13. Abzählen von Null- und Polstellen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "13. Abzählen von Null- und Polstellen"

Transkript

1 13. Abzählen von Null- und Polstellen Abzählen von Null- und Polstellen Als weitere Anwendung des Residuensatzes wollen wir nun sehen, wie man ot au einache Art berechnen kann, wie viele Null- bzw. Polstellen eine gegebene Funktion in einem bestimmten Gebiet hat. Unter anderem wird sich mit dieser Methode ein weiterer Beweis des Fundamentalsatzes der Algebra ergeben, der im Gegensatz zu unseren rüheren Beweisen (siehe Augabe 4.7, Satz 6.19 und Satz 8.7) sehr anschaulich ist und dessen Idee auch ohne jegliche Kenntnisse der Funktionentheorie einach verständlich ist. Wir wissen ja bereits aus Bemerkung 11.18, dass ein geschlossenes Kurvenintegral (z)dz über eine Randkurve als Ergebnis einach 2πi mal die Summe der Residuen von im Inneren von ergibt. Der Schlüssel zur Berechnung der Anzahl der Null- und Polstellen von im Inneren von liegt daher in dem olgenden Lemma, das die Ordnung von in einem Punkt als ein Residuum ausdrückt: Lemma Es seien D C oen, : D C eine holomorphe Funktion, und z D oder z C\D eine isolierte Singularität von. Wir nehmen an, dass lokal um z nicht gleich der Nullunktion und ord z ist. Dann gilt ord z = res z. Beweis. Setzen wir m = ord z, so können wir au D nach Lemma 1.4 als (z) = (z z ) m g(z) schreiben, wobei g eine au D {z } holomorphe Funktion mit g(z ) ist. Dierenzieren ergibt nun und damit (z) = m(z z ) m 1 g(z) + (z z ) m g (z) (z) (z) = m + g (z) z z g(z). Hierbei ist der Ausdruck g g in einer Umgebung von z holomorph und damit dort eine Potenzreihe um z. Entwickelt man also um z in eine Laurent-Reihe, so lieert der Term g g keine Beiträge mit negativen Potenzen von z z. Das Residuum von in z, d. h. nach Deinition der Koeizient von (z z ) 1 in der Laurent-Entwicklung von ( ) um z, ist damit wie behauptet gleich m. Mit dieser Formel ergibt sich nun soort das olgende Resultat: Satz 13.2 (Das Null- und Polstellen zählende Integral). Es sei D oen und einach zusammenhängend sowie eine Funktion, die au D mit Ausnahme endlich vieler isolierter Polstellen holomorph ist. Weiterhin sei eine Randkurve in D, die die Null- und Polstellen von nicht trit, und U das Innere von. Dann gilt ord z = 1 2πi (z) (z) dz, d. h. das Integral au der rechten Seite ist gleich der Anzahl der Nullstellen minus der Anzahl der Polstellen von in U (wobei die Null- und Polstellen mit Vielachheit gezählt werden müssen, d. h. eine Null- bzw. Polstelle der Ordnung m trägt m bzw. m zum Integral au der rechten Seite bei). ( )

2 78 Andreas Gathmann Beweis. Mit dem Residuensatz aus Bemerkung ergibt sich soort nach Lemma πi (z) (z) dz = 1 2πi 2πi res z = ord z. Man kann das Ergebnis von Satz 13.2 auch in einer integralreien Version schreiben: Folgerung 13.3 (Die Null- und Polstellen zählende Umlauzahl). Mit denselben Voraussetzungen wie in Satz 13.2 gilt ord z = ind ( ), d. h. die Anzahl der Nullstellen minus die Anzahl der Polstellen von im Inneren von ist gleich der Umlauzahl des Bildweges von unter um. Beweis. Dies ergibt sich soort aus Satz 13.2, denn es ist 1 (z) 2πi (z) dz = 1 1 2πi w dw (mit der Substitution w = (z)) = ind ( ) (Deinition 11.2 der Umlauzahl). Beispiel Für ein gegebenes n N betrachten wir die au ganz C deinierte Funktion (z) = z n. Weiterhin sei U = {z C : z < r} die oene Kreisscheibe um mit Radius r und Randkurve : [,2π] C, t r e it. Natürlich hat in U keine Polstellen und (mit Vielachheiten gezählt) n Nullstellen nämlich die Nullstelle mit Ordnung n. Dies erhalten wir auch aus Satz 13.2 und Folgerung 13.3: (a) Das Null- und Polstellen zählende Integral aus Satz 13.2 lieert nach Beispiel 3.11 (b). ord z = 1 nz n 1 2πi z n dz = n dz 2πi z = n (b) Bilden wir andererseits den Weg mit ab, so erhalten wir den Bildweg : [,2π] C, t (r e it ) n = r n e int, der (mit Radius r n ) wie im Bild unten n-mal um die Null herumläut. Also lieert auch die Null- und Polstellen zählende Umlauzahl aus Folgerung 13.3 ord z = ind ( ) = n. r U r n Wenn wir dieses Beispiel etwas erweitern, können wir damit bereits zu einem weiteren und sehr anschaulichen Beweis des Fundamentalsatzes der Algebra kommen. Wir stellen diesen Beweis zunächst inormell vor, da man ihn in dieser Form auch mit nur elementaren Kenntnissen über komplexe Zahlen gut nachvollziehen kann. In Satz 13.8 werden wir ihn noch exakt ausühren.

