreibweise, Liere Abbildug. A x = b, wobei m A... Koeffizietemtrix, T x ( x, x 2,, x ) T (, 2,, =... Vektor der Ubekte,... Azhl der

Mehr

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11 Mrek Kubic, kubic@i.tum.de Diskrete Strukture Übugsbltt Gruppe Pukteverteilug: Σ Aufgbe () 8 () 7 Der Grph B ht de Prüfer-Code,,,,, der zustde kommt, we m de kleiste Kote vom Grd streicht ud de dere, übrig

Mehr

Dritter Zirkelbrief: Ungleichungen

Dritter Zirkelbrief: Ungleichungen Matheschülerzirkel Uiversität Augsburg Schuljahr 014/015 Dritter Zirkelbrief: Ugleichuge Ihaltsverzeichis 1 Grudlage vo Ugleichuge 1 Löse vo Ugleichuge 3 3 Mittel 4 4 Mittelugleichuge 5 5 Umordugsugleichug

Mehr

Aufgaben und Lösungen der Probeklausur zur Analysis I

Aufgaben und Lösungen der Probeklausur zur Analysis I Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur

Mehr

STUDIUM. Mathematische Grundlagen für Betriebswirte

STUDIUM. Mathematische Grundlagen für Betriebswirte STUDIUM Mthetische Grudlge für Betrieswirte Mit de folgede Aufge köe Sie i eie Selsttest üerprüfe, o Sie och eiigerße die Grudlge der Alger eherrsche. Diese hdwerkliche Fertigkeite sid wesetlich, we es

Mehr

ALGEBRA Potenzen Teil 2. Trainingsheft. Alle Regeln Musterbeispiele - Trainingsaufgaben. Datei Nr INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

ALGEBRA Potenzen Teil 2. Trainingsheft. Alle Regeln Musterbeispiele - Trainingsaufgaben. Datei Nr INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK ALGEBRA Poteze Teil it egtive Expoete Triigsheft Alle Regel Musterbeispiele - Triigsufgbe Dtei Nr. 0 Std 9. Dezeber 0 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.the-cd.de 0 Potezreche

Mehr

Übersicht Integralrechnung

Übersicht Integralrechnung Vorbemerkug Übersicht Itegrlrechug Diese Übersicht fßt wesetliche Pukte der Vorlesug zusmme. Sie ersetzt icht die usführliche Vorlesugsmitschrift, weil die dort behdelte Beispiele ud Erläuteruge für die

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

4.2 Das bestimmte Integral

4.2 Das bestimmte Integral 4.. DAS BESTIMMTE INTEGRAL 63 4. Ds bestimmte Itegrl Die geometrische Iterprettio eies bestimmte Itegrls ist die Fläche uter eiem Fuktiosgrphe ft. M zerlege ei Itervl [, b] uf der t-achse äquidistt i Teilitervlle

Mehr

Der Satz von Cavalieri: Zwei Körper gleicher Höhe sind volumengleich, wenn sie in jeweils gleicher Höhe flächengleiche Querschnitte haben.

Der Satz von Cavalieri: Zwei Körper gleicher Höhe sind volumengleich, wenn sie in jeweils gleicher Höhe flächengleiche Querschnitte haben. Pof. D. Jüge Rot Didati de eometie alte Pizip d Satz vo Cavaliei dlage des olmebegiffs (eiscließlic Satz vo De) olme de d des stmpfs Kgelvolme d Kgelobefläce Pizip vo Cavaliei Boaveta Cavaliei (598 47;

Mehr

1. Übungsblatt zur Analysis II

1. Übungsblatt zur Analysis II Fchereich Mthemtik Prof Dr Steffe Roch Nd Sissouo WS 9/ 69 Üugsltt zur Alysis II Gruppeüug Aufge G Bestimme Sie für jede der folgede Fuktioe f : [, ] R ds utere ud oere Itegrl ud etscheide Sie, o die Fuktio

