Computational Finance

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Computational Finance"

Transkript

1 Computational Finance Kapitel 2.2: Monte Carlo Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring 4 / WiWi-Gebäude Bremen 1

2 Gliederung: 2.2. Monte Carlo Simulation Grundlegender Ansatz Fallstudie: Simulation einer Stop-Loss-Strategie Fallstudie: Simulation zum Cost-Average Effekt 2

3 Grundlegender Ansatz Simulation von Modellen mit Zufallsvariablen Monte Carlo in Anlehnung an weltbekannte Spielcasino Ursprünglich entwickelt in Los Alamos (1940er Jahre, amerikanische Forschungsprogramm zur Entwicklung der Atombombe) Idee: Approximative, simulationsbasierte Lösung von Problemen, bei denen analytische Lösungen fehlen oder zu zeitaufwändig sind 3

4 Prinzipielle Vorgehensweise Ziehung von Zufallszahlen Konstruktion der Realisation eines stochastischen Pfades Modellauswertung Verteilungseigenschaften der Zielgröße 4

5 Beispiel: Test einer Kapitalanlagestrategie Problem: Zentrale Zielgrößen, z.b. Rendite Risiko sind abhängig von der Wertentwicklung der benutzten Anlageinstrumente! Lösung des Problems: Analytische Approximation Monte Carlo Simulation 5

6 Lösung mittels Monte Carlo Simulation 1. Formulierung der Kapitalanlagestrategie 2. Formulierung des stochastischen Modells der Wertentwicklungen (Spezifikation von Modell und Parameter) 3. Ziehung von Zufallszahlen 4. Berechnung des stochastischen Pfades gemäß Auswertung der Strategie nach Ermittlung der Verteilung der Zielgröße(n) 6

7 Fallstudie: Simulation einer Stop-Loss-Strategie Problem: Stop-Loss-Strategie ist eine einfache Wertsicherungsstrategie. Vorgegeben ist ein am Ende des Anlagezeitraums zu erreichender Vermögensendwert. Der abdiskontierte Wert ist der sog. Floor. Sobald der Wert des Portfolios unter den Floor fällt, wird in vollständig in die risikofreie Anlage umgeschichtet. Welche Eigenschaften besitzt diese Strategie? 7

8 Beispielhafte Lösung: 1. Formulierung der Kapitalanlagestrategie Angenommen wird: a) Ein Anfangsvermögen von 1000 (Indexwert). b) Ein Anlagezeitraum von 10 Jahren. c) Eine garantierte Mindestverzinsung von 2% p.a. d) Eine sichere Anlagemöglichkeit zu 5% p.a. e) Eine 50:50 Aufteilung zwischen risikofreier und risikobehafteter Anlage f) Ein Handeln nach der beschriebenen Stop-Loss- Strategie. 8

9 2. Formulierung des stochastischen Modells: Random-Walk-Modell a) Random-Walk ohne Drift y 1 t y t t mit t standardnormalverteilte Zufallsvariable b) Random-Walk mit Drift mit y t y t 1 Driftkomponente t 9

10 Annahme der Verteilung und der Verteilungsparameter Stetige Renditen Normalverteilungsannahme Erwartungswert 8% p.a. Standardabweichung 20% p.a. Stochastische Modell der Wertentwicklung: P r t t exp(ln( P 1) ~ t N(0.08,0.2) r t ) 10

11 Wert Monte Carlo Simulation Kapitel 2.2 Schritte 3, 4 und 5: Pfad 1 Wertentwicklungen Zeit Floor Risikoanlage Portfolio 11

12 Häufigkeit Monte Carlo Simulation Kapitel Ermittlung der Verteilung der Zielgrößen Klasse Häufigkeit 1255, , , , , , , , , , , , , , und größer , Histogramm 2006, , , , , Klasse 5764, und größer Häufigkeit 12

13 Aufgaben: 1. Umsetzung des Beispiels mit Excel und den PopTools 2. Umsetzung des Beispiels mit Matlab 13

14 Mit Excel und den PopTools 14

15 Mit Matlab: Histogramm der Verteilung des Endvermögens bei 1000 Durchläufen

16 Fallstudie: Simulation zum Cost-Average-Effekt Aufgabe: Modifikation der Musterlösung aus Kap. 2.1 Erweiterung auf beliebig viele Simulationsdurchläufe Simulation mit 5000 Durchläufen Beantwortung der gestellten Frage (vgl. Kap. 2.1) 16

MA Projekt: Langfristige Kapitalmarktsimulation

MA Projekt: Langfristige Kapitalmarktsimulation MA Projekt: Langfristige Kapitalmarktsimulation Einführung in die Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring

Mehr

Computational Finance

Computational Finance Computational Finance Kapitel 2.1: Einführung in die Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring 4

Mehr

Investition und Risiko. Finanzwirtschaft I 5. Semester

Investition und Risiko. Finanzwirtschaft I 5. Semester Investition und Risiko Finanzwirtschaft I 5. Semester 1 Gliederung Ziel Korrekturverfahren: Einfache Verfahren der Risikoberücksichtigung Sensitivitätsanalyse Monte Carlo Analyse Investitionsentscheidung

Mehr

MA Projekt: Langfristige Kapitalmarktsimulation

MA Projekt: Langfristige Kapitalmarktsimulation MA Projekt: Langfristige Kapitalmarktsimulation Einführung in Anlagestrategien Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring

Mehr

Computational Finance

Computational Finance Computational Finance : Simulationsbasierte Optionsbewertung Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring 4 / WiWi-Gebäude

Mehr

Portfoliomanagement: Konzepte und Strategien

Portfoliomanagement: Konzepte und Strategien Thorsten Poddig / Ulf Brinkmann / Katharina Seiler Portfoliomanagement: Konzepte und Strategien Theorie und praxisorientierte Anwendungen mit Excel TM 2. überarbeitete Auflage UHLENBRUCH Verlag, Bad Soden/Ts.

Mehr

Numerische Optionsbepreisung durch Monte-Carlo-Simulation und Vergleich mit dem Black-Scholes-Modell

Numerische Optionsbepreisung durch Monte-Carlo-Simulation und Vergleich mit dem Black-Scholes-Modell Numerische Optionsbepreisung durch Monte-Carlo-Simulation und Vergleich mit dem Black-Scholes-Modell Bachelorarbeit zur Erlangung des akademischen Grades Bachelor of Science (B.Sc.) im Studiengang Wirtschaftswissenschaft

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Kapitalmarktlinie. von Kirstin Muldhoff

Kapitalmarktlinie. von Kirstin Muldhoff Capital Asset Pricing Model Kapitalmarktlinie von Kirstin Muldhoff Gliederung 1. Wiederholung Portfoliotheorie 2. Capital Asset Pricing Model (CAPM) (Kapitalmarktmodell) 2.1 Voraussetzungen des CAPM 2.2

Mehr

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Jan Jescow Stoehr Gliederung 1. Einführung / Grundlagen 1.1 Ziel 1.2 CreditRisk+ und CreditMetrics 2. Kreditportfolio 2.1 Konstruktion

Mehr

Quantitative BWL 2. Teil: Finanzwirtschaft

Quantitative BWL 2. Teil: Finanzwirtschaft Quantitative BWL 2. Teil: Finanzwirtschaft Mag. Tomáš Sedliačik Lehrstuhl für Finanzdienstleistungen Universität Wien 1 Themenübersicht 1. Portfoliotheorie und Portfoliomodelle i. Grundbegriffe: Rendite,

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel von Christian Schmitz Übersicht Zufallszahlen am Computer Optionspreis als Erwartungswert Aktienkurse simulieren Black-Scholes Formel Theorie

Mehr

Value at Risk Einführung

Value at Risk Einführung Value at Risk Einführung Veranstaltung Risk Management & Computational Finance Dipl.-Ök. Hans-Jörg von Mettenheim mettenheim@iwi.uni-hannover.de Institut für Wirtschaftsinformatik Leibniz Universität Hannover

Mehr

Arnd Wiedemann. Risikotriade Zins-, Kredit- und operationelle Risiken. 2., überarbeitete Auflage

Arnd Wiedemann. Risikotriade Zins-, Kredit- und operationelle Risiken. 2., überarbeitete Auflage Arnd Wiedemann Risikotriade Zins-, Kredit- und operationelle Risiken 2., überarbeitete Auflage . XI 1 Einleitung: Risikomessung als Fundament der Rendite-/Risikosteuerung 1 2 Zinsrisiko 3 2.1 Barwertrisiko

Mehr

1 Grundlagen des Portfolio Managements Mathematische Grundlagen im Portfolio Management Grundlagen der modernen Portfoliotheorie 203

1 Grundlagen des Portfolio Managements Mathematische Grundlagen im Portfolio Management Grundlagen der modernen Portfoliotheorie 203 Inhaltsübersicht 1 Grundlagen des Portfolio Managements 17 2 Mathematische Grundlagen im Portfolio Management 123 3 Grundlagen der modernen Portfoliotheorie 203 4 Die Anwendung des aktiven Portfolio Managements