3 13. Abzählen von Null- und Polstellen 79 Bemerkung 13.5 (Anschaulicher Beweis des Fundamentalsatzes der Algebra). Es sei ein komplexes Polynom vom Grad n > mit Leitkoeizient 1. Wie in Beispiel 13.4 sei wieder der Rand des Kreises U mit Mittelpunkt und Radius r. Wählen wir r sehr groß, so ist anschaulich einleuchtend, dass (z) ür Punkte z au der Kreislinie (also mit z = r) nahe bei z n liegen sollte, da die Terme niedrigerer Ordnung ür betragsmäßig große z nur eine kleine Rolle spielen. Die Bildkurve sollte also nur eine kleine Deormation der Bildkurve in Beispiel 13.4 sein, so wie im olgenden Bild ür den Fall n = 2 dargestellt: r U Insbesondere erwarten wir ür also immer noch einen Weg, der n-mal um die Null herum läut (wenn auch nicht mehr au einer exakten Kreislinie, sondern au einem etwas deormierten Weg). Mit Folgerung 13.3 würde dies also schon bedeuten, dass genau n Nullstellen in U hat, und damit insbesondere den Fundamentalsatz der Algebra zeigen. Wir wollen Folgerung 13.3 hier aber nicht voraussetzen, sondern auch dieses Resultat noch anschaulich begründen, so dass wir insgesamt also eine komplett anschauliche Begründung des Fundamentalsatzes erhalten. Wie also kann man sich anschaulich vorstellen, dass in U eine Nullstelle besitzen muss, wenn die Umlauzahl ind ( ) des Bildweges um ungleich Null ist? Um dies zu sehen, lassen wir einach (wie im olgenden Bild von oben nach unten dargestellt) den Radius r des betrachteten Kreises kleiner werden und schließlich gegen gehen, so dass der Weg au einen Punkt (nämlich den Nullpunkt) zusammengezogen wird. Natürlich ziehen wir damit auch den Bildweg au einen Punkt zusammen. Der ursprüngliche Bildweg hatte aber eine Umlauzahl ungleich Null um den Nullpunkt und war damit in C\{} nicht zusammenziehbar. Also muss der Bildweg beim Verkleinern von r irgendwann einmal den Nullpunkt treen (in der Skizze oben ist dies in der mittleren Zeile der Fall). Genau in diesem Punkt liegt dann aber natürlich eine Nullstelle von vor, denn es gibt dann ja einen Punkt au, der von au abgebildet wird. Man kann diese Idee auch leicht in der Sprache der Homotopien (siehe Deinition 5.1) ausdrücken: die ursprüngliche Kreislinie lässt sich mit der Homotopie ψ : [,2π] [,1] C, ψ(t,s) = rse it au den Nullpunkt zusammenziehen. Dann ist aber ψ eine Homotopie zwischen und einem konstanten Weg. Da es eine solche Homotopie wegen ind ( ) nicht in C\{} geben kann,