Mehr

Repetitionsaufgaben Potenzen und Potenzgleichungen

Repetitionsaufgaben Potenzen und Potenzgleichungen Ktole Fchschft Mthemtik Repetitiosufge Poteze ud Potezgleichuge Ihltsverzeichis A) Voremerkuge B) Lerziele C) Poteze D) Potezgleichuge E) Aufge Poteze mit Musterlösuge F) Aufge Potezgleichuge mit Musterlösuge

Mehr

4 Deckungsrückstellung

4 Deckungsrückstellung eckugsrückstellug 33 4 eckugsrückstellug iel: erfhre zur Erittlug des Wertes eies ersicherugsvertrgs ud der zur eckug der Risike ötige Rückstelluge des ersicherugsuterehes. Proble: Präie werde kostt gezhlt,

Mehr

Definition (Supremum und Infimum). s R heißt Supremum der Menge M R, falls s die kleinste obere Schranke von M ist, d.h.

Definition (Supremum und Infimum). s R heißt Supremum der Menge M R, falls s die kleinste obere Schranke von M ist, d.h. Vorlesug 15 Itegrlrechug 15.1 Supremum ud Ifimum Zuächst ei pr grudlegede, wichtige Defiitioe. Defiitio 15.1.1. Eie Mege M R heißt ch obe beschräkt, we es ei s R gibt, so dss x s für lle x M. M ist ch

Mehr

Fachbereich Mathematik

Fachbereich Mathematik OSZ Kfz-Techik Berufsoberschule Mthemtik Oberstufezetrum Krftfhrzeugtechik Berufsschule, Berufsfchschule, Fchoberschule ud Berufsoberschule Berli, Bezirk Chrlotteburg-Wilmersdorf Fchbereich Mthemtik Arbeits-

Mehr

Abschlussprüfung 2013 an den Realschulen in Bayern

Abschlussprüfung 2013 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 03 a de Realschule i Bayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Haupttermi A 0 Die ebestehede kizze zeigt de Axialschitt eier massive

Mehr

(a) Entscheide, ob aus der angegebenen Stellung Spieler A gewinnen kann. (Der Index gibt jeweils die Zugnummer an.)

(a) Entscheide, ob aus der angegebenen Stellung Spieler A gewinnen kann. (Der Index gibt jeweils die Zugnummer an.) Detment Mthemtik Tg de Mthemtik 31. Oktobe 2009 Klssenstufen 9, 10 Aufgbe 1 (6+7+7 Punkte). Zwei Siele A und B sielen uf einem 2 9- Kästchen-Sielfeld. Sie ziehen bwechselnd, Siele A beginnt. Ein Zug besteht

Mehr

Plädoyer für das harmonische Mittel

Plädoyer für das harmonische Mittel Bulleti Plädoyer für das harmoishe Mittel Beat Jaggi, beat.jaggi@phber.h Eileitug Das Bilde vo Mittelwerte ist ei zetrales Kozept i der Mathematik (siehe z.b. [], [], [7] oder [8]). Im Mathematikuterriht

Mehr

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums? Vorwort... 2

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums? Vorwort... 2 Ihltsverzeichis Kpitel Seite Vorwort.... Mthemtische Grudlge des Goldee Schittes... Ws ist der Goldee Schitt?..... Nähere Betrchtug des Teilugsverhältisses Herleitug der Zhle τ ud ρ..3. Die Zhle τ ud ρ...3..

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

Mathematik Potenzen und Wurzeln

Mathematik Potenzen und Wurzeln Mthetik Poteze ud Wuzel Gudwie ud Üuge 0 Stef Gäte 00 G Mthetik Poteze ud Wuzel Seite Gudwie. Poteze it tüliche Eoete Defiitio. l... it Œ N,, Œ. Beiiel Fktoe 9. Sechweie ud Bezeichuge [lie hoch ] it eie

Mehr

4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst

4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst 15 Wichtige Sätze ud Defiitioe zu 4: Ds qudrtische Rezirozitätsgesetz us der Vorlesug: LV-NR 150 39 Verstltug Diskrete Mthemtik II, 4.0 std Dozet Holtkm, R. 4.1 G sei Grue (mit multiliktiv geschriebeer

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER

KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER . GRUNDBEGRIFFE. MODELL "STARRER KÖRPER" Bishe habe wi us mit de Mechaik de Puktmasse beschäftigt; dabei meie wi eigetlich u die Bewegug des Massemittelpuktes.

