Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß

Größe: px
Ab Seite anzeigen:

Download "Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß"

Transkript

1 Ivesiiosud Fiazierugsplaug miels Kapialwermehode, Ierer Zisfuß Bearbeie vo Fraka Frid, Chrisi Klegel WI. Aufgabe: Eie geplae Ivesiio mi Aschaffugsausgabe vo.,- läss jeweils zum Jahresede die folgede Eiahme erware:.,- im. Jahr,.,- im. Jahr, 6.,- im. Jahr,.,- im. Jahr ud.,- im 5. Jahr. Zusäzlich sid am Ede des. Jahres Ausgabe vo.5,- zu erware. a) Bereche Sie de Kapialwer dieser Ivesiio bei eiem Kalkulaioszisfuß vo 6%. b) Is diese Ivesiio ach der Kapialwermehode voreilhaf? 6. Dezember Fiazmahemaik

2 Lösug: Aschaffugskose:. Kalkulaioszisfuß= 6 % Eiahme Ausgabe. Jahr:.. Jahr:.. Jahr: Jahr:. 5. Jahr:. a) G = P = A G Kapialwer P Periodeüberschuß (Eiahme-Ausgabe) der Periode Ivesiiosdauer Ao Aschaffugsausgabe Abzisfakor für die Periode 6. Dezember Fiazmahemaik G = + +,6,6,6,6,6 5 ( 6 5 ) + + G = 8, , ,5 + 58,9 + 77,6 G =8,68 G = 8,68 b) Die Ivesiio is voreilhaf, da der Kapialwer posiiv is. 6. Dezember Fiazmahemaik

3 . Aufgabe Ei Uerehmer ka für.,- eie Maschie kaufe. Diese Maschie ka Jahre geuz ud daach für.,- verkauf werde. Sie brig währed der Nuzugsdauer jeweils zum Jahresede eie Periodeüberschuss (Eiahme mius Ausgabe) vo 8.,- im. Jahr,.,- im Jahr ud.,- im. Jahr. Der Uerehmer ka sei Geld aber auch zu 6% auf dem Sparkoo alege. a) Bereche Sie de Kapialwer der Ivesiio. b) Is die Ivesiio ach der Kapialwermehode voreilhaf? 6. Dezember Fiazmahemaik 5 Lösug: A = =, 6 Eiahme. Jahr: 8. Jahr:. Jahr: + (Verkaufspreis) a) G = P * A = G = ,6,6,6 G = 757, , ,9 G = 958,58 6. Dezember Fiazmahemaik 6

4 b) 958,58 < Die Ivesiio is uvoreilhaf, da der Kapialwer egaiv is. 6. Dezember Fiazmahemaik 7. Aufgabe: Ei Uerehmer pla ei Ivesiio mi Aschaffugsausgabe vo 5.,-. Diese Ivesiio brig die folgede Periodeüberschüsse:.,- im. Jahr,.,- im. Jahr,.,- im. Jahr ud.,- im. Jahr. Es wird davo ausgegage, dass die Periodeüberschüsse jeweils zum Jahresede realisier werde. a) Bereche Sie de Kapialwer dieser Ivesiio, we sie zu 8% Kredizise fremdfiazier werde soll. b) Is diese Ivesiio ach der Kapialwermehode voreilhaf? 6. Dezember Fiazmahemaik 8

5 Lösug: A = 5 E:. E:. E:. E:. Kredizise = 8% a) G = P * A = G = ,8,8,8,8 5. G = 9.59, , , , 5. G = 67, 6. Dezember Fiazmahemaik 9 b) 67, < Die Ivesiio is uvoreilhaf, da der Kapialwer egaiv is. 6. Dezember Fiazmahemaik 5

6 . Aufgabe: Ei Uerehmer seh vor folgede drei Ivesiiosaleraive: Aleraive I: Aschaffugsausgabe vo 5.,- ; Periodeüberschüsse vo 8.,-,.,-, 6.,- ud.,- i de Jahre bis. Aleraive II: Aschaffugsausgabe vo 5.,- ; Periodeüberschüsse vo.5,- im Jahre ud 9.5,- im Jahre. Aleraive III: Aschaffugsausgabe vo 5.,- ; Periodeüberschüsse vo 5.,- im Jahre ud 6.,- im Jahre. Vo diese Aleraive möche der Uerehmer eie auswähle. Welche solle dies ach der Kapialwermehode bei eiem Kalkulaioszisfuß vo 8% sei? 6. Dezember Fiazmahemaik Aleraive : A = 5. Kalkulaioszisfuß= 8% Eiahme. Jahr: 8.. Jahr:.. Jahr: 6.. Jahr:. G = P * A = G =. +.,8,8 + 6.,8 +.,8 8 G = 7.7, +.88,7 +.76,99 +.9, 5. G = 98, Dezember Fiazmahemaik 6

7 Aleraive : A = 5. Kalkulaioszisfuß= 8% Eiahme. Jahr:. Jahr:.5. Jahr:. Jahr: 9.5 G = P * A = G = +.5,8,8 +, ,8 G = + 8., ,78 5. G = 5, Dezember Fiazmahemaik Aleraive : A = 5. Kalkulaioszisfuß= 8% Eiahme. Jahr: 5.. Jahr:. Jahr: 6.. Jahr: G = P * A = G =. +,8,8 + 6.,8 +,8 5 G =.69, , + 5. G = 8, Dezember Fiazmahemaik 7