4 8 Andreas Gathmann muss der Nullpunkt im Bild von ψ liegen was dann bedeutet, dass eine Nullstelle haben muss. Um dieses anschauliche Argument zu einem exakten Beweis zu machen, müssen wir lediglich noch die obige Aussage, dass eine leichte Störung an der Funktion die Umlauzahl von um nicht ändert, präzise ormulieren und beweisen. Wir zeigen dies gleich in einer deutlich allgemeineren Form, die sich auch noch ür andere Anwendungen als nützlich erweisen wird. Satz 13.6 (Satz von Rouché). Es seien,g: D C zwei holomorphe Funktionen au einer oenen und einach zusammenhängenden Menge D C. Ferner sei eine Randkurve in D mit Innerem U. Gilt dann (z) g(z) < g(z) ür alle z au dem Weg, so olgt ord z = ord z g, d. h. und g haben (mit Vielachheiten gezählt) gleich viele Nullstellen in U. Beweis. Für t R mit t 1 betrachten wir die holomorphe Funktion h t : D C, z g(z) +t ( (z) g(z)), so dass also h = g und h 1 = ist. Nach Voraussetzung gilt ür alle t und alle z au dem Weg h t (z) = g(z) +t ( (z) g(z)) g(z) t (z) g(z) g(z) (z) g(z) >. Also hat h t keine Nullstellen au dem Weg. Damit ist das Integral N(t) := 1 h t(z) 2πi h t (z) dz wohldeiniert und zählt nach Satz 13.2 die Anzahl der Nullstellen von h t im Inneren von. Beachte, dass der Integrand und damit auch die Funktion N(t) stetig in t ist. Da N(t) aber nur ganzzahlige Werte annehmen kann, muss N(t) also konstant sein. Insbesondere ist daher N() = N(1), d. h. h = g und h 1 = haben gleich viele Nullstellen im Inneren von. Bemerkung Auch den Satz 13.6 von Rouché kann man anschaulich leicht verstehen. Nach Folgerung 13.3 brauchen wir dazu ja nur zu sehen, dass die beiden Bildwege und g die gleiche Umlauzahl um haben. Das olgende Bild illustriert dies in dem Fall, in dem diese Umlauzahl gleich 1 ist: (z) g(z) g (z) g(z) g(z) Wir sehen an diesem Bild anschaulich, dass die Bedingung (z) g(z) < g(z) au dem Weg sicherstellt, dass genauso ot um die Null herumläut wie g : da der Abstand von (z) zu g(z) stets kleiner ist als der von g(z) zu, hat (z) nicht genug Bewegungsreiheit, um unabhängig von g(z) um die Null herumzulauen. Im Sinne von Bemerkung 13.5 können wir g als eine hinreichend kleine Deormation und damit als gute Näherung von auassen. In der Tat war ja auch die Beweisidee von Satz 13.6, die Funktionenschar h t zu untersuchen, die g ür t [,1] nach deormiert. Im Sinne von Kapitel 5 bezeichnet man h t auch hier als eine Homotopie nur diesmal nicht von Wegen, sondern von holomorphen Funktionen [G3, Kapitel 6].