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

Menge der natürlichen Zahlen. ℕ = ℕ {0} Menge der ganzen Zahlen ℤ = ℤ {0} ℝ. Menge der reellen Zahlen. ℝ = ℝ {0} ℝ+ = { x ℝ x 0}

Menge der natürlichen Zahlen. ℕ = ℕ {0} Menge der ganzen Zahlen ℤ = ℤ {0} ℝ. Menge der reellen Zahlen. ℝ = ℝ {0} ℝ+ = { x ℝ x 0} Mekhilfe Mthemtik fü Bildugsgäge die zu FHSR fühe Zhlemege ℕ = { ; ; ; ;...} Mege de tüliche Zhle ℕ = ℕ {} ℤ = {... ; ; ; ; ; ;...} Mege de gze Zhle ℤ = ℤ {} ℝ Mege de eelle Zhle ℝ = ℝ {} ℝ+ = { ℝ } Mege

Mehr

Michael Buhlmann Mathematik > Analysis > Newtonverfahren

Michael Buhlmann Mathematik > Analysis > Newtonverfahren Michael Buhlma Mathematik > Aalysis > Newtoverfahre Eie Abbildug {a }: N -> R, die jeder atürliche Zahl eie reelle Zahl a zuordet, heißt (uedliche (Zahle- Folge: -> a oder {a } εn, a das -te Folgeglied.

Mehr

1 Das Skalarprodukt und das Kreuzprodukt

1 Das Skalarprodukt und das Kreuzprodukt Das Skalarprodukt ud das Kreuzprodukt Wir betrachte zu x = de Ausdruck y t x : = x Grud: Die rechte Seite der Gleichug ist: y t x = (y tx +... + (y ty { t x } y +... + x y x + x y (x y +... + x y x x t

Mehr

Zahlenbereiche. Jeder Zahlenbereich ist eine Erweiterung des vorigen und enthält diesen

Zahlenbereiche. Jeder Zahlenbereich ist eine Erweiterung des vorigen und enthält diesen Mthemtik Ihlt Zhlebereiche Recheopertioe Hierrchie der Recheopertioe Recheregel Brüche Recheregel für Brüche Klmmerreche Potezrechug Potezgesetze Ntürliche Zhle Zhlebereiche Jeder Zhlebereich ist eie Erweiterug

Mehr

Forschungsstatistik I

Forschungsstatistik I Pschologie Pof. D. G. Meihadt 6. Stock, TB II R. 06-206 (Pesike) R. 06-321 (Meihadt) Spechstude jedezeit ach Veeibaug Foschugsstatistik I D. Malte Pesike pesike@ui-maiz.de http://psmet03.sowi.ui-maiz.de/

Mehr

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i D. Reterechug 1.1. Jährliche Retezahluge 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi

Mehr

15.08.2006. Skript WS 2006/07. Prof. Dr. Waike Moos Fachbereich Wirtschaftswissenschaften Hochschule Niederrhein

15.08.2006. Skript WS 2006/07. Prof. Dr. Waike Moos Fachbereich Wirtschaftswissenschaften Hochschule Niederrhein 5.8.6 Sipt Fiazmathemati WS 6/7 Pof. D. Waie Moos Fachbeeich Witschaftswisseschafte Hochschule Niedehei Fiazmathemati Pof. D. Waie Moos FB Witschaftswisseschafte Egäzede Liteatuempfehluge... 4. Wofü beötigt

Mehr

Wird der Potenzbegriff auf negative Exponenten erweitert, dann können auch sehr kleine Zahlen gut dargestellt werden.