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel Seite 1 von 24 Zufallszahlen am Computer 3 Gleichverteilte Zufallszahlen 3 Weitere Verteilungen 3 Quadratische Verteilung 4 Normalverteilung

Mehr

Finanzwirtschaft. Kapitel 4: Investitionsentscheidungen unter Unsicherheit. Lehrstuhl für Finanzwirtschaft - Universität Bremen

Finanzwirtschaft. Kapitel 4: Investitionsentscheidungen unter Unsicherheit. Lehrstuhl für Finanzwirtschaft - Universität Bremen Finanzwirtschaft Kapitel 4: Investitionsentscheidungen unter Unsicherheit Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring

Mehr

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011 Kevin Schellkes und Christian Hendricks 29.08.2011 Inhalt Der herkömmliche Ansatz zur Simulation logarithmischer Renditen Ansatz zur Simulation mit Copulas Test und Vergleich der beiden Verfahren Fazit

Mehr

KONVERGENZ IN DER KAPITALAPPROXIMATION FÜR DIE LEBENSVERSICHERUNG. 21. Mai 2015 Thomas Gleixner

KONVERGENZ IN DER KAPITALAPPROXIMATION FÜR DIE LEBENSVERSICHERUNG. 21. Mai 2015 Thomas Gleixner KONVERGENZ IN DER KAPITALAPPROXIMATION FÜR DIE LEBENSVERSICHERUNG 21. Mai 2015 Thomas Gleixner Agenda 1. Was ist Kapitalapproximation (und wen sollte das interessieren)? 2. Etablierte Methoden 3. Erfahrungen

Mehr

Fotios Filis. Monte-Carlo-Simulation

Fotios Filis. Monte-Carlo-Simulation Fotios Filis Monte-Carlo-Simulation Monte-Carlo-Methoden??? Spielcasino gibt Namen Monte Carlo war namensgebend für diese Art von Verfahren: Erste Tabellen mit Zufallszahlen wurden durch Roulette-Spiel-Ergebnisse

Mehr

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 2014 INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP) KIT Universität des Landes Baden-Württemberg und

Mehr

Oliver Mußhoff / Norbert Hirschauer: Bewertung komplexer Optionen. http://www.pd-verlag.de/buecher/68.html

Oliver Mußhoff / Norbert Hirschauer: Bewertung komplexer Optionen. http://www.pd-verlag.de/buecher/68.html Auf den folgenden Seiten finden Sie das Inhaltsverzeichnis zu dem Buch: Oliver Mußhoff / Norbert Hirschauer: Bewertung komplexer Optionen Umsetzung numerischer Verfahren mittels MS-EXCEL und Anwendungsmöglichkeiten

Mehr

Inhaltsverzeichnis. Vorwort 5

Inhaltsverzeichnis. Vorwort 5 Dietmar Ernst, Marc Schurer Portfolio Management Theorie und Praxis mit EXCEL und MATLAB UVK Verlagsgesellschaft mbh Konstanz mit UVK/Lucius München Inhaltsverzeichnis Vorwort 5 1 Grundlagen des Portfolio

Mehr

Commercial Banking. Kreditportfoliosteuerung

Commercial Banking. Kreditportfoliosteuerung Commercial Banking Kreditportfoliosteuerung Dimensionen des Portfoliorisikos Risikomessung: Was ist Kreditrisiko? Marking to Market Veränderungen des Kreditportfolios: - Rating-Veränderung bzw. Spreadveränderung

Mehr

Simulation von Zinsentwicklungen und Bewertung von gängigen Finanzprodukten

Simulation von Zinsentwicklungen und Bewertung von gängigen Finanzprodukten Simulation von Zinsentwicklungen und Bewertung von gängigen Finanzprodukten Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 1. Februar 2010 1 / 7 Gliederung 1 Was ist Finanzmathematik

Mehr

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 4, 5 und 6, SS 2008 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Lösungshinweise zur Einsendearbeit

Mehr

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X Hypothesentests Bisher betrachtet: Punkt- bzw. Intervallschätzung des unbekannten Mittelwerts Hierzu: Verwendung der 1 theoretischen Information über Verteilung von X empirischen Information aus Stichprobenrealisation

Mehr

Risiko und Versicherung - Übung

Risiko und Versicherung - Übung Sommer 2009 Risiko und Versicherung - Übung Entscheidungstheoretische Grundlagen Renate Bodenstaff Vera Brinkmann r.bodenstaff@uni-hohenheim.de vera.brinkmann@uni-hohenheim.de https://insurance.uni-hohenheim.de

Mehr

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Induktive Statistik Prof. Dr. W.-D. Heller

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Portfolio-Optimierung und Capital Asset Pricing

Portfolio-Optimierung und Capital Asset Pricing Portfolio-Optimierung und Capital Asset Pricing Peter Malec Institut für Statistik und Ökonometrie Humboldt-Universität zu Berlin Econ Boot Camp, SFB 649, Berlin, 4. Januar 2013 1. Einführung 2 29 Motivation

Mehr

Proseminar BWL, Finance

Proseminar BWL, Finance Proseminar BWL, Finance Kap. 1: Einführung - Informationseffizienzhypothese - Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring

Mehr

Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.

Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam. Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.de 1 Gliederung 7 Weitere Krigingverfahren 7.1 Simple-Kriging 7.2 Indikator-Kriging

Mehr

Monte-Carlo-Simulation

Monte-Carlo-Simulation Modellierung und Simulation Monte-Carlo-Simulation Universität Hamburg Johannes Schlundt 7. Januar 2013 Monte-Carlo-Simulation Johannes S. 1/31 Inhalt Motivation Geschichtliche Entwicklung Monte-Carlo-Simulation

Mehr

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken...

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken... I. Deskriptive Statistik 1 1. Einführung 3 1.1. Die Grundgesamtheit......................... 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................ 10

Mehr

Bewertung von biometrischen Risiken in der bav

Bewertung von biometrischen Risiken in der bav Bewertung von biometrischen Risiken in der bav Ralf Knobloch Fachhochschule Köln Gliederung 1. Biometrische Risiken in der bav 2. Das Modell 3. Risikomaße 4. Einfaches Beispiel 5. Schlussbemerkungen 2

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

Inhalte Kurs Finanz- und Risikosteuerung

Inhalte Kurs Finanz- und Risikosteuerung Inhalte Kurs Finanz- und Risikosteuerung Studieninhalte (DS = Doppelstunde á 90 Minuten) Grundlagen der Bankensteuerung Finanzmathematische Grundlagen 12 DS Dynamische Verfahren der Investitionsrechnung

Mehr

Lehrstuhl für Finanzierung Universitätsprofessor Dr. Jochen Wilhelm

Lehrstuhl für Finanzierung Universitätsprofessor Dr. Jochen Wilhelm Lehrstuhl für Finanzierung Universitätsprofessor Dr. Jochen Wilhelm A b s c h l u s s k l a u s u r z u r V o r l e s u n g K a p i t a l m a r k t t h e o r i e W i n t e r s e m e s t e r 1 9 9 9 / 2

Mehr

Commercial Banking. Kreditgeschäft 2. Bedingte marginale und kumulative Ausfallwahrscheinlichkeit

Commercial Banking. Kreditgeschäft 2. Bedingte marginale und kumulative Ausfallwahrscheinlichkeit Commercial Banking Kreditgeschäft Bedingte marginale und kumulative Ausfallwahrscheinlichkeit Bedingte Marginale Ausfallwahrscheinlichkeit (BMAW t ) (Saunders: MMR ) prob (Ausfall in Periode t kein Ausfall

Mehr

Kompaktkurs BWL. Kap. 1: Einführung

Kompaktkurs BWL. Kap. 1: Einführung Kompaktkurs BWL Kap. 1: Einführung Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring 4 / WiWi-Gebäude 28359 Bremen e-mail:

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Monte Carlo Simulation (Grundlagen)

Monte Carlo Simulation (Grundlagen) Der Titel des vorliegenden Beitrages wird bei den meisten Lesern vermutlich Assoziationen mit Roulette oder Black Jack hervorrufen. Allerdings haben das heutige Thema und die Spieltische nur den Namen

Mehr

AUTOMATISIERTE HANDELSSYSTEME

AUTOMATISIERTE HANDELSSYSTEME UweGresser Stefan Listing AUTOMATISIERTE HANDELSSYSTEME Erfolgreich investieren mit Gresser K9 FinanzBuch Verlag 1 Einsatz des automatisierten Handelssystems Gresser K9 im Portfoliomanagement Portfoliotheorie

Mehr

Lösungshinweise zur Einsendearbeit 2 SS 2011

Lösungshinweise zur Einsendearbeit 2 SS 2011 Lösungshinweise zur Einsendearbeit 2 zum Kurs 41500, Finanzwirtschaft: Grundlagen, SS2011 1 Lösungshinweise zur Einsendearbeit 2 SS 2011 Finanzwirtschaft: Grundlagen, Kurs 41500 Aufgabe Finanzierungsbeziehungen

