Wie man sieht ist der Luftwiderstand -abgesehen von der Fahrgeschwindigkeit- nur von Werten abhängig, die sich während der Messung nicht ändern.

Größe: px
Ab Seite anzeigen:

Download "Wie man sieht ist der Luftwiderstand -abgesehen von der Fahrgeschwindigkeit- nur von Werten abhängig, die sich während der Messung nicht ändern."

Transkript

1 Wie hoch ist der - und Luftwiderstand eines Autos? Original s. (Diese Seite bietet außer dieser Aufgabe mehr Interessantes zur Kfz-Technik) Kann man den Luftwiderstand und den widerstand eines Autos (und damit ollmundige Werbeersprechen) ohne Windkanal und ohne aufwendige Technik prüfen? Im Prinzip ja! Sehen wir uns dazu einmal die wirkenden Kräfte im Bild an: Die Theorie Natürlich gibt es noch weitere Kräfte, z.b. die Reibung in den Radlagern und in Getrieben, die beim Auskuppeln nicht on den Rädern getrennt werden, z.b. Gelenkwellen oder Differentialgetriebe. Aber die folgende Rechnung soll ja nur ein Beispiel geben, wie man den Luftwiderstand berechnen kann. Die Genauigkeit hängt u.a. auch on der erwendeten Messtechnik ab. Der Luftwiderstand Glg. Glg. F Luft * c w * A* F Luft Luftwiderstandskraft in [N] ρ Luft Dichte der Luft, etwa, [kg/m³] c w Luftwiderstandsbeiwert, dimensionslos A Projizierte Stirnfläche des Fahrzeugs in [m²] Fahrgeschwindigkeit in [m/s] Wie man sieht ist der Luftwiderstand -abgesehen on der Fahrgeschwindigkeit- nur on Werten abhängig, die sich während der Messung nicht ändern. Beim widerstand sieht die Gleichung so aus: Glg. F m * g * k F m FZ g widerstandakraft in [N] Fahrzeugmasse in [kg] Ergbeschleunigung, etwa 9,8 m/s² k widerstandsbeiwert, dimensionslos Für unsere Berechnung wollen wir annehmen, dass nur diese beiden Kräfte das Ausrollen des Fahrzeugs bremsen. Um widerstand und Luftwiderstand zu bestimmen, ist folgender Versuchsablauf orgesehen: Ein Fahrzeug wird auf eine bestimmte Geschwindigkeit 0 beschleunigt. Sobald die Geschwindigkeit erreicht ist, wird ausgekuppelt, die Fahrgeschwindigkeit 0 festgehalten (Tacho) und gleichzeitig eine Stoppuhr gestartet. In dem Augenblick, in dem das Fahrzeug zum Stillstand kommt, wird die Stoppuhr angehalten und die Zeit t R festgehalten. Der Versuch erfolgt bei Windstille und das Fahrzeug rollt in der Ebene aus. Es werden mehrere Versuche mit unterschiedlichen Geschwindigkeiten ausgeführt. Unter diesen Randbedingungen lässt sich dann die Differentialgleichung der Bewegung nach Newton (F = m* a) aufstellen: Glg. 3 m * a F F Luft

2 a, die Beschleunigung ist nichts anderes als die Änderung der Fahrgeschwindigkeit durch die Reibungskräfte, also a = d/dt. Damit lassen sich alle Größen in die Differentialgleichung (DGL) einsetzen: Glg. 4 d Luft * cw * A* m * k * m * g dt Durch m diidiert erhält man: Glg. 5 d Luft cw * A * * k dt * m * g Um die Gleichung übersichtlicher zu gestalten, werden die konstanten Anteile der Gleichung ersetzt durch Glg. 6 Luft * cw * A L * m bzw. Glg. 7 Glg. 8 k * g R und es ergibt sich : d L* dt R Das ist eine Differenzialgleichung. In einer solchen Gleichung taucht die Funktion auf (in diesem Fall sogar zum Quadrat ( )) und die Ableitung der Funktion (d/dt)! Das Lösen solcher Gleichungen lernt man in einem entsprechendem Studium. Jedenfalls liefert die Lösung nicht die gesuchten Größen für den Luft- bzw. widerstand, sondern genau die Funktion (t), die diese Differenzialgleichung erfüllt. Diese Lösung wird hier orgegeben: Glg. 9 R ( t) * tan arctan L * o L * R t R L * Ersetzt man auch hier alle konstanten Größen durch : Glg. 0 Glg. R = a, L arctan L R * o = b und Glg. Glg. 3 L * R = c, so wird die Funktion etwas übersichtlicher: ( t) a * tan b c * t Mit dieser Formel und bei gegebenen Werten für ρ Luft, c w, A, 0, m FZ, g und k kann man a, b und c bestimmen und weiterhin mit der Funktion (t) ausrechnen, welche Geschwindigkeit (t) das Fahrzeug nach einer bestimmten Zeit t noch hat, nachdem es auf 0 beschleunigt wurde und dann ausrollt.