5 13. Abzählen von Null- und Polstellen 81 Anschaulich wird der Satz von Rouché ot auch als der Satz vom Mann, dem Hund und der Laterne bezeichnet: man stelle sich den Nullpunkt als eine Laterne vor, und g als den Weg eines (wahrscheinlich betrunkenen) Mannes, der um diese Laterne torkelt. Der Mann hat einen Hund an der Leine dabei, den er dabei entlang des Weges mit sich mitschleit. Achtet der Mann dabei darau, dass die Leine zu jedem Zeitpunkt kürzer ist als sein Abstand zur Laterne (d. h. gilt also stets (z) g(z) < g(z) ), so muss der Hund am Ende oensichtlich genauso ot um die Laterne gelauen sein wie der Mann. Mit dem Satz von Rouché können wir nun die Idee aus Bemerkung 13.5 zu einem exakten Beweis machen: Satz 13.8 (Fundamentalsatz der Algebra, 4. Beweis). Jedes nicht-konstante komplexe Polynom hat eine Nullstelle in C. Beweis. Wir können ohne Einschränkung annehmen, dass (z) = z n + a n 1 z n a 1 z + a ein nicht-konstantes Polynom mit Leitkoeizient 1 ist. Mit g(z) := z n ist dann (z) g(z) = a n 1 z n a 1 z + a ein Polynom von einem Grad k n 1. Nach Augabe 4.7 (a) gibt es also Konstanten R > und c >, so dass (z) g(z) c z k ür alle z C mit z R gilt. Dann gilt aber auch ür alle z C mit z = r := max(r,c + 1), also ür alle z au einer Kreislinie um mit diesem Radius r (z) g(z) c z k = cr k cr n 1 < r r n 1 = z n = g(z). Aus dem Satz 13.6 von Rouché olgt damit, dass im Kreis {z C : z < r} genauso viele Nullstellen hat wie g(z), nämlich n. Bemerkung Obwohl wir beim Beweis von Satz 13.8 unsere Ergebnisse der Funktionentheorie benutzt haben, sollte aus der anschaulichen Begründung in Bemerkung 13.5 deutlich geworden sein, dass wir ür die dort gegebenen Argumente gar nicht benötigt haben, dass holomorph ist, sondern dass es eigentlich nur au die Stetigkeit von ankam (damit der Weg kontinuierlich variiert, wenn es tut). Wir können diesen Beweis des Fundamentalsatzes der Algebra daher als rein topologischen Beweis auassen im Gegensatz zu unseren vorherigen Beweisen in Augabe 4.7 (b), Satz 6.19 und Satz 8.7, die mit der Cauchyschen Integralormel, dem Minimumprinzip bzw. dem Satz von Liouville wirklich charakteristische Eigenschaten holomorpher Funktionen benutzen. In der Tat ist es gerade die topologische Natur des neuen Beweises in diesem Kapitel, die es uns ermöglicht, den Beweis anschaulich so leicht nachzuvollziehen. Zum Abschluss dieses Kapitels wollen wir noch an einem Beispiel sehen, wie man mit Hile des Satzes von Rouché ot Abschätzungen über die Lage der Nullstellen holomorpher Funktionen gewinnen kann. Beispiel Es sei (z) = z 5 + 4z + 2. Wir wissen natürlich, dass als Polynom ünten Grades in der komplexen Ebene ün Nullstellen hat. Es gibt jedoch kein Verahren, mit dem man diese Nullstellen exakt berechnen kann (was übrigens üblicherweise in der Vorlesung Einührung in die Algebra gezeigt wird). Man ist ür die Bestimmung der Nullstellen von also au Näherungsverahren angewiesen. Mit Hile des Satzes von Rouché können wir nun bereits eine erste Abschätzung geben, wo die Nullstellen von liegen müssen. Dazu müssen wir einach eine Vergleichsunktion g und einen Weg inden, so dass wir... einerseits zeigen können, dass g au eine hinreichend gute Näherung ür darstellt (also dass dort (z) g(z) < g(z) gilt), und andererseits wissen, wie viele Nullstellen g im Inneren von hat.

6 82 Andreas Gathmann Hierür haben wir natürlich verschiedene Möglichkeiten. Im konkreten Beispiel unseres hier betrachteten Polynoms können wir z. B. olgende Vergleichsunktionen wählen: (a) Für eine komplexe Zahl z mit z = 2 dominiert im Polynom der Term z 5 : setzen wir hier also g(z) = z 5, so olgt ür z = 2 (z) g(z) = 4z z + 2 = 1 < 32 = z 5 = g(z). Wählen wir ür eine Kreislinie mit Radius 2 um, so sagt uns der Satz von Rouché also, dass im Inneren dieses Kreises genau so viele Nullstellen hat wie g, nämlich ün. Alle Nullstellen von sind also betragsmäßig kleiner als 2. (b) Für z = 1 hingegen dominiert in der lineare Term: setzen wir hier g(z) = 4z, so erhalten wir ür z = 1 (z) g(z) = z z = 3 < 4 = 4z = g(z). Für diese Wahlen ergibt sich also genauso wie oben, dass im Kreis um mit Radius 1 genau eine Nullstelle hat (nämlich genau so viele wie g). Aus diesen beiden sehr einachen Rechnungen olgt also bereits, dass eine der Nullstellen von Betrag kleiner als 1 hat und der Betrag der anderen vier Nullstellen zwischen 1 und 2 liegt. Natürlich könnten wir auch noch andere Wege oder Vergleichsunktionen wählen, um diese Abschätzungen noch zu verbessern. Das Bild rechts zeigt übrigens (näherungsweise) die Lage der Nullstellen von. Im 1 2 Re 13 Augabe Zeige mit Hile des Satzes von Rouché, dass (a) drei Lösungen der Gleichung 2z 4 +5z 3 +z 1 = betragsmäßig kleiner als 1 sind, und dass der Betrag der vierten Lösung zwischen 2 und 3 liegt; (b) die Gleichung 3z 2 + e z = im Gebiet {z C : Rez < 1} genau zwei Lösungen besitzt.

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

1 Die vier Sätze von LIOUVILLE

1 Die vier Sätze von LIOUVILLE Vortrag zum Seminar Elliptische Funktionen und elliptische Kurven, 3.06.005 Marcel Carduck Es sei stets Ω ein Gitter in C und (ω 1, ω ) eine Basis von Ω. Weiter bezeichne P := (u; ω 1, ω ) := {u + λ 1

Mehr

Frohe Weihnachten und ein gutes neues Jahr!

Frohe Weihnachten und ein gutes neues Jahr! Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]

Mehr

Komplexe Analysis D-ITET. Serie 8

Komplexe Analysis D-ITET. Serie 8 Dr. T. Bühler M. Wellershoff Frühlingssemester 206 Komplexe Analysis D-ITET Serie 8 ETH Zürich D-MATH Aufgabe 8. Umlaufzahlen Berechnen - Teil I Das Ziel der Aufgabe ist es die Umlaufzahlen in vier Zyklen

Mehr

Lösungen zur Klausur Funktionentheorie I SS 2005

Lösungen zur Klausur Funktionentheorie I SS 2005 Universität Karlsruhe 29 September 25 Mathematisches Institut I Prof Dr M von Renteln Dr C Kaiser Aufgabe en zur Klausur Funktionentheorie I SS 25 Sei S die Möbiustransformation, die durch S(z) = i i z

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.)

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.) Lösungsmethoden gewöhnlicher Dierentialgleichungen Dgl) Allgemeine und partikuläre Lösung einer gewöhnlichen Dierentialgleichung Eine Dierentialgleichung ist eine Gleichung! Zum Unterschied von den gewöhnlichen

Mehr

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Ulrich Loup 24.03.2006 Prüfungsstoff: Alegebra I, Analysis IV, Graphentheorie I Prüfer: Prof. Dr. Wilhelm Plesken Protokollant: Dipl.

Mehr

2. Klausur zur Funktionentheorie SS 2009

2. Klausur zur Funktionentheorie SS 2009 Aufgabe : Finden Sie ein Beispiel für eine meromorphe Funktion f M(C), die auf den Kreisringen A 0, (0) und A,2 (0) unterschiedliche Laurentreihenentwicklungen besitzt. Beweisen Sie, dass Ihr Beispiel

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

9. Anwendungen der Fundamentalgruppe

9. Anwendungen der Fundamentalgruppe 76 Andreas Gathmann 9. Anwendungen der Fundamentalgruppe Nachdem wir mit Hilfe von Überlagerungen nun in der Lage sind, Fundamentalgruppen zu berechnen, wollen wir in diesem abschließenden Kapitel noch

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat.

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat. Die k/2 - Formel von Renate Vistorin Zentrales Thema dieses Vortrages ist die k/2 - Formel für meromorphe Modulformen als eine Konsequenz des Residuensatzes. Als Folgerungen werden danach einige Eigenschaften

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

52 Andreas Gathmann. =: f + (z)

52 Andreas Gathmann. =: f + (z) 52 Andreas Gathmann 9. Laurent-Reihen In den letten beiden Kapiteln haben wir gesehen, dass sich holomorphe Funktionen lokal um jeden Punkt 0 in eine Potenreihe a n( 0 n entwickeln lassen, und daraus viele

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper 32 Andreas Gathmann 3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

4 Anwendungen des Cauchyschen Integralsatzes

4 Anwendungen des Cauchyschen Integralsatzes 4 Anwendungen des Cauchyschen Integralsatzes Satz 4. (Cauchysche Integralformel) Es sei f : U C komplex differenzierbar und a {z C; z z 0 r} U. Dann gilt f(a) = z z 0 =r z a dz. a z 0 9 Beweis. Aus dem

Mehr

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und Funktionentheorie, Woche 6 Analytische Funktionen 6. Holomorphe Funktionen und Potenzreihen Definition 6. Eine Funktion f : U C C nennt man analytisch in z 0 U, wenn es r > 0 gibt mit B r (z 0 ) U derart,

Mehr

Vorlesung Analysis I / Lehramt

Vorlesung Analysis I / Lehramt Vorlesung Analysis I / Lehramt TU Dortmund, Wintersemester 2012/ 13 Winfried Kaballo Die Vorlesung Analysis I für Lehramtsstudiengänge im Wintersemester 2012/13 an der TU Dortmund basiert auf meinem Buch

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 10. f(z) f(z) dz

Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 10. f(z) f(z) dz UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Musterlösung zu Blatt 0 Aufgabe. Berechnen Sie

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

23 Laurentreihen und Residuen

23 Laurentreihen und Residuen 23 Laurentreihen und Residuen 23. Laurentreihen Ist eine Funktion f in einem Punkt z nicht holomorph (oder nicht einmal definiert), so läßt sich f nicht durch eine Potenzreihe mit Entwicklungspunkt z darstellen.

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren.

(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren. Musterlösung noch: Funktionentheorie Aufgabe 2.5 (Holomorphe Stammfunktion. Sei f : C \{±i} C gegeben durch f( + 2. (a Zeigen Sie, dass f ( + i eine Stammfunktion auf K 2 (i besitt. Hinweis: Zeigen Sie

Mehr

Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als.

Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als. Residuum Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als Res Res f = 1 f (z) dz, z=a a 2πi wobei C : t a + re it, 0 t 2π, ein entgegen

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

c r Addiert man nun beide Reihendarstellungen, so folgt f (ζ) Nach dem Cauchyschen Integralsatz gilt dann auch

c r Addiert man nun beide Reihendarstellungen, so folgt f (ζ) Nach dem Cauchyschen Integralsatz gilt dann auch Residuen V Beweis Einsetzen in das Kurvenintegral über c r ergibt demnach f (ζ) 2πi ζ z dζ = f (ζ) 2πi (ζ z 0 ) c r k= c r k+ dζ Addiert man nun beide Reihendarstellungen, so folgt a k (z z 0 ) k, r z

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 214 Dr K Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Aufgaben und Theoriehinweise zu Blatt 6 Komplexe Funktionen, K Rothe,

Mehr

Analytische Zahlentheorie

Analytische Zahlentheorie 4. April 005. Übungsblatt Aufgabe (4 Punkte Sei k N. Beweisen Sie, dass f : N C mit f(n := n k streng multiplikativ ist. Sei τ die Funktion, die der natürlichen Zahl n die Anzahl der Teiler von n zuordnet

Mehr

Info zum Zusammenhang von Auflösung und Genauigkeit

Info zum Zusammenhang von Auflösung und Genauigkeit Da es oft Nachfragen und Verständnisprobleme mit den oben genannten Begriffen gibt, möchten wir hier versuchen etwas Licht ins Dunkel zu bringen. Nehmen wir mal an, Sie haben ein Stück Wasserrohr mit der

Mehr

Übungen zur Funktionentheorie

Übungen zur Funktionentheorie Mathematisches Institut SS 29 Universität München Prof. Dr. M. Schottenloher C. Paleani M. Schwingenheuer A. Stadelmaier Übungen zur Funktionentheorie Lösungen zu Übungsblatt. Sei fz) = z ) z 2) 2 eine

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Lösungen zum 11. Übungsblatt Funktionentheorie I

Lösungen zum 11. Übungsblatt Funktionentheorie I Universität Karlsruhe SS 2005 Mathematisches Institut I Prof. Dr. M. von Renteln Dr. C. Kaiser Lösungen zum 11. Übungsblatt Funktionentheorie I Aufgabe 11.1 a) Nach dem Maximumprinzip nimmt die Funktion

Mehr

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Gegeben ist die trigonometrische Funktion f mit f(x) = 2 sin(2x) 1 (vgl. Material 1). 1.) Geben Sie für die Funktion f den Schnittpunkt mit der y

Mehr

Funktionentheorie. Lösungsvorschläge zum 6. Übungsblatt. f (w) w z dw.

Funktionentheorie. Lösungsvorschläge zum 6. Übungsblatt. f (w) w z dw. Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz SS 04 3.06.04 Funktionentheorie Lösungsvorschläge zum 6. Übungsblatt Aufgabe (K) a) Zeigen

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

H.J. Oberle Komplexe Funktionen SoSe Residuensatz

H.J. Oberle Komplexe Funktionen SoSe Residuensatz H.J. Oberle Komplexe Funktionen SoSe 2013 Partialbruch-Zerlegung. 10. Residuensatz Wir setzen unsere Untersuchung der isolierten Singularitäten einer holomorphen Funktion mit einer Methode fort, die komplexe

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Abb lokales Maximum und Minimum

Abb lokales Maximum und Minimum .13 Lokale Extrema, Monotonie und Konvexität Wir kommen nun zu den ersten Anwendungen der Dierentialrechnung. Zwischen den Eigenschaten einer Funktion, dem Verlau des zugehörigen Graphen und den Ableitungen

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

3 Meromorphe Funktionen und der Residuenkalkül

3 Meromorphe Funktionen und der Residuenkalkül $Id: mero.tex,v.5 203/05/4 3:0:42 hk Exp hk $ 3 Meromorphe Funktionen und der Residuenkalkül 3.2 Isolierte Singularitäten In der letzten Sitzung hatten wir die drei Typen isolierter Singularitäten und

Mehr

Examenskurs Analysis Probeklausur I

Examenskurs Analysis Probeklausur I Georg Tamme Sommersemester 14 Examenskurs Analysis Probeklausur I 5.6.14 F1II1. Sei f : C C eine ganze Funktion. Entscheiden Sie, ob die folgenden Behauptungen wahr sind. Begründen Sie Ihre Antwort jeweils

Mehr

GF(2 2 ) Beispiel eines Erweiterungskörpers (1)

GF(2 2 ) Beispiel eines Erweiterungskörpers (1) GF(2 2 ) Beispiel eines Erweiterungskörpers (1) Im Kapitel 2.1 wurde bereits gezeigt, dass die endliche Zahlenmenge {0, 1, 2, 3} q = 4 nicht die Eigenschaften eines Galoisfeldes GF(4) erfüllt. Vielmehr

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Klausuraufgaben, Prüfungsleistung 06/08, Wirtschaftsmathematik, Betriebswirtschaft

Klausuraufgaben, Prüfungsleistung 06/08, Wirtschaftsmathematik, Betriebswirtschaft Studiengang Modul Art der Leistung Klausur-Kennzeihen Betriebswirtshat Wirtshatsmathematik Prüungsleistung Datum.6.8 BB-WMT-P 86 Bezüglih der Anertigung Ihrer Arbeit sind olgende Hinweise verbindlih: Verwenden

Mehr

Meromorphe Funktionen

Meromorphe Funktionen Kapitel Meromorphe Funktionen Der Satz von Mittag-Leffler Zur Erinnerung: Die holomorphe Funktion f habe in z 0 C eine isolierte Singularität. Liegt eine Polstelle vor, so gibt es eine offene Umgebung

Mehr

Laurent-Reihen. Definition 1 (Laurent-Reihe) Unter einer Laurent-Reihe versteht man eine Reihe der Form. c n (z z 0 ) n (2) n=0

Laurent-Reihen. Definition 1 (Laurent-Reihe) Unter einer Laurent-Reihe versteht man eine Reihe der Form. c n (z z 0 ) n (2) n=0 Laurent-Reihen Definition (Laurent-Reihe Unter einer Laurent-Reihe versteht man eine Reihe der Form c n (z z 0 n. ( n Man nennt die Teile c n (z z 0 n n bzw. c n (z z 0 n ( n0 den Haupt- bzw. Nebenteil

Mehr

Einführung in die Funktionentheorie

Einführung in die Funktionentheorie Einführung in die Funktionentheorie Andreas Gathmann Vorlesungsskript TU Kaiserslautern 204/5 Inhaltsverzeichnis 0. Einleitung und Motivation..................... 3. Komplexe Zahlen.......................

Mehr

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann Abiturvorbereitung Mathematik -Dierentialrechnungc Max Hoffmann 1 Ganzrationale Funktionen Im Folgenden wollen wir uns mit ganzrationale Funktionen und der Untersuchung solcher beschäftigen. Dabei werden

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung

6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung 6 Berechnung der Kaitalentwicklung auf der Basis der Zinseszinsrechnung 61 Wertentwicklung ohne Gut- oder Lastschrift von Zinsen Beisiele: 1 Konstante Produktionszunahme Produktion im 1 Jahr: P 1 Produktion

Mehr

Lösungen zum 9. Übungsblatt Funktionentheorie I

Lösungen zum 9. Übungsblatt Funktionentheorie I Universität Karlsruhe SS 25 Mathematisches Institut I Prof Dr M von nteln Dr C Kaiser Lösungen zum 9 Übungsblatt Funktionentheorie I Aufgabe 9 K a) Wir verwenden bei diesem Integranden die Partialbruchzerlegung