Mehr

Risikoaggregation und allokation

Risikoaggregation und allokation 2. Weiterbildungstag der DGVFM Risikoaggregation und allokation Einführung in das Thema Prof. Dr. Claudia Cottin, FH Bielefeld Dr. Stefan Nörtemann, msg life Hannover, 21. Mai 2015 2. Weiterbildungstag

Mehr

Kapitel VII. Einige spezielle stetige Verteilungen

Kapitel VII. Einige spezielle stetige Verteilungen Kapitel VII Einige spezielle stetige Verteilungen D. 7.. (Normalverteilung) Eine stetige Zufallsgröße X sei als normalverteilt bezeichnet, wenn sie folgende Wahrscheinlichkeitsdichte besitzt: µ f ( ; µ,

Mehr

bav Risikomanagement in der betrieblichen Altersversorgung FaRis & DAV Symposium, Köln, 14. Juni 2013

bav Risikomanagement in der betrieblichen Altersversorgung FaRis & DAV Symposium, Köln, 14. Juni 2013 Risikomanagement in der betrieblichen Altersversorgung FaRis & DAV Symposium, Köln, 14. Juni 2013 3. Bewertung von biometrischen Risiken in der bav Fachhochschule Köln, Schmalenbach Institut für Wirtschaftswissenschaften

Mehr

Nr. 4: Pseudo-Zufallszahlengeneratoren

Nr. 4: Pseudo-Zufallszahlengeneratoren Proseminar: Finanzmathematische Modelle und Simulationen Martin Dieckmann WS 09/0 Nr. 4: Pseudo-Zufallszahlengeneratoren Begriff Pseudo-Zufallszahl Zufallszahlen im Rechner entstehen letztlich immer durch

Mehr

Überprüfung der Zielgrösse der Wertschwankungsreserve

Überprüfung der Zielgrösse der Wertschwankungsreserve Aon Hewitt Investment Consulting Urheberrechtlich geschützt und vertraulich Überprüfung der Zielgrösse der Wertschwankungsreserve Pensionskasse XY, Januar 2015 Risk. Reinsurance. Human Resources. Inhaltsverzeichnis

Mehr

Trends in der risiko- und wertorientierten Steuerung des Versicherungsunternehmens

Trends in der risiko- und wertorientierten Steuerung des Versicherungsunternehmens Trends in der risiko- und wertorientierten Steuerung des Versicherungsunternehmens Inhalt Einleitung Finanzwirtschaftliche Führung von Versicherungsunternehmen Fair Value Prinzip IAS als Accounting Standard

Mehr

SST: - In Kraft - Ab 2011 verbindlich - Modellabhängig

SST: - In Kraft - Ab 2011 verbindlich - Modellabhängig Standardmodell oder internes Modell in der Lebensversicherung? Prüfungskolloquium zum Aktuar SAV 2010 Caroline Jaeger, Allianz Suisse Ursprung der Fragestellung Solvency I: - Risikounabhängig - Formelbasiert

Mehr

Asset-Liability-Management

Asset-Liability-Management Asset-Liability-Management Was ist Asset-Liability-Management? Der Begriff Asset-Liability-Management (ALM) steht für eine Vielzahl von Techniken und Ansätzen zur Koordination von Entscheidungen bezüglich

Mehr

Risikotriade - Teil Messung von Zins-, Kreditund operationellen Risiken

Risikotriade - Teil Messung von Zins-, Kreditund operationellen Risiken Arnd Wiedemann Risikotriade - Teil Messung von Zins-, Kreditund operationellen Risiken 3., überarbeitete Auflage Inhaltsübersicht Band I X[ Inhaltsübersicht Band I Zins-, Kredit- und operationeile Risiken

Mehr

Korrelationen, Portfoliotheorie von Markowitz, Capital Asset Pricing Model

Korrelationen, Portfoliotheorie von Markowitz, Capital Asset Pricing Model Korrelationen, Portfoliotheorie von Markowitz, Capital Asset Pricing Model Matthias Eltschka 13. November 2007 Inhaltsverzeichnis 1 Einleitung 3 2 Vorbereitung 4 2.1 Diversifikation...........................