3 A B C Einheit rho,9,9,9 kg/m^3 cw 0,3 0,00 0,3 A,,, m^ m kg g 9,8 9,8 9,8 m/s^ k 0,0 0,0 0, m/s Die Simulation A berücksichtigt Luftwiderstand und widerstand. Die Simulation B berücksichtigt nur den widerstand, während der cw-wert nahezu 0 gesetzt wurde. Die Simulation C berücksichtigt nur den Luftwiderstand, während der reibwert mü nahezu 0 gesetzt wurde. Umgekehrt kann man prinzipiell die Gleichung 3 auch nutzen, um bei gegebenen Wertepaaren (t; (t)), sowie 0 die Konstanten a, b und c zu berechnen, um daraus die gesuchten Größen für c w und k zu ermitteln. Mit den Werten A=,, m =00, g= 9,8 und z.b. den 3 Wertepaaren aus einem möglichen Fahrersuch t (s) (m/s) lassen sich die 3 Gl. aufstellen: Glg. 4 b c *0 8 ( 0) a * tan

4 Glg. 5 Glg. 6 b c * 0 9 ( 0) a * tan b c *00 0 ( 00) a * tan Aus Gl 6. folgt, dass Glg. 7 b = 00c sein muss, da aus tan(x) = 0 => x= 0 (oder z * pi), eben immer da, wo sin(x) = 0 ist. Hier interessiert aber nur die erste NST. Damit werden die Gl.4 und 5 zu Glg. 8 Glg c 8 a * tan 80c 9 a * tan, also Gl. mit den beiden Unbekannten a und c. Durch Diision der Glg. 8 durch die Glg. 9 erschwindet der gemeinsame Faktor a und man erhält eine Glg. Mit nur einer Unbekannten, nämlich c: Glg. 0 tan(00 c) tan(80c) 8 9 Für diese Gleichung kenne ich kein Standardlösungserfahren.. Vorschlag: Die Soler-Funktion des Taschenrechners (z.b. Sharp EL-W506) nutzen, um die NST on f(c) zu bestimmen. Dieser Versuch führt aber nur mit iel Glück zum Ergebnis, da es nur relati sehr wenige geeignete Startwerte gibt. (Die Soler-Funktion des TR arbeitet nach dem Newton-Verfahren, um NST zu bestimmen.). Vorschlag : Software Excel nutzen Vorschlag : Software nutzen, die Funktionsgraphen darstellt (z.b. WZGrapher): Arbeitsschritte: * Die Glg. 3. umformen und als Funktion on c auffassen. Glg. f ( c) tan(00c) tan(80c) 8 9 * Den Graphen f(c) anzeigen lassen. * Die NST des Funktionsgraphen ist der gesuchte Wert on c: Die NST liegt bei x = 0, Das ist also der gesuchte Wert c. (Probe mit Taschenrechner)

5 Der ollständige Graph dieser Funktion sieht ganz interessant aus. Außerdem gibt es natürlich unendlich iele NST, da f(c) eine periodische Funktion ist. Die Abbildung zeigt nur einen kleinen Ausschnitt, nämlich den, mit der. positien NST: Diese graphische Lösungsmethode ist offenbar die effektiste. Sie führt zu c = 0, Mit Glg. 8 oder 9 lässt sich dann auch der Wert für a bestimmen: 8 8 a tan00c tan0,953 9, 89 also a = 9,89 Schließlich folgte mit Glg. 4: b = 00c = 0,953, b = 0,953 Nun ist man endlich in der Lage, die konkrete Funktion (t) (s.glg. 3) zu notieren, die den zeitlichen Verlauf der Geschwindigkeit beim Ausrollen des Fahrzeugs mit den gegebenen Eigenschaften und den aus dem Ausrollersuch gemessenen Werten beschreibt.: ( t) 9,89 * tan 0,953 0,00953 * t Wie kommt man jetzt noch zu den eigentlich gesuchten Werten für c w und k? Mit den Gleichungen 0 und sowie mit den ermittelten Werten on a und c kann man die Größen R und L jeweils bestimmen. Es ergibt sich : L = 0, und R = 0,896 Mit den Gleichungen 6 und 7 und mit den jetzt bekannten Werten on L und R sowie mit den übrigen gegebenen Größen kann man nun die Größen c w und k jeweils bestimmen. Es ergibt sich : c w = 0,338 und k = 0,093 Damit ist die Aufgabe endlich gelöst.