8 Aleraive Kapialwer 98,59 5,56 8,65 Es solle die Aleraive mi dem höchse Kapialwer gewähl werde. I diesem Fall wäre das die. Aleraive. 6. Dezember Fiazmahemaik 5 5. Aufgabe: Ei Bürger schek seier Vaersad zum Bau eies Kiderspielplazes 5.,-, die ers ach dem Tod Verwedug fide solle. Die Sadverwalug leg das Geld zum Beriebskapial ihres Fuhruerehmes, dami es besser arbeie. Jahre späer sirb der Wohläer. Die Sad verfüg umehr über isgesam 5.,-. a) Welche Redie ha die Sad währed dieser zei mi ihrem Fuhruerehme erziel? b) Wäre es für die Sad besser gewese, das Geld zu 7,5% bei der Sadsparkasse azulege? 6. Dezember Fiazmahemaik 6 8

9 Lösug: K = 5. K = 5. = Jahre a) i = K K 5. i = 5. i =,6 i =,8 i =,8 p i = 8% 6. Dezember Fiazmahemaik 7 b) p a p = 7,5% i = 8% Ives is voreilhaf, we: p > i p a 8 % > 7,5% Die Alage bei der Sparkasse wäre ich besser gewese. 6. Dezember Fiazmahemaik 8 9

10 6. Aufgabe: Eie Ivesiio verlag Aschaffugsausgabe vo.,- ud erbrig währed der zweijährige Ivesiiosdauer eie Periodeüberschuss vo 6.,- am Ede des. Jahres ud 5.5,- am Ede des. Jahres. Wie hoch is die Redie (der iere Zisfuß) dieser Ivesiio? 6. Dezember Fiazmahemaik 9 Lösug: K =. Periodeüberschüsse. Jahr: 6.. Jahr: 5.5 K ich beka K = K K K = DISKONT aller Kapialwere K = = P K = ˆ A = P A = 6. Dezember Fiazmahemaik

11 = Umformug: = =, 6. = (. ) =,5 =, ± 6. (. ) (. ) Redie= % Dezember Fiazmahemaik 7. Aufgabe: Ei Uerehme ka zwische zwei Ivesiiosaleraive wähle: Aleraive I: Aschaffugsausgabe vo.,-, Periodeüberschuss vo.88 ach dem Jahr. Aleraive II: Aschaffugsausgabe vo.,-, Periodeüberschüsse vo 5.,- ach dem. Jahr ud vo 6.6,- ach dem. Jahr. Welche Redie besize die Aleraive I ud II? Welche Aleraive solle der Uerehmer wähle, we er sei Geld auch zu % aderweiig alege köe? 6. Dezember Fiazmahemaik

12 Aleraive : A =. Periodeüberschüsse. Jahr: =.88. =.. =, = =.88 G = P * A = =,9 Redie= 9 % =,9 6. Dezember Fiazmahemaik Aleraive : A =. Periodeüberschüsse. Jahr: 5.. Jahr: 6.6 G = P * A = = = = 5. (. ) 5. (. ) (. ), = ± =, 6.6 =,6 Redie= % 6. Dezember Fiazmahemaik

13 p a =% Aleraive p i 9 % % Ives is voreilhaf, we: p i < p a p > i p a p i < pa Keie der beide Aleraive wäre i diesem Fall voreilhaf. 6. Dezember Fiazmahemaik 5 8. Aufgabe: Besimme Sie äherugsweise de iere Zisfuß der i der Aufgabe geae Ivesiio ud beureile Sie die Voreilhafigkei dieser Ivesiio bei eiem Kalkulaiosfuß vo 7%. 6. Dezember Fiazmahemaik 6

14 G = P * A = = = = = Lösug über Näherugsverfahre: a) ach liearer Ierpolaio b) ach Newoverfahre 6. Dezember Fiazmahemaik 7 a) Nach liearer Ierpolaio: Probiere durch Eiseze: 5% = 85,9 6% = 58, 7% = 8,6 8% = 99, d. h., der Iere Zisfluß muss zwische 7% ud 8% liege o G o G G u o p p = o u p p p = 7,67% 8,6 8,6 8,6 ( 99,) = ( 7 p) p 8 8,6 = 555,68 57,95 p uvoreilhaf = ,95 6. Dezember Fiazmahemaik 8

15 b) Nach Newo-Verfahre: f f f ( ) = ( ) = ( ) = Greze: f u =,7 = ˆ Sarpk. f (,7) = 8,6 o =,8 f (,7) = 7.86,6 f,7 = 58. ( ) f ( ) f ( ) ( 58.7) ( 7.86,6).8,6 ( ) 7,7 < Sarpuk geeige gewähl =,7 =,7 6. Dezember Fiazmahemaik 9. Ieraio: = f f ( ) ( ) f ( ) =,7 f ( ) = 585,6 8,6 =,7 768 ( 7.86,6) =, f ( ) < c weier. Ieraio = f ( f ( ) ) (,7) =,768 =, 767 ( 585,6) f ( ) =,8 f ( ) = 576 f ( ) < c weier 6. Dezember Fiazmahemaik 5

16 . Ieraio = f ( ) f ( ),8 =,767 =, 767 ( 576) =+ i i i i = =,767 =,767 p = 7,67% 6. Dezember Fiazmahemaik 9. Aufgabe: Für eie Ivesiiosmöglichkei werde die folgede Zahlugsgröße progosizier: Aschaffugsausgabe vo.,- ; Eiahme vo 5.,-, 8.,-, 7.,- ud 5.,- i de Jahre bis ; Ausgabe vo 7.5,-, 6.5,-,.,- ud.,- i de Jahre bis. Zusäzlich sid Gewiseuerzahluge zu berücksichige. Dies führ pro Jahr zu Seuerausgabe vo % auf die Differez Eiahme Ausgabe Abschreibug. Sofer diese Differez durch die Berücksichigug der Abschreibuge egaiv wird ud folglich ei Verlus ausgewiese wird, wird eie Seuereiahme (Verlusausgleich mi adre Eiküfe) erziel. a) Is diese Ivesiiosmöglichkei ach der Kapialwermehode bei eiem Kalkulaioszisfuß vo 6% (ach Seuer) bei liearer Abschreibug voreilhaf? b) Äder das sich uer a) errechee Ergebis, we aus kojukurelle Grüde die Möglichkei eier Sofor- Abschreibug im erse Nuzugsjahr gegebe is ud vom Uerehmer geuz werde soll? 6. Dezember Fiazmahemaik 6