Mehr

DIPLOMPRÜFUNG Examen Bankbetriebslehre (PO99-120 Min.) Universitätsprofessor Dr. Klaus Schäfer Sommersemester 2006

DIPLOMPRÜFUNG Examen Bankbetriebslehre (PO99-120 Min.) Universitätsprofessor Dr. Klaus Schäfer Sommersemester 2006 TU Bergakademie Freiberg Fakultät für Wirtschaftswissenschaften Matrikel-Nr.: Name (optional): Studienrichtung: Fakultät: Semesterzahl: DIPLOMPRÜFUNG Prüfungsfach: Prüfer: Examen Bankbetriebslehre (PO99-120

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 2014 1. Auflage Übungsaufgaben zu Kapitel

Mehr

Zielsetzung. Problematik

Zielsetzung. Problematik Kreditrisiko-Modellierung für Versicherungsunternehmen Tamer Yilmaz 21. November 2007 Zielsetzung Die Ermittlung der Eigenkapitalhinterlegung für das Kreditrisiko, die auf das Versicherungsunternehmen

Mehr

I-CPPI Premium-Qualität durch die richtige Balance zwischen Renditechancen und Sicherheit

I-CPPI Premium-Qualität durch die richtige Balance zwischen Renditechancen und Sicherheit I-CPPI Premium-Qualität durch die richtige Balance zwischen Renditechancen und Sicherheit *Die DWS/DB Gruppe ist nach verwaltetem Fondsvermögen der größte deutsche Anbieter von Publikumsfonds. Quelle:

Mehr

Kapitel XIV - Anpassungstests

Kapitel XIV - Anpassungstests Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIV - Anpassungstests Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh 2. Grundannahme:

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Finanzwirtschaft. Kapitel 8.: Finanzmanagement

Finanzwirtschaft. Kapitel 8.: Finanzmanagement Finanzwirtschaft Kapitel 8.: Finanzmanagement Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring 4 / WiWi-Gebäude 28359

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

Generalthema: Zinsrisikomanagement und der Jahresabschluß von Kreditinstituten Thema 5: Ansätze zur Bewertung von Zinsoptionen

Generalthema: Zinsrisikomanagement und der Jahresabschluß von Kreditinstituten Thema 5: Ansätze zur Bewertung von Zinsoptionen Institut für Geld- und Kapitalverkehr der Universität Hamburg Prof. Dr. Hartmut Schmidt Seminar zur BBL und ABWL Wintersemester 2003/2004 Zuständiger Mitarbeiter: Dipl.-Kfm. Christian Wolff Generalthema:

Mehr

Teil I Beschreibende Statistik 29

Teil I Beschreibende Statistik 29 Vorwort zur 2. Auflage 15 Vorwort 15 Kapitel 0 Einführung 19 0.1 Methoden und Aufgaben der Statistik............................. 20 0.2 Ablauf statistischer Untersuchungen..............................

Mehr

Portfolio Insurance - CPPI im Vergleich zu anderen Strategien

Portfolio Insurance - CPPI im Vergleich zu anderen Strategien Bank- und finanzwirtschaftliche Forschungen 386 Portfolio Insurance - CPPI im Vergleich zu anderen Strategien von Roger Uhlmann 1. Auflage Haupt Verlag 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN

Mehr

Kreditrisiko bei Swiss Life. Carl-Heinz Meyer, 13.06.2008

Kreditrisiko bei Swiss Life. Carl-Heinz Meyer, 13.06.2008 Kreditrisiko bei Swiss Life Carl-Heinz Meyer, 13.06.2008 Agenda 1. Was versteht man unter Kreditrisiko? 2. Ein Beisiel zur Einführung. 3. Einige kleine Modelle. 4. Das grosse kollektive Modell. 5. Risikoberechnung

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. r. N. Bäuerle ipl.-math. S. Urban Lösungsvorschlag 3. Übungsblatt zur Vorlesung Finanzmathematik I Aufgabe as endnutzenoptimale Aktienportfolio bei Exp-Nutzen Wir betrachten

Mehr

Der Weg eines Betrunkenen

Der Weg eines Betrunkenen Der Weg eines Betrunkenen 2 Hätte es damals schon Computer gegeben, wäre es für unseren Mathematiker um einiges leichter gewesen, den Weg des Betrunkenen zu bestimmen. Er hätte nicht nur eine beliebige

Mehr

Hauptseminar. Monte-Carlo-Methoden, stochastische Schätzungen und deren Unsicherheit. Robert John 2.11.2011

Hauptseminar. Monte-Carlo-Methoden, stochastische Schätzungen und deren Unsicherheit. Robert John 2.11.2011 Hauptseminar Monte-Carlo-Methoden, stochastische Schätzungen und deren Unsicherheit Robert John 1 Inhalt Herkunft Stochastische Schätzung Monte-Carlo-Methode Varianzreduktion Zufallszahlen Anwendungsgebiete