6 Im Kraftfahrtechnischen Taschenbuch (BOSCH, 3. Aufl. 999, S. 399) wird ein ähnliches Verfahren beschrieben: Bestimmung on Luftwiderstands- und widerstandsbeiwert durch Versuch: Fahrzeug bei Windstille und ausgeschaltetem Gang auf ebener Straße auslaufen lassen. Bei einer großen Geschwindigkeit und einer kleinen Geschwindigkeit werden für ein Geschwindigkeitsinterall die Ausrollzeiten gemessen und die mittleren Verzögerungen a l und a ermittelt. Rechnungsgang und Beispiel siehe untenstehende Tabelle. Das Zahlenbeispiel gilt für ein Fahrzeug mit Gewicht m = 450 kg und Querschnitt A =, m. Diese Methode ist für Fahrgeschwindigkeiten unter 00 km/h anwendbar..versuch (große Geschwindigkeit). Versuch (kleine Geschwindigkeit) Anfangsgeschwindigkeit Endgeschwindigkeit Zeit zwischen a und b mittlere Geschwindigkeit a = 60 km/h a = 55 km/h t = 6,5 s a a b = 5 km/h b = 0 km/h t = 0,5 s b b 57,5km/ h,5km/ h mittlere Verzögerung Vaa km / h a t 0, 77 s Vb Vb km / h a t 0, 48 s Luftwiderstandsbeiwert c w 6m*( a a ) A*( ) 0,36 widerstandsbeiwert k 8,*( a a ) 3 0 *( ) 0,03 Mit den selben Werten wie in der arstechnica Aufgabe m A a a b b t t 00 kg, m^ 00,8 km/h 68,4 km/h 68,4 km/h 0 km/h 0 s 80 s Ergeben sich folgende Zwischenlösungen und Lösungen : 84,6 km/h 34, km/h a,6 Km/h / s a 0,855 Km/h / s cw 0, kroll 0, Ein Vergleich der Lösungen ergibt beim cw-wert immerhin eine relatie Abweichung on ca. 5%. Die on BOSCH angegebene Methode ist ein ereinfachtes Rechenerfahren, dass nach eigenen Angaben zu brauchbaren Ergebnissen führt, wenn die Geschwindigkeit nicht über 00 km/h liegt. Aufgaben: Bestimmen Sie durch Versuche und Rechnungen Den Luftwiderstandbeiwert und den widerstandsbeiwert Ihres Fahrzeugs. Ermitteln Sie den widerstandsbeiwert bei erschiedenen Luftdrücken in den Reifen: Herstellersollwerte / max. zulässiger Reifendruck Beschreiben Sie den grün gezeichneten Graphen im Diagramm oben ohne Berücksichtigung des widerstands durch eine Exponentialfunktion. Warum ergibt sich bei ohne Luftwiderstand ein linearer Verlauf des Graphen (t) beim Ausrollen?

8. Übung zur Vorlesung Mathematisches Modellieren Lösung

8. Übung zur Vorlesung Mathematisches Modellieren Lösung Universität Duisburg-Essen Essen, den.6. Fakultät für Mathematik S. Bauer C. Hubacsek C. Thiel 8. Übung zur Vorlesung Mathematisches Modellieren Lösung In dieser Übung sollen in Aufgabe und die qualitativ

Mehr

Modellbildungssysteme: Pädagogische und didaktische Ziele

Modellbildungssysteme: Pädagogische und didaktische Ziele Modellbildungssysteme: Pädagogische und didaktische Ziele Was hat Modellbildung mit der Schule zu tun? Der Bildungsplan 1994 formuliert: "Die schnelle Zunahme des Wissens, die hohe Differenzierung und

Mehr

Einfache Differentialgleichungen

Einfache Differentialgleichungen Differentialgleichungen (DGL) spielen in der Physik eine sehr wichtige Rolle. Im Folgenden behandeln wir die grundlegendsten Fälle 1, jeweils mit einer kurzen Herleitung der Lösung. Dann schliesst eine

Mehr

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 TECHNISCHE UNIVERSITÄT MÜNCHEN Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 Patrick Christ und Daniel Biedermann 16.10.2009 1. INHALTSVERZEICHNIS 1. INHALTSVERZEICHNIS... 2 2. AUFGABE 1...

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

6 Bestimmung linearer Funktionen

6 Bestimmung linearer Funktionen 1 Bestimmung linearer Funktionen Um die Funktionsvorschrift einer linearen Funktion zu bestimmen, muss man ihre Steigung ermitteln. Dazu sind entweder Punkte gegeben oder man wählt zwei Punkte P 1 ( 1

Mehr

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall 4. Lösung einer Differentialgleichung. Ordnung mit konstanten Koeffizienten a) Homogene Differentialgleichungen y'' + a y' + b y = 0 (**) Ansatz: y = e µx, also y' = µ e µx und y'' = µ e µx eingesetzt

Mehr

Eine Fluggeschwindigkeit, verschiedene Anzeigen

Eine Fluggeschwindigkeit, verschiedene Anzeigen utor: Walter Bislin 1 on 5 Eine Fluggeschwindigkeit, erschiedene Anzeigen Freitag, 1. Oktober 2010-13:54 Autor: wabis Themen: Wissen, Aiatik Ein Flugzeug kennt mehrere unterschiedliche Geschwindigkeitswerte,

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge Carl Hanser Verlag München 8 Schaltvorgänge Aufgabe 8.6 Wie lauten für R = 1 kω bei der Aufgabe 8.1 die Differenzialgleichungen und ihre Lösungen für die Spannungen u 1 und u 2 sowie für den Strom i? Aufgabe

Mehr

7.3 Anwendungsbeispiele aus Physik und Technik

7.3 Anwendungsbeispiele aus Physik und Technik 262 7. Differenzialrechnung 7.3 7.3 Anwendungsbeispiele aus Physik und Technik 7.3.1 Kinematik Bewegungsabläufe lassen sich durch das Weg-Zeit-Gesetz s = s (t) beschreiben. Die Momentangeschwindigkeit

Mehr

Wellen. 3.&6. November 2008. Alexander Bornikoel, Tewje Mehner, Veronika Wahl

Wellen. 3.&6. November 2008. Alexander Bornikoel, Tewje Mehner, Veronika Wahl 1 Übungen Seismik I: 3.&6. November 2008 1. Torsionswellenkette Die Torsionswellenkette ist ein oft verwendetes Modell zur Veranschaulichung der ausbreitung. Sie besteht aus zahlreichen hantelförmigen

Mehr

Schriftliche Abschlussprüfung Physik Realschulbildungsgang

Schriftliche Abschlussprüfung Physik Realschulbildungsgang Sächsisches Staatsministerium für Kultus Schuljahr 1992/93 Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Physik Realschulbildungsgang

Mehr

Funktionen in der Mathematik

Funktionen in der Mathematik R. Brinkmann http://brinkmann-du.de Seite 05.0.008 Funktionen in der Mathematik Bei der mathematischen Betrachtung natürlicher, technischer oder auch alltäglicher Vorgänge hängt der Wert einer Größe oft

Mehr

Zweidimensionale Beschleunigungsmessung

Zweidimensionale Beschleunigungsmessung Zweidimensionale Beschleunigungsmessung Wettbewerb "Jugend Forscht" 2006 Christopher Kunde (14 Jahre) David Strasser (15 Jahre) Arbeitsgemeinschaft "Jugend Forscht" des Christian-Gymnasiums Hermannsburg

Mehr

Linearer Zusammenhang von Datenreihen

Linearer Zusammenhang von Datenreihen Linearer Zusammenhang von Datenreihen Vielen Problemen liegen (möglicherweise) lineare Zusammenhänge zugrunde: Mein Internetanbieter verlangt eine Grundgebühr und rechnet minutenweise ab Ich bestelle ein

Mehr

1.7 lineare Gleichungen und Ungleichungen mit 2 Unbekannten

1.7 lineare Gleichungen und Ungleichungen mit 2 Unbekannten 1.7 lineare Gleichungen und Ungleichungen mit 2 Unbekannten Inhaltsverzeichnis 1 Lineare Gleichungen mit 2 Unbekannten 2 1.1 Was ist eine lineare Gleichung mit 2 Unbekannten?..................... 2 1.2

Mehr

In ein quadratisches Blech werden Löcher gestanzt. Insgesamt sind es 85 Löcher. Wie viele Löcher sind in der untersten Reihe?

In ein quadratisches Blech werden Löcher gestanzt. Insgesamt sind es 85 Löcher. Wie viele Löcher sind in der untersten Reihe? Aufgabe 1: Das Stanzblech: Löcher In ein quadratisches Blech werden Löcher gestanzt. Insgesamt sind es 85 Löcher. Wie viele Löcher sind in der untersten Reihe? Bei dieser Aufgabe kann rückwärts gearbeitet

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

Klausur Technische Logistik I 31. Januar 2013

Klausur Technische Logistik I 31. Januar 2013 Professur für Maschinenelemente und Technische Logistik Name: Vorname: Matr.-Nr.: Fachrichtung: Ich bin einverstanden nicht einverstanden, dass mein Ergebnis in Verbindung mit meiner Matrikelnummer auf

Mehr

(1) Problemstellung. (2) Kalman Filter

(1) Problemstellung. (2) Kalman Filter Inhaltsverzeichnis (1) Problemstellung...2 (2) Kalman Filter...2 Funktionsweise... 2 Gleichungen im mehrdimensionalen Fall...3 Schätzung des Systemzustands...3 Vermuteter Schätzfehler... 3 Aktualisierung

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl0-Gruppe B. Gegeben ist die Exponentialfunktion y=f x =0.8 2 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A 1. Gegeben ist die Exponentialfunktion y=f x = 0,5 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Versuch A02: Thermische Ausdehnung von Metallen

Versuch A02: Thermische Ausdehnung von Metallen Versuch A02: Thermische Ausdehnung von Metallen 13. März 2014 I Lernziele Wechselwirkungspotential im Festkörper Gitterschwingungen Ausdehnungskoezient II Physikalische Grundlagen Die thermische Längen-

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Monatliche Grundgebühr: 5,00 Zeitabhängige Nutzung: Feiertags/Sonntags: 0,04 /min

Monatliche Grundgebühr: 5,00 Zeitabhängige Nutzung: Feiertags/Sonntags: 0,04 /min Aufgabe 1: Wortvorschriften Gib zu den Wortvorschriften je eine Funktionsgleichung an: a) Jeder Zahl wird das Doppelte zugeordnet b) Jeder Zahl wird das um 6 verminderte Dreifache zugeordnet c) Jeder Zahl