17. Kapitel: Die Investitionsplanung

17. Kapitel: Die Investitionsplanung ABWL 17. Kapiel: Die Ivesiiosplaug 1 17. Kapiel: Die Ivesiiosplaug Leifrage des Kapiels: Welche Type vo Ivesiiosobjeke gib es? Wie läss sich die Voreilhafigkei eies Ivesiiosobjeks fesselle? Wie ka aus

Mehr

Formelsammlung für Investition und Finanzierung

Formelsammlung für Investition und Finanzierung Formelsammlug für Ivesiio ud Fiazierug (Sad: 3.2.22) Seie vo 8 Formelsammlug für Ivesiio ud Fiazierug INHALSVERZEICHNIS. Mahemaische Grudlage...3 a) Auflösug quadraischer Gleichuge mi der pq-formel...3

Mehr

Investitionsrechnungen in der Wohnungswirtschaft

Investitionsrechnungen in der Wohnungswirtschaft Wohugswirschafliche Theorie I Vorlesug vom 28. 1. 24 Folie Ivesiiosrechuge i der Wohugswirschaf Dr. Joachim Kircher Isiu Wohe ud Umwel GmbH (IWU) Theoreische Grudlage Eiführug 1. Ivesoregruppe 2. Besoderheie

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr

Investitionsrechnung - Vorbemerkung

Investitionsrechnung - Vorbemerkung Ivesiiosrechug - Vorbemerkug Es gib ich ur eie Rechugsmehode, soder viele. Was bedeue das für Sie? Uerschiedliche heoreische Asäze kee lere Für ud Wider abwäge Eigee Sadpuk beziehe Eigee Sadpuk argumeaiv

Mehr

Messung 3 MESSUNG EINES AUS OTTO MOTOR UND ELEKTRISCHEN GENERATOR BESTEHENDEN MASCHINENAGGREGATES

Messung 3 MESSUNG EINES AUS OTTO MOTOR UND ELEKTRISCHEN GENERATOR BESTEHENDEN MASCHINENAGGREGATES Messug 3 MESSUNG EINES AUS OTTO MOTOR UND ELEKTRISCHEN GENERATOR BESTEHENDEN MASCHINENAGGREGATES Ziel der Meßübug: Besimmug des Bresoffverbrauchs, des spezifische Bresoffverbrauchs, Aggregawirkugsgrades,

Mehr

Investitionsrechnung und Finanzierung. Kapitel 1. Grundbegriffe der Investitionsrechnung

Investitionsrechnung und Finanzierung. Kapitel 1. Grundbegriffe der Investitionsrechnung Fakulä Iformaik, Professur Wirschafsiformaik, isb. Mulimedia Markeig Kapiel Grudbegriffe der Orgaisaorisches Doze: Prof. Dr. rer. pol. Thomas Urba Professur Wirschafsiformaik, isb. Mulimedia Markeig www.muli-media-markeig.org

Mehr

Investitionsrechnung und Finanzierung. Kapitel 1. Grundbegriffe der Investitionsrechnung

Investitionsrechnung und Finanzierung. Kapitel 1. Grundbegriffe der Investitionsrechnung Fakulä Iformaik, Professur Wirschafsiformaik, isb. Mulimedia Markeig ud Fiazierug Kapiel Grudbegriffe der Orgaisaorisches Doze: Prof. Dr. rer. pol. Thomas Urba Professur Wirschafsiformaik, isb. Mulimedia

Mehr

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

Investitionsentscheidungsrechnung Annuitäten Methode

Investitionsentscheidungsrechnung Annuitäten Methode Mit Hilfe der köe folgede Ivestitioe beurteilt werde: eizele Ivestitioe alterative Ivestitiosobjekte optimale Ersatzzeitpukte Seite 1 Folgeder Zusammehag besteht zwische der Kapitalbarwertmethode ud der

Mehr

T t Tilgungsrate im Jahr t Z t Kreditzinsen im Jahr t. Weitere S Kredit bei t = 0 ( ursprüngliche Schuld ) Symbole: RS t

T t Tilgungsrate im Jahr t Z t Kreditzinsen im Jahr t. Weitere S Kredit bei t = 0 ( ursprüngliche Schuld ) Symbole: RS t 6. Tilggsrechg 6.. Eiführg Gegesad der Tilggsrechg is die Feslegg der Rückzahlge für eimalig asgezahle Kredie eischließlich der Kredizise d -gebühre eweder a) am Fälligkeisag i eier mme (sog. gesamfällige

Mehr

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield Augabeblatt 4 Lösuge A. Deiitioe Zis = Rate Ziskurve = Zisstruktur Redite = Yield A. Deiitioe Zerobod = Nullkupoaleihe = Zero coupo bod Aleihe, die vor Ede der Lauzeit keie Zahluge leistet ud am Ede der

Mehr

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik Prof. Dr. Güter Hellig lausureskript Fiazatheatik Ihalt: lausur vo WS 9/. Eifache Zise: Vorschüssigkeit ud Nachschüssigkeit. Reterechug: Reteedwert ud Retebarwert 3. Tilgugsrechug: Tilgugspla bei Ratetilgug

Mehr

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)

Mehr

Teil 3 und Teil 4. Einbeziehung von Steuern in Investitionsund Finanzierungsentscheidungen. Inhalt:

Teil 3 und Teil 4. Einbeziehung von Steuern in Investitionsund Finanzierungsentscheidungen. Inhalt: Teil 3 ud Teil 4 Eibeziehug vo Seuer i Ivesiiosud Fiazierugsescheiduge Ihal: Vergleichsrechuge ud Seuerbelasugsvergleiche... 2. Rechsformwahl i eiem saische Vergleich... 2.2 Veralagugssimulaio versus Teilseuerrechug...