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Die Binomialverteilung

Die Binomialverteilung Fachseminar zur Stochastik Die Binomialverteilung 23.11.2015 Referenten: Carolin Labrzycki und Caroline Kemper Gliederung Einstieg Definition der Binomialverteilung Herleitung der Formel an einem Beispiel

Mehr

Schulinternes Curriculum. Mathematik

Schulinternes Curriculum. Mathematik Gymnasium Zitadelle Schulinternes Curriculum (G 8) Stand: Schuljahr 2012/13 Gymnasium Zitadelle Schulinternes Curriculum Seite 1 EF Eingeführtes Lehrbuch: Lambacher Schweizer 10 Einführungsphase Funktionen

Mehr

CAPM Die Wertpapierlinie

CAPM Die Wertpapierlinie CAPM Die Wertpapierlinie Systematisches und unsystematisches Risiko Von Dong Ning Finanzwirtschaft 6. Sem. Inhalt Wertpapierlinie (CAPM) Erwartungswert für f r die Rendit Risiken messen 1.Standardabweichung-

Mehr

Zu Thema 18: Beispiele für Aktien mit unterschiedlichen Betas

Zu Thema 18: Beispiele für Aktien mit unterschiedlichen Betas Zu Thema 18: Beispiele für Aktien mit unterschiedlichen Betas Theorie und Praxis Theoretischer Teil: Auswirkungen unterschiedlicher Betas auf das Schwingungsverhalten einer Aktie zum Index unter idealtypischen

Mehr

Beispiel 2: Variable Vergütung und LEN-Modell (1/3)

Beispiel 2: Variable Vergütung und LEN-Modell (1/3) 5.1 Beziehungen zwischen Controlling und Personalführung Beispiel 2: Variable Vergütung und LEN-Modell (1/3) Ausgangslage: Ein Unternehmen schließt einen Vertrag mit einem Handelsvertreter. Um den höchstmöglichen

Mehr

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen III / Marktpreisrisiken Dr. Klaus Lukas Stefan Prasser

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen III / Marktpreisrisiken Dr. Klaus Lukas Stefan Prasser Vorlesung Gesamtbanksteuerung Mathematische Grundlagen III / Marktpreisrisiken Dr. Klaus Lukas Stefan Prasser 1 Agenda Rendite- und Risikoanalyse eines Portfolios Gesamtrendite Kovarianz Korrelationen

Mehr

Systematik und ökonomische Relevanz traditioneller Performancemaße

Systematik und ökonomische Relevanz traditioneller Performancemaße Systematik und ökonomische Relevanz traditioneller Performancemaße Vortrag an der Universität Hamburg am 18. Juni 2001 PD Dr. Marco Wilkens IFBG der Georg-August-Universität Göttingen 1 Gliederung 1. Einleitung

Mehr

Inhaltsverzeichnis. Teil A Simulationen in der Unternehmenssteuerung Grundlagen 23

Inhaltsverzeichnis. Teil A Simulationen in der Unternehmenssteuerung Grundlagen 23 Geleitwort 11 Vorwort 15 Teil A Simulationen in der Unternehmenssteuerung Grundlagen 23 1 Einleitung 25 1.1 Das Orakel als Simulationsmethode 25 1.2 Die ersten Versuche zum»systematischen«umgang mit der

Mehr

Kapitalmarkttheorie: Vorbereitungen

Kapitalmarkttheorie: Vorbereitungen 0 Kapitel Kapitalmarkttheorie: Vorbereitungen Kapitelübersicht 1 Renditen 2 Renditen und Halteperioden 3 Rendite-Kennzahlen 4 Durchschnittliche Aktienrenditen und risikofreie Renditen 5 Risiko-Kennzahlen

Mehr

Statistische Auswertung der Daten von Blatt 13

Statistische Auswertung der Daten von Blatt 13 Statistische Auswertung der Daten von Blatt 13 Problemstellung 1 Graphische Darstellung der Daten 1 Diskussion der Normalverteilung 3 Mittelwerte und deren Konfidenzbereiche 3 Signifikanz der Behandlung

Mehr

R ist freie Software und kann von der Website. www.r-project.org

R ist freie Software und kann von der Website. www.r-project.org R R ist freie Software und kann von der Website heruntergeladen werden. www.r-project.org Nach dem Herunterladen und der Installation von R kann man R durch Doppelklicken auf das R-Symbol starten. R wird

Mehr

Bearbeiten Sie alle sechs Aufgaben A1-A6 und eine der zwei Aufgaben B1-B2!