Mehr

Analyse 1: Diskussion der Beschleunigungsdaten

Analyse 1: Diskussion der Beschleunigungsdaten Flugzeugstart Zielsetzung: In diesem Experiment untersuchen wir die Bewegung eines Flugzeugs, indem wir seine Beschleunigung messen. Da es schwierig sein dürfte, dieses Experiment heutzutage ohne Probleme

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

a) Welche der beiden Halbgeraden stehen für die Tarife REGENBOGEN und UFO? Begründe. b) Hat Lena recht oder Giuseppe? Begründe.

a) Welche der beiden Halbgeraden stehen für die Tarife REGENBOGEN und UFO? Begründe. b) Hat Lena recht oder Giuseppe? Begründe. 38 3 Lineare Gleichungsssteme mit zwei Variablen Lineare Gleichungsssteme grafisch lösen Beim Tarif REGENBGEN zahle ich für das Telefonieren mit dem Hand zwar einen Grundpreis. Dafür sind aber die Gesprächseinheiten

Mehr

Modellieren von Verkehrssituationen 1

Modellieren von Verkehrssituationen 1 Modellieren von Verkehrssituationen 1 Dieses Projekt wurde mit Unterstützung der Europäischen Kommission finanziert. Die Verantwortung für den Inhalt dieser Veröffentlichung (Mitteilung) trägt allein der

Mehr

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6 ALLGEMEINE THEORIE DES ELEKTROMAGNETISCHEN FELDES IM VAKUUM 25 Vorlesung 060503 6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6.1 Grundaufgabe der Elektrodynamik Gegeben: Ladungsdichte

Mehr

Wahlfach Mathematik: Funktionen

Wahlfach Mathematik: Funktionen Wahlfach Mathematik: Funktionen In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Funktionsargument, unabhängige Variable, x-wert)

Mehr

Umgang mit Formeln Was kann ich?

Umgang mit Formeln Was kann ich? Umgang mit ormeln Was kann ich? ufgabe 1 (Quelle: DV Ph 010 5) In der Grafik werden einige Messpunkte der I-U- Kennlinie einer elektrischen Energiequelle dargestellt. a) Bei welchem der Messpunkte, B,

Mehr

Intermezzo: Das griechische Alphabet

Intermezzo: Das griechische Alphabet Intermezzo: Das griechische Alphabet Buchstaben Name Buchstaben Name Buchstaben Name A, α Alpha I, ι Iota P, ρ Rho B, β Beta K, κ Kappa Σ, σ sigma Γ, γ Gamma Λ, λ Lambda T, τ Tau, δ Delta M, µ My Υ, υ

Mehr

Der Dampfdruck von Wasser

Der Dampfdruck von Wasser Physikalisches Grundpraktikum Versuch 8 Der Dampfdruck von Wasser Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor:

Mehr

2 Gleichmässig beschleunigte Bewegung

2 Gleichmässig beschleunigte Bewegung 2 Gleichmässig beschleunigte Bewegung Ziele dieses Kapitels Du kennst die Definition der Grösse Beschleunigung. Du kannst die gleichmässig beschleunigte Bewegung im v-t- und s-t-diagramm darstellen. Du

Mehr

1. Mathematik-Schularbeit 6. Klasse AHS

1. Mathematik-Schularbeit 6. Klasse AHS . Mathematik-Schularbeit 6. Klasse AHS Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: (Un-)Gleichungen und Gleichungssysteme: AG. Einfache Terme und Formeln aufstellen, umformen und

Mehr

Naturwissenschaftliches Praktikum. Rotation. Versuch 1.1

Naturwissenschaftliches Praktikum. Rotation. Versuch 1.1 Naturwissenschaftliches Praktikum Rotation Versuch 1.1 Inhaltsverzeichnis 1 Versuchsziel 3 2 Grundlagen 3 2.1 Messprinzip............................. 3 2.2 Energiesatz............................. 3 2.3

Mehr

Aufgabe 1 (Excel) Anwendungssoftware 1 / 11 Semesterschlussprüfung 21.06.2004

Aufgabe 1 (Excel) Anwendungssoftware 1 / 11 Semesterschlussprüfung 21.06.2004 Anwendungssoftware 1 / 11 Dauer der Prüfung: 90 Minuten. Es sind alle fünf Aufgaben mit allen Teilaufgaben zu lösen. Versuchen Sie, Ihre Lösungen soweit wie möglich direkt auf diese Aufgabenblätter zu

Mehr

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs Arbeit und Leistung s s m g m g mgs = mgs s/2 mgs = const. s 2m g m g 2mgs/2 = mgs.. nmgs/n = mgs Arbeit und Leistung Arbeit ist Kraft mal Weg Gotthardstraße Treppe und Lift Feder Bergsteiger/Wanderer

Mehr

1 Lineare Gleichungssysteme und Matrizen

1 Lineare Gleichungssysteme und Matrizen 1 Lineare Gleichungssysteme und Matrizen Das Studium linearer Gleichungssysteme und ihrer Lösungen ist eines der wichtigsten Themen der linearen Algebra. Wir werden zunächst einige grundlegende Begriffe

Mehr

Physik III - Anfängerpraktikum- Versuch 302

Physik III - Anfängerpraktikum- Versuch 302 Physik III - Anfängerpraktikum- Versuch 302 Sebastian Rollke (103095) und Daniel Brenner (105292) 15. November 2004 Inhaltsverzeichnis 1 Theorie 2 1.1 Beschreibung spezieller Widerstandsmessbrücken...........