Wird der Potenzbegriff auf negative Exponenten erweitert, dann können auch sehr kleine Zahlen gut dargestellt werden. . Poteze mit gze Epoete Wird der Potezegriff f egtive Epoete erweitert, d köe ch sehr kleie Zhle gt drgestellt werde. Ws edetet 0? Die Defiitio wird so festgelegt, dss die isherige Potezgesetze gültig

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen LGÖ Ks VM Schuljhr 07/08 Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo

Mehr

Die Lagrangepunkte im System Erde-Mond

Die Lagrangepunkte im System Erde-Mond Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn bochdt.tthis@t-online.de Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind

Mehr

Versuchsprotokoll zum Versuch Nr. 4

Versuchsprotokoll zum Versuch Nr. 4 I diesem Versuch geht es drum, die Temperturbhäigkeit vo Widerstäde zu bestimme. Dies erfolgt mit folgeder Aordug: Folgede Geräte wurde dbei verwedet Gerät Bezeichug/Hersteller Ivetrummer Schleifdrhtbrücke

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen LGÖ Ks VM Schuljhr 06/07 Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo

Mehr

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN MONTAG

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN MONTAG Lösuge Motg -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN MONTAG Blok. Beekuge: Kle vo ie h usse uflöse; Pukt vo Stih 0. / /. π lr lr Q lr d 00 ln Beekug zu d Geht uh ohe TR! Küze Nee: ud Zähle:

Mehr

(zur deiterleitimg an das RIGA)

(zur deiterleitimg an das RIGA) Atg de Beuf sshulispektoekofeez die DK (zu deiteleitig ds GA) i. dei? geeblihidustielle Beufsshule besteht de Ffi Lhtuteiht fü lle Lehlige US Teile: d2heiid. de beuf skudlihe Jteiht luf ed i t de ElFs

Mehr

Analytische Geometrie

Analytische Geometrie Pives Gymsim Mies J Mhemik Alyishe Geomeie Ueihsfzeihe de Mhemikleisskse / i de Shljhe / d / Noe Mez Am Solz He Ihlsvezeihis LÄNG BTRAG) INS VKTORS INHITSVKTOR SKALARPRODUKT WINKL ZWISCHN ZWI VKTORN NORMALNFORM

Mehr

Terme und Formeln Potenzen I

Terme und Formeln Potenzen I Terme ud Formel Poteze I Die Mrgrit philosophic ist die älteste gedruckte llgemeie Ezyklopädie us dem Jhr 0 i lteiischer Sprche. Ds Werk ethält ls Uiversits literrum ds gesmte Wisse des späte Mittellters.

Mehr

2. Einführung in die Geometrische Optik

2. Einführung in die Geometrische Optik 2. Eiührug i die Geometrische Optik 2. Allgemeie Prizipie 2.. Licht ud Materie Optische Ssteme werde ür de Spektralbereich zwische dem extreme Ultraviolette ( m) ud dem thermische Irarote (Q-Bad bei 2

Mehr

Mathematik 4 Vektorräume und affine Räume

Mathematik 4 Vektorräume und affine Räume 4 ektoäume ud affie äume olesugsmitschift - Kuzfassug Etwuf Pof. D. e. at. B. Gabowski HTW des Saalades 4 Ihalt Mathematik Kapitel 4 INHALTSEZEICHNIS 4 EKTOÄUME UND AFFINE ÄUME... 4.. EINLEITUNG... 4.

Mehr

3 Aufgaben Sind keine notwendig. Eine Formelsammlung und ein nicht programmierbarer Taschenrechner können aber verwendet werden.

3 Aufgaben Sind keine notwendig. Eine Formelsammlung und ein nicht programmierbarer Taschenrechner können aber verwendet werden. Stützus Mathemati WIW Übuge Tag Datum: ***LÖSNGSVORSCHLG*** Theme: Folge, Reihe, Gezwete, Mootoie mfag: Hilfsmittel: ufgabe Si eie otweig Eie Fomelsammlug u ei icht pogammiebae Tascheeche öe abe veweet

Mehr

Abschlussprüfung 2014 an den Realschulen in Bayern

Abschlussprüfung 2014 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Name: Abschlussprüfug 014 a de Realschule i ayer Mathematik II Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Nachtermi A 10 Agler verwede sogeate Schwimmer, die a der Agelschur

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Einführungsmöglichkeiten des Skalarprodukts. r r

Einführungsmöglichkeiten des Skalarprodukts. r r Einfühungsmöglihkeiten des Sklpodukts Jügen Zumdik I. Geometishe Zugänge im Euklidishen Vektoum Euklidishe Länge eines Vektos ist eeits eingefüht Polem Winkel zwishen Vektoen R² α β ϕ α-β osϕ osα-β osαosβ

Mehr

Numerisches Integrieren

Numerisches Integrieren Numerisches Itegriere Ac I der Prxis werde Itegrle i der Regel umerisch, lso pproximtiv, bestimmt. Dzu solle hier verschiedee Algorithme betrchtet werde ( Rechteck, Mitterechteck, Trpez, Simpso, Romberg

Mehr

Terme. Kapitel 2. Terme. Wertebereich. Summensymbol. Summensymbol Rechnen. Summensymbol. Aufgabe 2.1. Summensymbol Rechnen.

Terme. Kapitel 2. Terme. Wertebereich. Summensymbol. Summensymbol Rechnen. Summensymbol. Aufgabe 2.1. Summensymbol Rechnen. Terme Kpitel Terme Ei mthemtischer Ausdruck wie B R q q (q ) oder (x + )(x ) x heißt eie Gleichug. Die Ausdrücke uf beide Seite des -Zeiches heiße Terme. Sie ethlte Zhle, Kostte (ds sid Symbole, die eie

Mehr

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1 8 7 Potezreihe 7 Potezreihe 7. Fuktioefolge ud -reihe Puktweise ud gleichmäßige Kovergez vo Fuktioefolge Sei f j ) j= eie Folge vo reelle) Fuktioe mit Defiitiosgebiete Df j), j N, ud = Df j ) R. j= D bilde

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Funktion: Grundbegriffe A 8_01

Funktion: Grundbegriffe A 8_01 Fuktio: Grudegriffe A 8_ Eie Fuktio ist eie eideutige Zuordug: Jede Wert us der Defiitiosege wird geu ei Wert us der Werteege zugeordet. Ist f eie Fuktio ud sid ud y eider zugeordete Werte, d schreit kurz:

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am TU Gaz, Istitut fü Regelugstechik Schiftliche Püfug aus Regelugstechik a 6.0.00 Nae / Voae(): Ke-Mat.N.: Gebutsdatu: BONUSPUNKTE aus Coputeecheübug SS00: 3 4 eeichbae Pukte 5 4 5 5 eeichte Pukte TU Gaz,

Mehr

Beispiele: (1) (x k ) = (1, 2, 3,...) (s n ) = (1, 1 + 2, ,...) s n 2 = Also: ( s n ) = (2) (x k ) = 1. (s n ) =?

Beispiele: (1) (x k ) = (1, 2, 3,...) (s n ) = (1, 1 + 2, ,...) s n 2 = Also: ( s n ) = (2) (x k ) = 1. (s n ) =? Pof. D. Fiedel Bolle L fü Volswitschaftslehe isb. Witschaftstheoie (Mioöoomie) Volesug Mathemati - W 8/9 57 Pof. D. Fiedel Bolle L fü Volswitschaftslehe isb. Witschaftstheoie (Mioöoomie) Volesug Mathemati

Mehr

Sinus- + Cosinus-Funktion und komplexe Wurzel

Sinus- + Cosinus-Funktion und komplexe Wurzel Dr. Siegfried Echterhoff Aalysis 1 Vorlesug WS 08 09 6 Polarkoordiate Sius- + Cosius-Fuktio ud komplexe Wurzel 6.1 Im folgede seik 1 1 := {z C z = 1} der Kreis i C mit Radius 1 ud Mittelpukt 0. Wir defiiere

Mehr