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt

Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt Leonhard Euler 1 Wann immer in den Anfängen der Analysis die Potenzen des Binoms entwickelt

Mehr

Umgekehrte Kurvendiskussion

Umgekehrte Kurvendiskussion Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen

Mehr

6 Conways Chequerboard-Armee

6 Conways Chequerboard-Armee 6 Conways Chequerboard-Armee Spiele gehören zu den interessantesten Schöpfungen des menschlichen Geistes und die Analyse ihrer Struktur ist voller Abenteuer und Überraschungen. James R. Newman Es ist sehr

Mehr

Kapitel 2. Endliche Körper und Anwendungen. 2.1 Körpererweiterungen

Kapitel 2. Endliche Körper und Anwendungen. 2.1 Körpererweiterungen Kapitel 2 Endliche Körper und Anwendungen 2.1 Körpererweiterungen Deinition Sei L ein Körper und K ein Unterkörper von L. Dann sagen wir, dass L ein Erweiterungskörper von K ist. Wir sagen dann auch: K

Mehr

PROSEMINAR ONLINE ALGORITHMEN

PROSEMINAR ONLINE ALGORITHMEN PROSEMINAR ONLINE ALGORITHMEN im Wintersemester 2000/2001 Prof. Dr. Rolf Klein, Dr. Elmar Langetepe, Dipl. Inform. Thomas Kamphans (Betreuer) Vortrag vom 15.11.2000 von Jan Schmitt Thema : Finden eines

Mehr

Musterlösung zu Übungsblatt 11

Musterlösung zu Übungsblatt 11 Prof. R. Pandharipande J. Schmitt, C. Schießl Funktionentheorie 2. Dezember 16 HS 2016 Musterlösung zu Übungsblatt 11 Aufgabe 1. Sei U C offen und a U. Seien f, g : U {a} folgende Formeln zur Berechnung

Mehr

Beispiellösungen zu Blatt 111

Beispiellösungen zu Blatt 111 µ κ Mathematisches Institut Georg-August-Universität Göttingen Beispiellösungen zu Blatt 111 Aufgabe 1 Ludwigshafen hat einen Bahnhof in Dreiecksform. Markus, Sabine und Wilhelm beobachten den Zugverkehr

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

8. Die Nullstellen der Zeta-Funktion

8. Die Nullstellen der Zeta-Funktion 8.. Wie vorher sei ( s ξ(s = π s/ Γ ζ(s. ξ ist meromorph in ganz C, hat Pole (erster Ordnung nur bei s = und s = und genügt der Funktionalgleichung ξ(s = ξ( s. Daraus folgt: Für Re s < hat die Zeta-Funktion

Mehr

Elliptische Funktionen

Elliptische Funktionen Elliptische Funktionen Jeff Schomer Universität Freiburg (Schweiz) 27.09.2007 Einleitung In diesem Seminar werden wir über doppelt periodische und elliptische Funktionen sprechen. Nachdem wir grundlegende

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Teilnehmer: Phili Bannach Heinrich-Hertz-Oberchule) Levin Keller Herder-Oberchule) Phili Kende Herder-Oberchule) Carten Kubbernuh Andrea-Oberchule) Giang Nguyen Herder-Oberchule)

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag 8. Übungsblatt zur Vorlesung Finanzmathematik I Aufgabe Hedging Amerikanischer Optionen Wir sind in einem arbitragefreien

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

86 Klassifizierung der isolierten Singularitäten holomorpher

86 Klassifizierung der isolierten Singularitäten holomorpher 86 Klassifizierung der isolierten Singularitäten holomorpher Funktionen 86. Isolierte Singulariäten holomorpher Funktionen 86.3 Klassifizierung der isolirerten Singularitäten 86.5 Charakterisierung hebbarer

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

14 Schmiegeparabel und Freunde, Taylor-Reihe

14 Schmiegeparabel und Freunde, Taylor-Reihe 14 Schmiegeparabel und Freunde, Taylor-Reihe Jörn Loviscach Versionsstand: 20. März 2012, 16:01 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.j3l7h.de/videos.html

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 7.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc. Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

MatheBasics Teil 4 Grundlagen der Mathematik

MatheBasics Teil 4 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 4 Grundlagen der Mathematik Version vom 02.11.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der

Mehr