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Eine Fahrstuhlfahrt. Datengewinnung (TI 83)

Eine Fahrstuhlfahrt. Datengewinnung (TI 83) Eine Fahrstuhlfahrt Zielsetzung: In diesem Experiment ist es unser Ziel die Bewegung eines Fahrstuhls zu untersuchen und seine Beschleunigung zu messen. Der Sensor ist ein Beschleunigungsmesser, der mit

Mehr

Schriftliche Abschlussprüfung Physik

Schriftliche Abschlussprüfung Physik Sächsisches Staatsministerium für Kultus Schuljahr 2002/2003 Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Physik Realschulabschluss

Mehr

Übungen: Lineare Funktionen

Übungen: Lineare Funktionen Übungen: Lineare Funktionen 1. Zeichnen Sie die Graphen der folgenden Funktionen und berechnen Sie die Nullstelle. a) f: y = 2x - 3 b) f: y = -3x + 6 c) f: y = ¼ x + 3 d) f: y = - 3 / 2 x + 9 e) f: y =

Mehr

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW) Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren

Mehr

A. Ein Kondensator differenziert Spannung

A. Ein Kondensator differenziert Spannung A. Ein Kondensator differenziert Spannung Wir legen eine Wechselspannung an einen Kondensator wie sieht die sich ergebende Stromstärke aus? U ~ ~ Abb 1: Prinzipschaltung Kondensator: Physiklehrbuch S.

Mehr

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 6. Übung (KW 03/04) Aufzugskabine )

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 6. Übung (KW 03/04) Aufzugskabine ) 6. Übung (KW 03/04) Aufgabe (M 9. Aufzugskabine ) In einem Aufzug hängt ein Wägestück der Masse m an einem Federkraftmesser. Dieser zeigt die Kraft F an. Auf welche Beschleunigung a z (z-koordinate nach

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit Fehlerrechnung Inhalt: 1. Motivation 2. Was sind Messfehler, statistische und systematische 3. Verteilung statistischer Fehler 4. Fehlerfortpflanzung 5. Graphische Auswertung und lineare Regression 6.

Mehr

Arbeitspunkt einer Diode

Arbeitspunkt einer Diode Arbeitspunkt einer Diode Liegt eine Diode mit einem Widerstand R in Reihe an einer Spannung U 0, so müssen sich die beiden diese Spannung teilen. Vom Widerstand wissen wir, dass er bei einer Spannung von

Mehr

Mathematische Modellierung des Gaußgewehrs (Coilgun)

Mathematische Modellierung des Gaußgewehrs (Coilgun) Mathematische Modellierung des Gaußgewehrs (Coilgun) Alexios Aivaliotis, Christopher Rieser 30. Juni 2013 1 1 Beschreibung des Projekts In dieser Arbeit beschreiben wir die physikalische und mathematische

Mehr

Mathematische Grundlagen der dynamischen Simulation

Mathematische Grundlagen der dynamischen Simulation Mathematische Grundlagen der dynamischen Simulation Dynamische Systeme sind Systeme, die sich verändern. Es geht dabei um eine zeitliche Entwicklung und wie immer in der Informatik betrachten wir dabei

Mehr

In der oben gezeichneten Anordnung soll am Anfang der Looping-Bahn (1) eine Stahlkugel reibungsfrei durch die Bahn geschickt werden.

In der oben gezeichneten Anordnung soll am Anfang der Looping-Bahn (1) eine Stahlkugel reibungsfrei durch die Bahn geschickt werden. Skizze In der oben gezeichneten Anordnung soll am Anfang der Looping-Bahn (1) eine Stahlkugel reibungsfrei durch die Bahn geschickt werden. Warum muß der Höhenunterschied h1 größer als Null sein, wenn

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Mechanik der Bewegungen - Eine Einführung

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Mechanik der Bewegungen - Eine Einführung Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt: Mechanik der Bewegungen - Eine Einführung Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Mechanik

Mehr

Vorbereitungsaufgaben für den Teil 1 der 3. Klausur am

Vorbereitungsaufgaben für den Teil 1 der 3. Klausur am Vorbereitungsaufgaben für den Teil 1 der 3. Klausur am 24.2.15 1 NT 2013: Quadratische und lineare Funktionen Die abgebildete Parabel gehört zur Funktion f mit f(x) = x 2 5 x + 4. a) Zeige durch eine Rechnung,

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 2 28.02.2008 1 Inhalt der heutigen Übung Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben 2.1: Häufigkeitsverteilung 2.2: Tukey Boxplot 25:Korrelation

Mehr

Umgang mit Formeln Selbstlernmaterial

Umgang mit Formeln Selbstlernmaterial Umgang mit Formeln Selbstlernmaterial mit Schulbuch Dorn-Bader 2 (ISBN 978-3-507-86265-4) Wiederholung der Grundlagen S. 6 7 (Proportionalität) S. 28 29 (Rechnen mit Formeln) S. 108 109 (Formeln & Diagramme)

Mehr

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hard Seifert Mathematik üben Klasse 8 Funktionen Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Funktionen Differenzierte

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Messung von c und e/m Autor: Noé Lutz Assistent:

Mehr

Klausur Numerische Methoden II Universität Siegen, Fachbereich Maschinenbau,

Klausur Numerische Methoden II Universität Siegen, Fachbereich Maschinenbau, Universität Siegen, Fachbereich Maschinenbau, 31.7.9 Name: Matrikelnummer: Aufgabe 1 (8 Punkte) Für die Abschätzung der Lebensdauer eines Wälzlagers wird die Bestimmungsgröße K gemäß der obenstehenden

Mehr

Labor Einführung in die Elektrotechnik

Labor Einführung in die Elektrotechnik Laborleiter: Ostfalia Hochschule für angewandte Wissenschaften Fakultät Elektrotechnik Labor Einführung in die Elektrotechnik Prof. Dr. M. Prochaska Laborbetreuer: Versuch 2: Erstellen technischer Berichte,

Mehr

Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Wiederholung von Äquivalenzumformungen (Lösen von Ungleichungen):

Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Wiederholung von Äquivalenzumformungen (Lösen von Ungleichungen): Prof. U. Stephan WiIng 1. Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Bitte lösen Sie die folgenden Aufgaben und prüfen Sie, ob Sie Lücken dabei haben. Bestimmen Sie jeweils die

Mehr

6 Gewöhnliche Differentialgleichungen

6 Gewöhnliche Differentialgleichungen 6 Gewöhnliche Differentialgleichungen Differentialgleichungen sind Gleichungen in denen nicht nur eine Funktion selbst sondern auch ihre Ableitungen vorkommen. Im einfachsten Fall gibt es eine unabhängige

Mehr

Club Apollo Wettbewerb Musterlösung zu Aufgabe 3. Diese Musterlösung beinhaltet Schülerlösungen aus dem 11. Wettbewerb (2011/2012).

Club Apollo Wettbewerb Musterlösung zu Aufgabe 3. Diese Musterlösung beinhaltet Schülerlösungen aus dem 11. Wettbewerb (2011/2012). Club Apollo 13-14. Wettbewerb Musterlösung zu Aufgabe 3 Diese Musterlösung beinhaltet Schülerlösungen aus dem 11. Wettbewerb (2011/2012). Aufgabe a) 1) 70000,0000 Temperatur 60000,0000 50000,0000 40000,0000

Mehr

Grundlagen der Computer-Tomographie

Grundlagen der Computer-Tomographie Grundlagen der Computer-Tomographie Quellenangabe Die folgenden Folien sind zum Teil dem Übersichtsvortrag: imbie.meb.uni-bonn.de/epileptologie/staff/lehnertz/ct1.pdf entnommen. Als Quelle für die mathematischen

Mehr

Pflichtaufgaben. Die geradlinige Bewegung eines PKW ist durch folgende Zeit-Geschwindigkeit- Messwertpaare beschrieben.

Pflichtaufgaben. Die geradlinige Bewegung eines PKW ist durch folgende Zeit-Geschwindigkeit- Messwertpaare beschrieben. Abitur 2002 Physik Gk Seite 3 Pflichtaufgaben (24 BE) Aufgabe P1 Mechanik Die geradlinige Bewegung eines PKW ist durch folgende Zeit-Geschwindigkeit- Messwertpaare beschrieben. t in s 0 7 37 40 100 v in

Mehr

Vorkurs Mathematik Übungen zu Polynomgleichungen

Vorkurs Mathematik Übungen zu Polynomgleichungen Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.

Mehr

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt.

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt. LÖSUNGEN TEIL 1 Arbeitszeit: 50 min Gegeben ist die Funktion f mit der Gleichung. Begründen Sie, warum die Steigung der Sekante durch die Punkte A(0 2) und C(3 11) eine weniger gute Näherung für die Tangentensteigung

Mehr

Einfluß von Wind bei Maximalfolgenmessungen

Einfluß von Wind bei Maximalfolgenmessungen 1 von 5 05.02.2010 11:10 Der Einfluß von Wind bei Maximalfolgenmessungen M. KOB, M. VORLÄNDER Physikalisch-Technische Bundesanstalt, Braunschweig 1 Einleitung Die Maximalfolgenmeßtechnik ist eine spezielle

Mehr

Die quadratische Gleichung und die quadratische Funktion

Die quadratische Gleichung und die quadratische Funktion Die quadratische Gleichung und die quadratische Funktion 1. Lösen einer quadratischen Gleichung Quadratische Gleichungen heißen alle Gleichungen der Form a x x c = 0, woei a,, c als Parameter elieige reelle

Mehr

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes U. Backhaus Universität Duisburg-Essen Wenn man ein entferntes Objekt von verschiedenen Orten aus anpeilt, dann unterscheiden

Mehr

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Auswertung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 7. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock

Mehr

Impuls, Kraft, Impulsbilanz, Modellierung mit VENSIM, Energie

Impuls, Kraft, Impulsbilanz, Modellierung mit VENSIM, Energie Aufgaben 2 Translations-Mechanik Impuls, Kraft, Impulsbilanz, Modellierung mit VENSIM, Energie Lernziele - den Zusammenhang zwischen Impuls, Masse und Geschwindigkeit eines Körpers anwenden können. - das

Mehr

Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II Experimente mit Elektronen

Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II Experimente mit Elektronen 1 Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II xperimente mit lektronen 1 1.1 U dient zum rwärmen der Glühkathode in der Vakuumröhre. Durch den glühelektrischen

Mehr

EO - Oszilloskop Blockpraktikum Frühjahr 2005

EO - Oszilloskop Blockpraktikum Frühjahr 2005 EO - Oszilloskop, Blockpraktikum Frühjahr 25 28. März 25 EO - Oszilloskop Blockpraktikum Frühjahr 25 Alexander Seizinger, Tobias Müller Assistent René Rexer Tübingen, den 28. März 25 Einführung In diesem

Mehr

WB Wechselstrombrücke

WB Wechselstrombrücke WB Wechselstrombrücke Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Wechselstromwiderstand................. 2 2.2 Wechselstromwiderstand

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker Technische Universität Braunschweig Institut für Geophysik und extraterrestrische Physik Prof. A. Hördt Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung

Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung ρ p ( x) + Uδ ( x) = const Damit kann die Druckänderung in Strömungsrichtung auch durch die

Mehr

Oberflächenspannung, Minimalflächen und Kaffeeflecken

Oberflächenspannung, Minimalflächen und Kaffeeflecken Oberflächenspannung, Minimalflächen und Kaffeeflecken Gruppe 4: Daniela Poppinga, Jan Christoph Bernack Betreuerin: Natalia Podlaszewski 16. Dezember 2008 1 Inhaltsverzeichnis 1 Theorieteil 3 1.1 Frage

Mehr

Bremsen eines Formel 1 Autos

Bremsen eines Formel 1 Autos HTL Steyr Bremsen in der F Seite von Nietrost Bernhard bernhard.nietrost@htl-steyr.ac.at Bremsen eines Formel Autos Mathematische / Fachliche Inhalte in Stichworten: Differentialgleichung.Ordnung (Aufstellen

Mehr

Prüfungsarbeit Mathematik Hauptschule (Typ B)

Prüfungsarbeit Mathematik Hauptschule (Typ B) rüfungsarbeit Mathematik Hauptschule (p B) rüfungsteil : Aufgabe a) In welchem Maßstab müsste das abgebildete Modellauto vergrößert werden, damit es ungefähr so groß wäre wie das Original? Kreuze an! :

Mehr

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur David Riemenschneider & Felix Spanier 31. Januar 2001 1 Inhaltsverzeichnis 1 Einleitung 3 2 Auswertung 3 2.1 Darstellung sämtlicher PL-Spektren................

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Übung 3: Oszilloskop

Übung 3: Oszilloskop Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Institut für Grundlagen und Theorie der Elektrotechnik Institut für Elektrische Antriebstechnik und Maschinen Grundlagen der Elektrotechnik,

Mehr

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis Lineare Funktion Wolfgang Kippels. November 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................

Mehr

Prüfungsarbeit Mathematik Gymnasium

Prüfungsarbeit Mathematik Gymnasium Prüfungsteil 1: Aufgabe 1 a) In welchem Maßstab müsste das abgebildete Modellauto vergrößert werden, damit es ungefähr so groß wäre wie das Original? Kreuze an! 1 : 10 1 : 100 1 : 1 000 1 : 10 000 b) Kann

Mehr

Aviatik 2012/1 SystemPhysik

Aviatik 2012/1 SystemPhysik Aviatik 2012/1 SystemPhysik http://systemdesign.ch/index.php?title=aviatik_2012/1&printable=yes 1 von 3 102013 09:05 Aviatik 2012/1 Aus SystemPhysik Inhaltsverzeichnis 1 Studiengang Aviatik der ZHAW 2

Mehr

3.6 Drehungen in der Ebene

3.6 Drehungen in der Ebene 3.6-1 3.6 Drehungen in der Ebene 3.6.1 Die Drehmatrix Gelegentlich müssen wir die Lage eines Teilchens in einem ebenen Koordinatensystem beschreiben, das gegenüber einem festen System um φ gedreht ist.

Mehr