Mehr

Aufgabe 1. Die Abschreibungen erfolgen linear. Der Kalkulationszinssatz beträgt i = 0,10.

Aufgabe 1. Die Abschreibungen erfolgen linear. Der Kalkulationszinssatz beträgt i = 0,10. Aufgabe Der Vechtaer Esse auf Räder -Service beötigt eie eue Küche zur Zubereitug der Mahlzeite. Sie köe zwische de Modelle A ud B wähle. Die Eiahme durch die Auslieferug der Esse sid uabhägig davo, welche

Mehr

Prof. Dr. R. Elschen Aufgabenkompendium Antworten Villaverde Seite 1 von 25

Prof. Dr. R. Elschen Aufgabenkompendium Antworten Villaverde Seite 1 von 25 Ivesiio & Fiazierug Prof. Dr. R. Elsche Aufgabekompedium Awore Villaverde Seie vo 25. Welche primäre Aufgabe ha die Uerehmesführug ud welche Bedeuug ha die Ivesiosrechug für die Erfüllug dieser Aufgabe?

Mehr

Grundgesamtheit handelt, stellt sich die Frage nach der Unsicherheit dieser Schatzung.

Grundgesamtheit handelt, stellt sich die Frage nach der Unsicherheit dieser Schatzung. R Lösug zu Aufgabe 4: Kofideziervall a) Abschäzug vo Erwarugswer ud adardabweichug: Wie bereis i Übugsaufgabe eigeführ, selle der Mielwer ud die reuug eier ichprobe die bese chäzwere für de Erwarugswer

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

3 Leistungsbarwerte und Prämien

3 Leistungsbarwerte und Prämien Leisugsbarwere ud Prmie 23 3 Leisugsbarwere ud Prmie Zie: Rechemehode zur Ermiug der Barwere ud Prmie bei übiche Produe der Lebesversicherug. 3. Eemeare Barwere ud Kommuaioszahe Barwer eier Erebesfaeisug

Mehr

Simulationsbasierte stochastisch dynamische Programmierung

Simulationsbasierte stochastisch dynamische Programmierung Simulaiobaiere ochaich dyamiche Programmierug OLIVER MUßHOFF, BERLIN NORBERT HIRSCHAUER, BERLIN Abrac Deciio ree, repreeig he backward recurive dyamic programmig approach, are ofe o flexible eough o aalyze

Mehr

Kennzeichen: Die Berechnungsbasis bleibt während der gesamten Verzinsungsdauer unverändert (lineares Wachstum)

Kennzeichen: Die Berechnungsbasis bleibt während der gesamten Verzinsungsdauer unverändert (lineares Wachstum) 5. Fiazmathematik 5.1. Zis- ud Ziseszisrechug 5.1.1. Eifache Verzisug Kezeiche: Die Berechugsbasis bleibt währed der gesamte Verzisugsdauer uverädert (lieares Wachstum) Die Verzisug wird ach dem Zeitpukt

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

Statistik im Bachelor-Studium der BWL und VWL

Statistik im Bachelor-Studium der BWL und VWL Max C. Wewel Saisik im Bachelor-Sudium der BWL ud VWL Mehode, Awedug, Ierpreaio Mi herausehmbarer Formelsammlug ei Impri vo Pearso Educaio Müche Boso Sa Fracisco Harlow, Eglad Do Mills, Oario Sydey Mexico

Mehr

Physikalische Analyse der Dimensionierungsgrundlagen zur Entwicklung einer Methode zur Konzipierung und Optimierung eines Elektromobils

Physikalische Analyse der Dimensionierungsgrundlagen zur Entwicklung einer Methode zur Konzipierung und Optimierung eines Elektromobils Physikalische Aalyse der Dimesioierugsgrudlage zur Ewicklug eier ehode zur Kozipierug ud Opimierug eies Elekromobils Auore: K. Brikma, W. Köhler Lehrgebie Elekrische Eergieechik Feihsraße 140, Philipp-eis-Gebäude,

Mehr

Lernhilfe in Form eines ebooks

Lernhilfe in Form eines ebooks Ziseszisrechug Lerhilfe i Form eies ebooks apitel Thema Seite 1 Vorwort ud Eiführug 2 2 Theorie der Ziseszisrechug 5 3 Beispiele ud Beispielrechuge 12 4 Testaufgabe mit Lösuge 18 Zis-Ziseszis.de 212 Seite

Mehr

I m m o b i l i e n k a p i ta lv e r z e h r Darlehen auf den Kopf gestellt

I m m o b i l i e n k a p i ta lv e r z e h r Darlehen auf den Kopf gestellt I m m o b i l i e k a p i a lv e r z e h r Darlehe auf de Kopf gesell I de USA ud Großbriaie is es für älere Mesche ichs Besoderes mehr, selbs geuze Immobilie gege lebeslages Wohrech zu verree, um auch

Mehr

Prognoseverfahren. 3.4 Aufgaben... 121 ÜBERBLICK

Prognoseverfahren. 3.4 Aufgaben... 121 ÜBERBLICK Progoseverfahre. Eiführug....................................... 8.. Wisseschafliche Progose.................... 8.. Daebasis ud saisische Progosemodelle......... Beispiel: Umsazprogose........................

Mehr

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

Wiederkehrende XML-Inhalte in Adobe InDesign importieren

Wiederkehrende XML-Inhalte in Adobe InDesign importieren Wiederkehrede XML-Ihalte i Adobe IDesig importiere Dieses Tutorial soll als Quick & Dirty -Kurzaleitug demostriere, wie wiederkehrede XML-Ihalte (z. B. aus Datebake) i Adobe IDesig importiert ud formatiert

Mehr

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81 Fiazmathematik 8 FINANZMATHEMATIK. Zise ud Ziseszise Die Zise als Preis für die Zurverfügugstellug vo Geld bilde das zetrale Elemet i der Fiazmathematik. Hierbei sid verschiedee Arte der Verzisug zu uterscheide.

Mehr

BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule

BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Hadelsschule Abschlussprüfug Sommer Fach: MATHEMATIK Bearbeitugszeit: Erlaubte Hilfsmittel: Zeitstude Nicht-programmierbarer Tascherecher

Mehr

Finanzmathematik. = K 0 (1+i) n = K 0 q n

Finanzmathematik. = K 0 (1+i) n = K 0 q n Fiazmathematik 1. Kapitalverzisug: Beispiel 1: Ei Kapital vo 3000 wird mit 5% verzist. Wie viel bekommt ma am Ede eies Jahres samt Zise? Die Zise Z werde so berechet: Z = K 0 p/100 = 3000 5/100 = 0. Das

Mehr

GIBS. Übungsaufgaben zur Vertiefung. V1. Beschriften Sie die Konstruktionen! n n n n ' ' ' ' Modul 1.5. Geometrische Optik 1 58.

GIBS. Übungsaufgaben zur Vertiefung. V1. Beschriften Sie die Konstruktionen! n n n n ' ' ' ' Modul 1.5. Geometrische Optik 1 58. eometrische Optik 1 58 Übugsaufgabe zur Vertiefug V1. Beschrifte Sie die Kostruktioe! ' ' ' ' ' ' ' ' Lehrerversio eometrische Optik 1 59 V2. Bei eiem Brillekroglas tritt Licht a der Rückfläche des lases

Mehr

Formelblatt Finanzmanagement

Formelblatt Finanzmanagement www.bwl-olie.ch hema Dokumear heorie im uch "Iegrale eriebswirschafslehre" Formel Fiazmaageme Checklise eil: D Fiazmaageme Kapiel: verschiedee Formelbla Fiazmaageme ilazsrukur Eigekapial E igefiazierugsgrad(equiy

Mehr

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien?

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien? Fiazmathematik Aufgabesammlug. Ei Kapital vo 5000 ist zu 6,5% ud ei Kapital vo 4500 zu 7% auf 2 Jahre agelegt. Wie groß ist der Uterschied der Edkapitalie? 2. Wa erreicht ei Kapital eie höhere Edwert,

Mehr

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z)

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z) Mathematik 1 Test SELBSTTEST MATHEMATIK 1. Forme Sie die folgede Terme um: a) y y y y + y : ( ) ( ) b) ( 9 ) 18 c) 5 3 3 3 d) 6 5 4 ( 7 y ) 3 4 5 ( 14 y ) e) ( 4a + 8b + 9a + 18b ) : a + b f) log () +

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkomme zur der Aufgabesammlug Um sich schell ierhalb der ca. 35. Mathematikaufgabe zu orietiere, beutze Sie ubedigt das Lesezeiche Ihres Acrobat Readers: Das Ico fide Sie i der liks stehede

Mehr

Bau- und Wohncenter Stephansplatz

Bau- und Wohncenter Stephansplatz Viele gute Grüde, auf us zu baue Bau- ud Wohceter Stephasplatz Parter der Bak Austria Silvia Nahler Tel.: 050505 47287 Mobil: 0664 20 22 354 Silvia.ahler@cityfiace.at Fiazservice GmbH Ralph Decker Tel.:

Mehr

Methodische Grundlagen der Kostenkalkulation

Methodische Grundlagen der Kostenkalkulation Methodische Grudlage der Kostekalkulatio Plaugsebee Gebrauchsgüter Die i der ladwirtschaftliche Produktio eigesetzte Produktiosmittel werde i Gebrauchsgüter ud Verbrauchsgüter uterteilt. Zu de Gebrauchsgüter

Mehr

Planen und Organisieren von Arbeitsabläufen. Kostenrechnung

Planen und Organisieren von Arbeitsabläufen. Kostenrechnung osterechug Bei der Vorkalkulatio werde die eies Erzeugisses vor der Herstellug ermittelt. Sie ist Grudlage für ei Preisagebot. Die Nachkalkulatio wird ach der Herstellug eies Erzeugisses durchgeführt.

Mehr

Zum systematischen Vergleich von Lebensversicherungs- und Investmentprodukten unter Performance- und Risikoaspekten

Zum systematischen Vergleich von Lebensversicherungs- und Investmentprodukten unter Performance- und Risikoaspekten Tras 27 h ICA Peer Albrech (Germay) Zum sysemaische Vergleich vo Lebesversicherugs- ud Ivesmeproduke uer Performace- ud Risikoaspeke Peer Albrech Germay Zusammefassug I der vorliegede Uersuchug wird zuächs

Mehr

Zur Integration von Private Equity in die Portfoliosteuerung Ein Vorschlag

Zur Integration von Private Equity in die Portfoliosteuerung Ein Vorschlag Zur Iegraio vo Privae Equiy i die Porfolioseuerug Ei Vorschlag Prof. Dr. Chrisoph Kaserer, TU Müche Dipl.-Kfm. Axel Bucher, TU Müche Ivesiioe i Privae Equiy uerscheide sich zumides i eiem weseliche Puk

Mehr

Mannheimer Manuskripte zu Risikotheorie, Portfolio Management und Versicherungswirtschaft. Nr. 131

Mannheimer Manuskripte zu Risikotheorie, Portfolio Management und Versicherungswirtschaft. Nr. 131 Maheimer Mauskripe zu Risikoheorie, Porfolio Maageme ud Versicherugswirschaf Nr. 131 Zum sysemaische Vergleich vo Lebesversicherugs- ud Ivesmeproduke uer Performace- ud Risikoaspeke vo PETER ALBRECHT Maheim

Mehr

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i D. Reterechug 1.1. Jährliche Retezahluge 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi

Mehr

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren Forelsalug zur Fiazatheatik 1. Eifache Zisrechug (lieare Verzisug) 1.1 Berechug des Edwerts eier Eialalage bei liearer gazjähriger Verzisug ach Verzisugsjahre p = 1 + = ( 1+ i ) 1 1.2 Berechug des Gegewartswerts

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 040508 Datum 08.05.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09 Mathematik Vorlesug im Bachelor-Studiegag Busiess Admiistratio (Modul BWL A) a der FH Düsseldorf im Witersemester 2008/09 Dozet: Dr. Christia Kölle Teil I Fiazmathematik, Lieare Algebra, Lieare Optimierug

Mehr

Bewertung von Anleihen

Bewertung von Anleihen Bewertug vo Aleihe Arithmetik der Aleihebewertug: Überblick Zerobods ud Koupoaleihe Ziskurve: Spot Zise ud Yield to Maturity Day cout Kovetioe Replikatio ud Arbitrage Forward Zise Yield ud ex post realisierte

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Kapitel 6: Quadratisches Wachstum

Kapitel 6: Quadratisches Wachstum Kapitel 6: Quadratisches Wachstum Dr. Dakwart Vogel Ui Esse WS 009/10 1 Drei Beispiele Beispiel 1 Bremsweg eies PKW Bremsweg Auto.xls Ui Esse WS 009/10 Für user Modell des Bremsweges gilt a = a + d a =

Mehr

provadis School of International Managemet & Technology

provadis School of International Managemet & Technology Testvorbereitug Mathematik, V9 Prof. Dr. L. Eicher provadis School of Iteratioal Maagemet & Techology Hiweis: Alle Aufgabe sid ohe Hilfsmittel zu löse.. Bereche Sie: a 7, b, c, d, e 7, f 4. Kürze Sie ud

Mehr

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares 4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus

Mehr

Prof. Dr. Günter Hellmig. Aufgabenskript Finanzmathematik

Prof. Dr. Günter Hellmig. Aufgabenskript Finanzmathematik Prof. Dr. Güter Hellmig Aufgabeskript Fiazmathematik Ihalt: Aufgabe -: Eifache achschüssige Zise Aufgabe : Eifache vorschüssige Zise Aufgabe 4-5: Ziseszise bei Zisasammlug Aufgabe 6-: Ziseszise bei Zisauszahlug

Mehr

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen.

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen. Wurzelgesetze Gesetzmäßigkeite Grudlage Das Wurzelziehe (oder Radiziere) ist die Umkehrug des Potezieres. Daher sid die Wurzelgesetze de Potezgesetze sehr ählich. Die Wurzel aus eier positive Zahl ergibt

Mehr

Value at Risk-Konzepte für Marktrisiken

Value at Risk-Konzepte für Marktrisiken r. 7 Value a isk-kozee für Markrisike Heiz Cremers Augus 999 ISS 436-9753 Auor: Prof. Dr. Heiz Cremers Quaiaive Mehode ud Sezielle Bakberiebslehre Hochschule für Bakwirschaf, Frakfur am Mai email: cremers@hfb.de

Mehr

Inflation, Wachstum und Unternehmensbewertung. Gunther Friedl und Bernhard Schwetzler

Inflation, Wachstum und Unternehmensbewertung. Gunther Friedl und Bernhard Schwetzler Iflaio, Wachsum ud erehmesbewerug Guher Friedl ud Berhard Schwezler Versio v. 9.3.28 Prof. Dr. Guher Friedl Techische iversiä Müche Fakulä für Wirschafswisseschafe Lehrsuhl für Beriebswirschafslehre -

Mehr

3 Die Außenfinanzierung durch Fremdkapital (Kreditfinanzierung)

3 Die Außenfinanzierung durch Fremdkapital (Kreditfinanzierung) 3 Die Außefiazierug durch Fremdkapital (Kreditfiazierug) 3.1 Die Charakteristika ud Forme der Kreditfiazierug Aufgabe 3.1: Idealtypische Eigeschafte vo Eige- ud Fremdkapital Stelle Sie die idealtypische

Mehr

Stochastik: Binomialverteilung Stochastik Bernoulli-Experimente, binomialverteilte Zufallsvariablen Gymnasium ab Klasse 10

Stochastik: Binomialverteilung Stochastik Bernoulli-Experimente, binomialverteilte Zufallsvariablen Gymnasium ab Klasse 10 Stochastik Beroulli-Experimete, biomialverteilte Zufallsvariable Gymasium ab Klasse 0 Alexader Schwarz www.mathe-aufgabe.com November 203 Hiweis: Für die Aufgabe darf der GTR beutzt werde. Aufgabe : Ei

Mehr

Statistik I Februar 2005

Statistik I Februar 2005 Statistik I Februar 2005 Aufgabe 0 Pukte Ei Merkmal X mit de mögliche Auspräguge 0 ud, das im Folgede wie ei kardialskaliertes Merkmal behadelt werde ka, wird a Merkmalsträger beobachtet. Dabei bezeichet

Mehr

Das FSB Geldkonto. Einfache Abwicklung und attraktive Verzinsung. +++ Verzinsung aktuell bis zu 3,7% p.a. +++

Das FSB Geldkonto. Einfache Abwicklung und attraktive Verzinsung. +++ Verzinsung aktuell bis zu 3,7% p.a. +++ Das FSB Geldkoto Eifache Abwicklug ud attraktive Verzisug +++ Verzisug aktuell bis zu 3,7% p.a. +++ zuverlässig servicestark bequem Kompeteter Parter für Ihr Wertpapiergeschäft Die FodsServiceBak zählt

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

HiPath 4000 Hicom 300 E/300 H. Bedienungsanleitung optipoint 500 entry

HiPath 4000 Hicom 300 E/300 H. Bedienungsanleitung optipoint 500 entry s HiPah 4000 Hicom 300 E/300 H Bedieugsaleiug oipoi 500 ery Zur vorliegede Bedieugsaleiug Zur vorliegede Bedieugsaleiug Diese Bedieugsaleiug beschreib das Telefo oipoi 500 ery am Commuicaio Server HiPah

Mehr

Investitionsarten. Sachinvestition Finanzinvestition immatrielle Investition (z.b. Ausbildung von Mitarbeitern) Erst-/ Einrichtungsinvestition

Investitionsarten. Sachinvestition Finanzinvestition immatrielle Investition (z.b. Ausbildung von Mitarbeitern) Erst-/ Einrichtungsinvestition Domiik Sei Ivesiiosrechug SS97 - Fiazwirschaf - Seie Fiazwirschaf Sache zum Auswedig-lere: Ivesiiosbegriff: Ivesiio is Fiazierug is - Täigkei des Ivesieres - Gegesad der Ivesiio jede akuelle Auszahlug

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

Übungen zur Klausur Nr. 2: Wahrscheinlichkeitsrechnung II

Übungen zur Klausur Nr. 2: Wahrscheinlichkeitsrechnung II Berufskolleg Marieschule Lippstadt Schule der Sekudarstufe II mit gymasialer Oberstufe ud Fachschule - staatlich aerkat - Kurslehrer: Lagebach Berufskolleg Marieschule Lippstadt Schule der Sekudarstufe

Mehr

Formelblatt Finanzmanagement

Formelblatt Finanzmanagement www.bwl-olie.ch Thema Dokumear Theorie im Buch "Iegrale Beriebswirschafslehre" Formel Fiazmaageme Checklise Teil: D Fiazmaageme Kapiel: verschiedee Formelbla Fiazmaageme Bilazsrukur Eigekapial Eigefia

Mehr

KASSENBUCH ONLINE Online-Erfassung von Kassenbüchern

KASSENBUCH ONLINE Online-Erfassung von Kassenbüchern KASSENBUCH ONLINE Olie-Erfassug vo Kassebücher Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Itegratio i das Ageda-System... 4 3 Highlights... 5 3.1 Ituitive Olie-Erfassug des Kassebuchs... 5 3.2 GoB-sicher

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

C. Eicher Analysis Study Center ETH Zürich HS Summen. k=1

C. Eicher Analysis Study Center ETH Zürich HS Summen. k=1 C Eicher Aaysis Study Ceter ETH Zürich HS 015 Summe Die Summe vo mehrere Zahe a 1, a,, a a mit Hife des Summezeiches geschriebe werde a 1 + a + + a a Hier heisst Laufvariabe oder Summatiosidex ud 1 bzw

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

Investitionsausgabe (Zeitpunkt t 0 ): Für einen Gewerbebetrieb ist - wie bei einem optierenden Betrieb - die MwSt kein Kostenfaktor.

Investitionsausgabe (Zeitpunkt t 0 ): Für einen Gewerbebetrieb ist - wie bei einem optierenden Betrieb - die MwSt kein Kostenfaktor. - 12 - Aufgabe 3: (50 Pukte) Dyamische Ivestitiosrechug 1. Ivestitiosrechug 1.1 Kalkulatioszissatz: Gewichteter Mittelwert vo Fremd- ud Eigekapitalkoste: Für das Eigekapital würde der Ivestor als alterative

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

1.1 Eindimensionale, geradlinige Bewegung

1.1 Eindimensionale, geradlinige Bewegung 1 Kiemaik 1. Ieio Or, Geschwidigkei ud Beschleuigug eies Körpers zu jedem Zeipuk beschreibe. y z e y e z e r () Orsvekor: r () R. Girwidz 1 1 Kiemaik 1.1 Eidimesioale, geradliige Bewegug Eidimesioales

Mehr

3.2) Die Spar-Armutsfalle 3.2.1) Das Grundmodell

3.2) Die Spar-Armutsfalle 3.2.1) Das Grundmodell 3.2 Die Spar-Armusfalle 3.2.1 Das Grudmodell We EL eifach eie iedrigere Sparquoe wähle ud deshalb ärmer bleibe, lieg ei Ewiclugsladproblem vor. => Aber spare EL freiwillig weiger? Arme Mesche öe ers spare,

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

Skript Mathematik. Inhaltsverzeichnis

Skript Mathematik. Inhaltsverzeichnis Skript Mathematik Ihaltsverzeichis Folge ud Reihe.... Arithmetische Folge ud Reihe.... Geometrische Folge ud Reihe.... Aufgabe... Zis- ud Ziseszisrechug...4. Eifache Verzisug...4. Ziseszisrechug...5. Gemischte

Mehr

Leitfaden zu den Strategieindizes der Deutsche Börse AG

Leitfaden zu den Strategieindizes der Deutsche Börse AG Leifade zu de Sraegieidizes der Deusche Börse AG Versio 2.22 Sraegieidizes der Deusche Börse AG Seie 2 Allgemeie Iformaio Um die hohe Qualiä der vo der Deusche Börse AG berechee Idizes sicherzuselle, wird

Mehr

4. Auf welchen Betrag würde ein Kapital von 100,- anwachsen, wenn es bei jährlicher Verzinsung zu 6 % 30 Jahre lang auf Zinseszinsen steht.

4. Auf welchen Betrag würde ein Kapital von 100,- anwachsen, wenn es bei jährlicher Verzinsung zu 6 % 30 Jahre lang auf Zinseszinsen steht. Ziseszisechug. Auf welche Betag wächst ei Kapital vo K 0 bei jähliche Vezisug zu p % i Jahe a. a. K 0 5.200,- p 4 ½ % 6 Jahe b. K 0 3.250,- p 6 % 7 Jahe c. K 0 7.500,- p 5 ½ % 5 Jahe d. K 0 8.320,- p 5

Mehr

1 Einführende Worte 2

1 Einführende Worte 2 Sara Adams Semiarvortrag Rekursive Fuktioe - WS 2004/05 1 Sara Adams Semiarvortrag Rekursive Fuktioe - WS 2004/05 2 1 Eiführede Worte Semiar Grudlegede Algorithme Auflösug vo Rekursioe 1.1 Beispiele Bevor

Mehr

Informatik II Dynamische Programmierung

Informatik II Dynamische Programmierung lausthal Iformatik II Dyamische Programmierug. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Zweite Techik für de Algorithmeetwurf Zum Name: "Dyamische " hat ichts mit "Dyamik" zu tu, soder mit

Mehr

Finanzwirtschaftliche Formeln

Finanzwirtschaftliche Formeln Bueffelcoach Olie Service Bilazbuchhalter Übersichte Fiazwirtschaft Fiazwirtschaftliche Formel AuF Aufzisugsfaktor ( 1+ i) Zist eie heutige Wert mit Zis ud Ziseszis für Jahre auf, hilft also bei der Frage,

Mehr

Prüfungsaufgaben der Abschlussprüfung an Realschulen in Bayern! mit ausführlichen Musterlösungen. und Querverweise auf Theoriedateien der Mathe-CD

Prüfungsaufgaben der Abschlussprüfung an Realschulen in Bayern! mit ausführlichen Musterlösungen. und Querverweise auf Theoriedateien der Mathe-CD Vektor-Geometrie Koordiategeometrie Prüfugsaufgabe uter Verwedug vo Abbildugsgleichuge Prüfugsaufgabe der Abschlussprüfug a Realschule i Bayer! mit ausführliche Musterlösuge ud Querverweise auf Theoriedateie

Mehr

Versuch D3: Energiebilanz einer Verbrennung

Versuch D3: Energiebilanz einer Verbrennung Versuch D: Eergiebilaz eier Verbreug 1. Eiführug ud Grudlage 1.1 Eergiebilaz eier Verbreug Die Eergiebilaz eier Verbreug wird am eispiel eier kleie rekammer utersucht, i welcher die bei der Verbreug vo

Mehr

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3 INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE

Mehr

Abschlussprüfung 2014 an den Realschulen in Bayern

Abschlussprüfung 2014 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Name: Abschlussprüfug 014 a de Realschule i ayer Mathematik II Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Nachtermi A 10 Agler verwede sogeate Schwimmer, die a der Agelschur

Mehr

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen Aufgabe 1: WS 2000/2001 Aufgabe 1: (4 P (4 Pukte) Gebe Sie die Formel zur Bestimmug des relative sowie des koforme Zissatzes a ud erläuter Sie die Uterschiede bzw. Gemeisamkeite der beide Zisfüße. Lösug:

Mehr

Energetisches Feng Shui

Energetisches Feng Shui KONZEPTE CHRISTIANE PAPENBREER Eergetisches Feg Shui Die Welt voller Eergie Die Afäge des Feg Shui liege im Dukel. Bereits vor tausede vo Jahre solle die legedäre chiesische Kaiser Prizipie des Feg Shui

Mehr

1.2. Taylor-Reihen und endliche Taylorpolynome

1.2. Taylor-Reihen und endliche Taylorpolynome 1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg

Mehr

Auf welches Endkapital wächst ein Kapital von 4352,40 bei 3,5 % Zinsverzinsung in 8 Jahren an?

Auf welches Endkapital wächst ein Kapital von 4352,40 bei 3,5 % Zinsverzinsung in 8 Jahren an? 2--3 Übugsblatt Lösuge. Aufgabe: Auf welches Edkapital wächst ei Kapital vo 432,4 bei 3, % Zisverzisug i Jahre a? K K q geg: K = 432,4 ; p = 3,; = Jahre ges: K K 432,4,3 K 73,2 Das Edkapital ach Jahre

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Domiik Faas Stochastik Witersemester 00/0 Klausur vom 7.0.0 Aufgabe 3+.5+.5=6 Pukte Bei eier Umfrage wurde 60 Hotelbesucher ach ihrer Zufriedeheit

Mehr

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel Zahlefolge Teil 3 Reihe Reihe Arithmetische Reihe Geometrische Reihe Datei Nr. 4003 (Neu bearbeitet ud erweitert) Jui 005 Friedrich W. Buckel Iteretbibliothek für Schulmathematik Ihalt Defiitio eier Reihe

Mehr