Bearbeiten Sie alle sechs Aufgaben A1-A6 und eine der zwei Aufgaben B1-B2! Bachelor-Kursprüfung International Finance Schwerpunktmodule Finanzmärkte und Außenwirtschaft 6 Kreditpunkte, Bearbeitungsdauer: 90 Minuten WS 2014/15, 04.02.2015 Prof. Dr. Lutz Arnold Bitte gut leserlich

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) Mathematikgebäude Raum 715 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) W-Rechnung und Statistik

Mehr

Einfluss der Besteuerung auf die private Altersvorsorge von Arbeitnehmern in Deutschland

Einfluss der Besteuerung auf die private Altersvorsorge von Arbeitnehmern in Deutschland Pia Christina Jordan Einfluss der Besteuerung auf die private Altersvorsorge von Arbeitnehmern in Deutschland Verlag Dr. Kovac Hamburg ' 2011 ABBILDUNGSVERZEICHNIS TABELLENVERZEICHNIS SYMBOL VERZEICHNIS

Mehr

Kreditrisikomodell von Jarrow-Lando-Turnbull im Einsatz

Kreditrisikomodell von Jarrow-Lando-Turnbull im Einsatz Kreditrisikomodell von Jarrow-Lando-Turnbull im Einsatz Dr. Michael Leitschkis Generali Deutschland Holding AG Konzern-Aktuariat Personenversicherung München, den 13.10.2009 Agenda Einführung und Motivation

Mehr

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum)

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum) Skriptum zur Veranstaltung Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik 1. Version (mehr Draft als Skriptum) Anmerkungen, Aufzeigen von Tippfehlern und konstruktive Kritik erwünscht!!!

Mehr

Portfolio Insurance - CPPI im Vergleich zu anderen Strategien

Portfolio Insurance - CPPI im Vergleich zu anderen Strategien Roger Uhlmann Portfolio Insurance - CPPI im Vergleich zu anderen Strategien Haupt Verlag Bern Stuttgart Wien Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Abkürzungsverzeichnis Symbol- und

Mehr

Wahrscheinlichkeit3 Binomialverteilung/Bernoulli-Formel

Wahrscheinlichkeit3 Binomialverteilung/Bernoulli-Formel Wahrscheinlichkeit3 Binomialverteilung/Bernoulli-Formel Aufgaben Lösen Sie A1 und A sowohl mit der Bernoulli-Formel als auch mit dem TR(BV), die anderen Aufgaben lösen sie mit dem TR(BV). A1 Eine Familie

Mehr

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1 1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen

Mehr

DIPLOM. Abschlussklausur der Vorlesung Bank I, II:

DIPLOM. Abschlussklausur der Vorlesung Bank I, II: Seite 1 von 9 Name: Matrikelnummer: DIPLOM Abschlussklausur der Vorlesung Bank I, II: Bankmanagement und Theory of Banking Seite 2 von 9 DIPLOM Abschlussklausur der Vorlesung Bank I, II: Bankmanagement

Mehr

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/ Finanzmathematik - Wintersemester 2007/08 http://code.google.com/p/mitgetexed/ Stand: 4. November 2007 Inhaltsverzeichnis 1 Motivation und erste Begriffe 2 2 Endliche Finanzmärkte 4 3 Das Cox-Ross-Rubinstein-Modell

Mehr

Stochastik-Praktikum

Stochastik-Praktikum Stochastik-Praktikum Simulation stochastischer Prozesse Peter Frentrup Humboldt-Universität zu Berlin 27. November 2017 (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 27. November 2017

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Der Informationsgehalt von Optionspreisen

Der Informationsgehalt von Optionspreisen 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Martin Wallmeier Der Informationsgehalt von Optionspreisen Mit 62

Mehr

Vorlesung 7: Value-at-Risk für Kreditrisiken

Vorlesung 7: Value-at-Risk für Kreditrisiken Vorlesung 7: Value-at-Risk für Kreditrisiken 17. April 2015 Dr. Patrick Wegmann Universität Basel WWZ, Department of Finance patrick.wegmann@unibas.ch www.wwz.unibas.ch/finance Die Verlustverteilung im

Mehr

Die Bestimmung von Value-at-Risk- Werten mit Hilfe der Monte-Carlo- Simulation. Jens Schiborowski

Die Bestimmung von Value-at-Risk- Werten mit Hilfe der Monte-Carlo- Simulation. Jens Schiborowski Die Bestimmung von Value-at-Risk- Werten mit Hilfe der Monte-Carlo- Simulation Jens Schiborowski Gliederung Einführung Monte-Carlo-Simulation Definition von Monte-Carlo-Simulation Einsatzgebiete von Monte-Carlo-Simulation

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr