Protokoll zur Laborübung Verfahrenstechnik. Übung: Filtration. Betreuer: Dr. Gerd Mauschitz. Durchgeführt von:

Größe: px
Ab Seite anzeigen:

Download "Protokoll zur Laborübung Verfahrenstechnik. Übung: Filtration. Betreuer: Dr. Gerd Mauschitz. Durchgeführt von:"

Transkript

1 Protokoll zur Laborübung Verahrentechnik Übung: Filtration Betreuer: Dr. Gerd Mauchitz Durchgeührt von: Marion Pucher Mtk.Nr.: Kennzahl: S6 Mtk.Nr.: Kennzahl: S9 Datum der Übung: /11

2 Marion Pucher Filtration S6 S9 Inhaltverzeichni Verzeichnie 1 EINLEITUNG 3 VERSUCHSDURCHFÜHRUNG 3 3 VERSUCHSAUFBAU / FLIEßBILD 4 4 AUSWERTUNG DIAGRAMM: DRUCKVERLUST ÜBER DIE ZEIT 5 4. RECHENGANG BERECHNUNG VON Α UND Β BERECHNUNG VON T S UND V S BERECHNUNG VON T F ZUSAMMENFASSUNG DER ERGEBNISSE 9 5 DISKUSSION INTERPRETATION FEHLERANALYSE 10 6 ANHANG 11 Tabellen- und Abbildungverzeichni Abbildung 1: Fließbild der Apparatur... 4 Abbildung : Zeitlicher Veruchablau... 5 Tabelle 1: Ergebnie... 9 /11

3 Marion Pucher Filtration S6 S9 1 Einleitung Anhand der mit einer Filterpree bei der Filtration einer Supenion von Kieelgur Filter Cel E in Waer erhaltenen Mewerte bei einereit kontant gehaltenem Filtratvolumentrom beziehungweie anderereit kontantem Druckaball ollen die charakteritichen Kennwerte der peziiche Kuchenwidertand α und der Filtermittelwidertand β - ermittelt werden. Außerdem waren die Gleichungen zur Berechnung der Geamtiltrationzeit t beziehungweie der Zeit t bi zum Erreichen de maximalen Druckaballe p max au der Carmanchen Gleichung herzuleiten. Veruchdurchührung Die Filtration wurde mit einer Filterpree durchgeührt. In den Behälter wurden rund 450 L Waer geüllt und 1,445 kg Kieelgur Filter Cel E eingerührt. Da Filtertuch, da mit Waer beeuchtet worden war, die Sperrmatten und die Platten wurden in die Filterpree eingeetzt und die Pree mit der Schraubpindel et zugedreht. Nach dem Entlüten der Pree, de Filterpreenmanometer und der kapazitiven Druckmedoe wurde die Druckmedoe in Betrieb genommen. Die Dateneraung erolgte automatich mittel PC, der mit den Metellen verbunden war. Im Anchlu wurde die Kolbenmembranpumpe eingechalten, deren Motordrehzahl kontinuierlich durch Drehen einer Potentiometerchraube geregelt werden konnte um den georderten Filterdurchatz von 400 L/h einzutellen. Während der erten Filtrationphae wurde der Filtrattrom durch Regulierung mittel Potentiometerchraube der Volumentrom olange kontant gehalten bi der maximale Filtrationdruck von,5 bar erreicht wurde. Im Anchlu wurde in der zweiten Filtrationphae der Filtrationdruck durch Regulierung mit der Potentiometerchraube kontant gehalten, wobei der Filtratvolumentrom abank. Al nur mehr rund 10 L Supenion im Behälter vorhanden war, wurde die Kolbenmembranpumpe abgechalten und die Meung beendet. Die Filterpree wurde entleert und nach dem Önen wurde der Filterkuchen entnommen. Alle Komponenten der Pree und der Vorratbehälter wurden orgältig mit Waer gereinigt. Nach dem Wachen wurden die Platten und Rahmen wieder in die Pree eingeetzt. 3/11

4 Marion Pucher Filtration S6 S9 3 Veruchaubau / Fließbild Abbildung 1: Fließbild der Apparatur Zu beachten it, da die Verbindung zum Behälter mit Propellerrührer tatächlich nicht vorhanden war, der Volltändigkeit halber jedoch eingezeichnet werden oll. 4/11

5 4 Auwertung 4.1 Diagramm: Druckverlut über die Zeit M ebereich I: V cont. M ebereich II: p cont. D ruckaball F iltratv olum entrom Linearer D ruckaball Druckaball [Pa] y 170,55x Filtratvolumetrom [L h -1 ] t t Z eit [] Abbildung : Zeitlicher Veruchablau 5/11

6 4. Rechengang 4..1 Berechnung von α und β Zur Berechnung de mittleren, peziichen Kuchenwidertand α und de Filtermittelwidertand β wurde die Carmanche Gleichung verwendet: V & dv dt p(t) A α µ w V(t) + µ β A Um diee Werte berechnen zu können, wurde al Nebenbedingung der Volumentrom de Filtrat kontant gehalten. Somit gilt: dv V cont. dt & und omit V V t Eingeetzt in die Carman`che Filtergleichung erhält man: & p( t) A V t α µ w + µ β A durch Umtellen ergibt ich die lineare Beziehung abgekürzt gechrieben: α µ w µ β p(t) t + A A p ( t) k t + d Somit können au der ermittelten Geradengleichung die Kontanten k und d und omit auch α und β berechnet werden. E gilt: k α µ w A k A α µ w µ β V d A A d β µ Im Mebereich I (V cont.) wurde nun bechriebene lineare Beziehung vorgeunden und durch legen einer Regreiongerade die Kontanten k und d ermittelt. (Siehe Diagramm) k 170,55 [Pa -1 ] d 13,08 [Pa] 6/11

7 Marion Pucher Filtration S6 S9 Augrund von leichten Abweichungen de Filtratvolumentrom von den vorgegebenen 400 L/h wurde, zweck genaueren Ergebnie, auch noch der mittlere Filtratvolumentrom berechnet: V & 400,4 [L h -1 ] 1, [m 3-1 ] Der Fettogehalt der Supenion w wurde ebenall benötigt und wie olgt berechnet: 1,445 w 450[L] [ kg] 1 3 0,0031[ kg L ] 3,1[ kg m ] 450 L bezeichnen dabei da anänglich eingelaene Flüigkeitvolumen, owie 1,445 kg die eingeetzte Fettomenge der Supenion ind. Die dynamiche Vikoität der Supenion war gegeben mit µ 1, [Pa ] und omit waren alle Parameter ür die Berechnung von α und β bekannt. α 8, [kg m -1 ] β 1, [m -1 ] Um die Dimenionen zu veranchaulichen wurde eine Dimenionbetrachtung durchgeührt: Pa m α kg 3 m [ m ] kg [ Pa ] 3 m 1 [ m ] [ Pa] und β m [ Pa ] 3 m 4.. Berechnung von t und V Au der lineariierten Carmanchen Gleichung lät ich durch umormen leicht die Filtrationzeit t bi zum Erreichen de maximalen Druckaball p max ermitteln. Mit der Vorgabe, da ergibt ich p(t ) p max t p max A β A α µ w α w Somit konnte mit dem maximalen Druckaball p max [Pa], welcher durch Mittelung aller Mewerte während der Phae de kontanten Druckaball berechnet wurde, und den anderen bekannten Parametern t berechnet werden. t 1360 [] 7/11

8 Marion Pucher Filtration S6 S9 Au der Dimenionanalye olgt: t [ ] [ Pa] [ m ] 3 m m kg [ Pa ] [ m ] 1 m 3 kg m m kg 3 3 kg m m Mit dem o ermittelte t lät ich über olgende Beziehung leicht V berechnen: V V(t ) t p max A² βa α µ w α w V 0,151 [m 3 ] 4..3 Berechnung von t Um t zu erhalten, mu man augehend von der Carmanchen Gleichung da Volumen ür kontanten Druckaball von p max von t bi t integrieren. Au der Carmanchen Gleichung erhält man mit kontantem Druckaball p max :. dv p max A V dt α µ w V + µ β A Durch Trennen der Variablen und Umormung erhält man olgende Gleichung w dt α µ βµ V + dv p A p max A max welche noch von t bi t integriert werden mu t V α µ w βµ dt V + dv t V p p max A max A t t α µ w V t p max A βµ + V p max A V V 8/11

9 Marion Pucher Filtration S6 S9 Somit erhält man t t α µ w p max A βµ ( V V ) + ( V V ) p max A worau man durch Umormung die endgültige Gleichung der Form t α µ w t + p max A µ ( V V ) + β ( V V ) p max A erhält. Bei der oben durchgeührten Integration it davon augegangen worden, da alle Parameter bi au da Volumen kontant ind (zeitlich unabhängig ind). Beim Veruch war p max zwar nicht kontant, aber e gab nur zuällige Schwankungen und keine wirkliche Zeitabhängigkeit. Inwieern α und β kontant ind, kann nicht quantiiziert werden, jedoch kann davon augegangen werden, da ie über den Veruchzeitraum annähernd kontant bleiben. w, µ, t, V und V können al Kontante betrachtet werden. Mit den vorher ermittelten Werten ür die einzelnen Parameter konnte nun t berechnet werden, wobei ür da geamte Filtrationvolumen V 450 [L] 0,450 [m 3 ] angenommen wurde. t 6558 [] Die Dimenionanalye ergibt: t [ ] [ ] m kg + [ Pa ] [ Pa] [ m ] kg 3 m 3 3 [ m ] [ m ] + 1 m [ Pa ] [ Pa] [ m ] 3 3 ([ m ] [ m ]) 4.3 Zuammenaung der Ergebnie Tabelle 1: Ergebnie t [] t [] α [m kg -1 ] 8, β [m -1 ] 1, Gemeen 134 berechnet 1360 gemeen 5004 berechnet /11

10 Marion Pucher Filtration S6 S9 5 Dikuion 5.1 Interpretation Die Modellannahme, da bei kontantem Volumentrom ein linearer Zuammenhang zwichen Druckaball und Zeit beteht, konnte in dieem veruch veranchaulicht werden und daher auch die Werte α und β betimmt werden. Die erhaltenen Werte ür α und β machen durchau Sinn, da ich au dieen Werten abgeleitete Größen, wie die berechneten Werte ür t und t, im Bereich der gemeenen Werte liegen. Au den erten Blick cheint zwar der Wert ür t entcheidend abzuweichen, jedoch mu die zurückgehaltene Filtratmenge berückichtigt werden, die ich noch teil im Vorratbehälter und teil in den Leitungen vor dem Filter beand. (iehe auch Fehlerbetrachtung) 5. Fehleranalye Wie bereit rüher erwähnt, kam e bei der Regelung de Filtratvolumentrom zu Schwankungen, inbeondere bei der zweiten Veruchphae (kontanter Druckaball). Da aber über alle erhaltenen Druckaballwerte gemittelt wurde, dürten ich die Schwankungen nur in einem nicht allzu großen zuälligen Fehler audrücken. Die Schwankungbreite um den Mittelwert beträgt rund 5%. In der Phae de kontanten Volumentrom kam e zu weentlich geringeren Schwankungen, wa ich in einem hohen Betimmtheitmaß der Regreion (R 0,999) und einer geringen Schwankungbreite der Mewerte um den mittleren Filtratvolumentrom (~ 1,5%) audrückt. Fehler durch Parameter, welche al kontant angenommen wurden, e aber nicht waren, können nicht abgechätzt werden. Daher wird davon augegangen, da α und β tatächlich kontant blieben. Da heißt, Veränderungen z.b. der Poroität de Kuchen mit ortlauender Filtrationzeit oder eine zunehmende Vertopung de Filtermittel werden augechloen. Solche Veränderungen ollten auch in einer Abweichung vom linearen Zuammenhang von p und t erkennbar ein. Der Fehler, welcher durch ein Zurückhalten von Supenion im Vorratbehälter enttand, damit die Apparatur nicht trockenläut und Schaden nimmt, wirkt ich primär au die Berechnung von t au, da diee Größe direkt in diee Formel eingeht. Würde man daher annehmen, da 60L der Supenion zurückgehalten wurden. ( V 390L) würde ich der Wert au 5111 [] ändern und omit ich dem tatächlichen Ende annähern. 10/11

11 Marion Pucher Filtration S6 S9 6 Anhang Symbolverzeichni α...mittlerer, peziicher Kuchenwidertand [m kg -1 ] β...filtermittelwidertand [m -1 ] w...fettogehalt der Supenion [kg m 3 ] µ...dynamiche Vikoität d. Supenion [kg m -1-1 ] A...Filterläche [m²] p...druckaball [Pa] p max...maximaler Druckaball [Pa] t...filtrationzeit [] t...filtrationzeit bi zum Erreichen de max. Druckaball [] t...geamte Filtrationzeit [] V...Geamtiltrationvolumen [m³] V...Filtratvolumen bi zum Erreichen de max. Druckaball [m³] V...Filtratvolumen [m³] V &...Filtratvolumentrom [m 3-1 ] d...ordinatenabchnitt im ( p,t)-diagramm [Pa] k...geradenantieg im ( p,t)-diagramm [Pa -1 ] 11/11

Filtration. Daniel Bomze W05 Paul Gauss W12 Paul Kautny W20 13.01.2010

Filtration. Daniel Bomze W05 Paul Gauss W12 Paul Kautny W20 13.01.2010 Daniel Bomze W05 Paul Gauss W12 Paul Kautny W20 13.01.2010 Inhaltsverzeichnis 1 Aufgabenstellung 3 2 Praktischer Teil 3 2.1 Durchführung.................................. 3 2.2 Parameter der Filtration............................

Mehr

Dynamisches Verhalten von OPVs

Dynamisches Verhalten von OPVs TECHNISCHE UNIVERSITÄT ILMENAU Fakultät ür Elektrotechnik und Inormationtechnik Fachgebiet Elektroniche Schaltungen und Syteme Dynamiche Verhalten von OPV Veruch 6 im Inormationelektronichen Praktikum

Mehr

DM280-1F Luftkissenfahrbahn

DM280-1F Luftkissenfahrbahn DM80-F Luftkienfahrbahn Die Luftkienfahrbahn DM80-F dient zur Demontration von Veruchen zur Dynamik und Kinematik geradliniger Bewegung feter Körper. Diee Anleitung oll Sie mit der Bedienung und den Demontrationmöglichkeiten

Mehr

Studienarbeit. Thema: Bestimmung der Schichtdicke von Aluminium auf Siliziumoxid mit dem Vier-Spitzen-Messgerät VSM100

Studienarbeit. Thema: Bestimmung der Schichtdicke von Aluminium auf Siliziumoxid mit dem Vier-Spitzen-Messgerät VSM100 Studienarbeit Thema: Betimmung der Schichtdicke von Aluminium auf Siliziumoxid mit dem Vier-Spitzen-Megerät VSM00 angefertigt von: Robert Uath Matrikelnummer: 99047 Betreuer: Prof. Dr.-Ing. B. K. Glück

Mehr

Statistische Analyse von Messergebnissen

Statistische Analyse von Messergebnissen Da virtuelle Bildungnetzwerk für Textilberufe Statitiche Analye von Meergebnien 3 Hochchule Niederrhein Stand: 17..3 Seite 1 / 8 Im Abchnitt "Grundlagen der Statitik" wurde u.a. bechrieben, wie nach der

Mehr

Parameter-Identifikation einer Gleichstrom-Maschine

Parameter-Identifikation einer Gleichstrom-Maschine Paamete-dentifikation eine Gleichtom-Machine uto: Dipl.-ng. ngo öllmecke oteile de Paamete-dentifikationvefahen eduzieung de Zeit- und Kotenaufwand im Püfpoze olltändige Püfung und Chaakteiieung von Elektomotoen

Mehr

J und κ =1, 4 behandelt werden. kg K. a) Berechnen Sie die fehlenden Temperaturen und Drücke!

J und κ =1, 4 behandelt werden. kg K. a) Berechnen Sie die fehlenden Temperaturen und Drücke! Übung 11 Aufgabe 7.6: Offene Gaturbine Eine Gaturbinenanlage untercheidet ich vom reveriblen oule-proze dadurch, da der Verdichter und die Turbine nicht ientrop arbeiten. E gilt vielmehr: η S,V =0, 85

Mehr

Bestimmung der Messunsicherheit

Bestimmung der Messunsicherheit Betimmung der Meunicherheit 1 Arten der Meabweichungen 1.1 Grobe Abweichungen Urachen Verehen de Beobachter bei Bedienung/Ableung der Meintrumente Irrtum de Beobachter bei Protokollierung/Auwertung der

Mehr

Kassenprüfungen nach 69 Satz 2 InsO. Informationen für Insolvenzverwalter und Mitglieder von Gläubigerausschüssen

Kassenprüfungen nach 69 Satz 2 InsO. Informationen für Insolvenzverwalter und Mitglieder von Gläubigerausschüssen Kaenprüfungen nach 69 Satz 2 InO Informationen für Inolvenzverwalter und Mitglieder von Gläubigerauchüen In ihrer Funktion al Überwachungorgane haben Gläubigerauchüe den Geldverkehr und -betand zu prüfen

Mehr

Beobachten und Messen mit dem Mikroskop

Beobachten und Messen mit dem Mikroskop Phyikaliche Grundpraktikum Veruch 006 Veruchprotokolle Beobachten und een mit dem ikrokop Aufgaben 1. Betimmen de ildungmaßtabe der vorhandenen ektive mit Hilfe eine echraubenokular. Vergleich mit den

Mehr

7. Reglerentwurf im Frequenzbereich

7. Reglerentwurf im Frequenzbereich H A K O 7 Reglerentwurf im Frequenzbereich In dieem Kapitel werden zwei unterchiedliche Reglerentwurfverfahren im Frequenzbereich dikutiert Da o genannte Frequenzkennlinienverfahren it auf Regelkreie mit

Mehr

Einfacher loop-shaping Entwurf

Einfacher loop-shaping Entwurf Intitut für Sytemtheorie technicher Prozee Univerität Stuttgart Prof. Dr.-Ing. F. Allgöwer 6.4.24 Regelungtechnik I Loophaping-Entwurf t http://www.it.uni-tuttgart.de/education/coure/rti/ Einfacher loop-haping

Mehr

TU Ilmenau Physikalisches Grundpraktikum Versuch O3 Institut für Physik. Mikroskop Seite 1

TU Ilmenau Physikalisches Grundpraktikum Versuch O3 Institut für Physik. Mikroskop Seite 1 TU Ilmenau aliche Grundpraktikum Veruch O3 Mikrkp Seite 1 1. Aufgabentellung 1.1. Die rennweite f de Mikrkpbjektiv 8x it durch Meung der Abbildungmaßtäbe unterchiedliche Zwichenbildweiten zu betimmen.

Mehr

Aufgabenblatt 4: Wachstum

Aufgabenblatt 4: Wachstum Aufgabenblatt 4: Wachtum Löungkizze Bitten beachten Sie, da diee Löungkizze lediglich al Hilfetellung zur eigentändigen Löung der Aufgaben gedacht it. Sie erhebt weder Anpruch auf Volltändigkeit noch auf

Mehr

Im Gegensatz zum idealen Gas bildet sich bei realen Gasen ein flüssiger und fester Aggregatzustand (Phase) aus.

Im Gegensatz zum idealen Gas bildet sich bei realen Gasen ein flüssiger und fester Aggregatzustand (Phase) aus. Aggregatzutände: Im Gegenatz zum idealen Ga bildet ich bei realen Gaen ein flüiger und feter Aggregatzutand (Phae) au. Dicht benachbarte Atome üben anziehende Kräfte aufeinander au E ot E ot Ideale Ga

Mehr

Versuch 16 (früher I9) Aufbauten 16/36 (früher I7a/I7b) Logikschaltungen mit dem Bipolartransistor

Versuch 16 (früher I9) Aufbauten 16/36 (früher I7a/I7b) Logikschaltungen mit dem Bipolartransistor Hochchule Augburg Veruch 16 (früher I9) Aufbauten 16/36 (früher I7a/I7b) Logikchaltungen mit dem Bipolartranitor Phyikaliche Praktikum Die Funktionweie von Bipolartranitoren ollte vor Veruch 9 im Theorieteil

Mehr

Versuch 1: Drehzahlregelung eines Gleichstrommotors

Versuch 1: Drehzahlregelung eines Gleichstrommotors Techniche Univerität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungyteme Leitung: Prof. Dr.-Ing. Jörg Raich Praktikum Grundlagen der Regelungtechnik Sommeremeter 2012 Veruchbechreibung

Mehr

Drehzahlregelung eines Gleichstrommotors 1

Drehzahlregelung eines Gleichstrommotors 1 Techniche Univerität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungyteme Leitung: Prof. Dr.-Ing. Jörg Raich Praktikum Digitale Signalverabeitung Praktikum Regelungtechnik 1 (Zeitdikrete

Mehr

1. Bestimmung der Wellenlänge des Laserlichtes

1. Bestimmung der Wellenlänge des Laserlichtes . Betimmung er Wellenlänge e Laerlichte Um mit em Veruch anfangen zu können wure al erte er Laer jutiert, inem er Veruchaufbau o veränert wure, a er Laer exakt gerae un waagerecht auf en Schirm traf. Die

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Teilnehmer: Phili Bannach Heinrich-Hertz-Oberchule) Levin Keller Herder-Oberchule) Phili Kende Herder-Oberchule) Carten Kubbernuh Andrea-Oberchule) Giang Nguyen Herder-Oberchule)

Mehr

Stochastische Überraschungen beim Spiel BINGO

Stochastische Überraschungen beim Spiel BINGO Stochatiche Überrachungen beim Spiel BINGO NORBERT HENZE, KARLSRUHE, UND HANS HUMENBERGER, WIEN Zuammenfaung: In dieem Beitrag wird da bekannte Spiel BINGO erläutert und näher analyiert. Augehend vom konkreten

Mehr

Vier-Felder-Tafel. Medizinische Tests sind grundsätzlich mit zwei Fehlern behaftet: 1. Erkrankte werden als gesund, 2. Gesunde als krank eingestuft.

Vier-Felder-Tafel. Medizinische Tests sind grundsätzlich mit zwei Fehlern behaftet: 1. Erkrankte werden als gesund, 2. Gesunde als krank eingestuft. Vier-Felder-Tafel Mediziniche Tet ind grundätzlich mit zwei Fehlern behaftet:. Erkrankte werden al geund, 2. Geunde al krank eingetuft. Der. Fehler wird üblicherweie (nicht nur von Tet-Entwicklern) in

Mehr

ENERGIETECHNISCHES PRAKTIKUM I

ENERGIETECHNISCHES PRAKTIKUM I ENERGIETECHNISCHES PRAKTIKUM I Veruch 9: Wechelrichter mit Puldauermodulation 1 EINLEITUNG...2 2 PULSDAUERMODULATION BEI SPANNUNGSSTEUERUNG...5 3 LITERATUR...9 4 VERSUCHSDURCHFÜHRUNG...10 4.1 Zeitunabhängige

Mehr

Physikpraktikum. Versuch 2) Stoß. F α F * cos α

Physikpraktikum. Versuch 2) Stoß. F α F * cos α Phyikpraktikum Veruch ) Stoß Vorbereitung: Definition von: Arbeit: wenn eine Kraft einen Körper auf einem betimmten Weg verchiebt, o verrichtet ie am Körper Arbeit Arbeit = Kraft * Weg W = * S = N * m

Mehr

Energiefreisetzung In der Sonne, wie in allen anderen Sternen auch, wird die Energie durch Kernfusion freigesetzt. Wasserstoffkerne(Protonen) können

Energiefreisetzung In der Sonne, wie in allen anderen Sternen auch, wird die Energie durch Kernfusion freigesetzt. Wasserstoffkerne(Protonen) können Energiefreietzung In der Sonne, wie in allen anderen Sternen auch, wird die Energie durch Kernfuion freigeetzt. Waertoffkerne(Protonen) können bei güntigen Bedingungen zu Heliumkernen verchmelzen, dabei

Mehr

Lehreinheit 09 Prozesssimulation II: Prozesssimulation mit einfachen Petri-Netzen Wintersemester 2012/2013

Lehreinheit 09 Prozesssimulation II: Prozesssimulation mit einfachen Petri-Netzen Wintersemester 2012/2013 Dynamiche Unternehmenmodellierung und -imulation (ehemal: Buine Dynamic - Dynamiche Modellierung und Simulation komplexer Gechäftyteme, Arbeitwienchaft V) Lehreinheit 09 Prozeimulation : Prozeimulation

Mehr

Reglersynthese nach dem Frequenzkennlinienverfahren REGELUNGSTECHNIK

Reglersynthese nach dem Frequenzkennlinienverfahren REGELUNGSTECHNIK REGELUNGSTECHNIK augeführt am Fachhochchul-Studiengang Automatiierungtechnik für Beruftätige von Chritian Krachler Graz, im April 4 Inhaltverzeichni INHALTSVERZEICHNIS a Bodediagramm... 4 Rechnen mit dem

Mehr

Technische Universität München. Fakultät für Informatik

Technische Universität München. Fakultät für Informatik Techniche Univerität München Fakultät für Informatik Forchung- und Lehreinheit Informatik IX Thema: Morphologiche Operationen Proeminar: Grundlagen Bildvertehen/Bildgetaltung Johanne Michael Kohl Betreuer:

Mehr

Aufnahmeprüfung FHNW 2013: Physik

Aufnahmeprüfung FHNW 2013: Physik Muterlöungen Phyik Aufnahmeprüfung FHW 03 Aufnahmeprüfung FHW 03: Phyik Aufgabe Da nebentehende Diagramm zeigt den Gechwindigkeit-Zeit-Verlauf für ein Schienenfahrzeug. a ) Skizzieren Sie qualitativ richtig

Mehr

PHYSIK Geradlinige Bewegungen 3

PHYSIK Geradlinige Bewegungen 3 7 PHYSIK Geradlinige Bewegungen 3 Gleichäßig bechleunigte Bewegungen it Anfanggechwindigkeit Datei Nr. 93 Friedrich W. Buckel Juli Internatgynaiu Schloß Torgelow Inhalt Grundlagen: Bechleunigte Bewegungen

Mehr

Diplomhauptprüfung. "Regelung linearer Mehrgrößensysteme" 17. März Aufgabenblätter

Diplomhauptprüfung. Regelung linearer Mehrgrößensysteme 17. März Aufgabenblätter Diplomhauptprüfung "Regelung linearer Mehrgrößenyteme" 7. Mär 008 Aufgabenblätter Die Löungen owie der volltändige und nachvolliehbare Löungweg ind in die dafür vorgeehenen Löungblätter einutragen. Nur

Mehr

Protokoll: Mechanische Schwingungen

Protokoll: Mechanische Schwingungen Datum: Namen: Protokoll: Mechaniche Schwingungen 1. Definieren Sie: mechaniche Schwingung. Nennen Sie die Vorauetzungen für da Enttehen mechanicher Schwingungen. Geben Sie die phyikalichen Größen zur Bechreibung

Mehr

6. Klasse 1. Schularbeit 1999-10-20 Gruppe A + 40.! Bestimme das Monotonieverhalten und berechen den Grenzwert! 4 Punkte

6. Klasse 1. Schularbeit 1999-10-20 Gruppe A + 40.! Bestimme das Monotonieverhalten und berechen den Grenzwert! 4 Punkte 6. Klae 1. Schularbeit 1999-10-0 Gruppe A 1) Betrachte da Wettrennen zwichen Achille und der Schildkröte für folgende Angaben: Gechwindigkeit von Achille 10 m, Gechwindigkeit der Schildkröte m Vorprung

Mehr

Beispiel 1 Modellbildung und Identifikation

Beispiel 1 Modellbildung und Identifikation Beipiel Moellbilung un Ientifikation Für eine GaFlutrecke oll ein mathematiche Moell ermittelt weren. Einganggröße er trecke it eine tellpannung u t. Auganggröße er trecke it er momentane GaFlu q. u t

Mehr

In welcher Zeit könnte der Sportwagen demnach von 0 auf 100 km beschleunigen?

In welcher Zeit könnte der Sportwagen demnach von 0 auf 100 km beschleunigen? Arbeit, Leitung und Wirkunggrad und Energie. Welche Leitung erbringt ein Auto da bei einer geamten Fahrwidertandkraft von 200 N mit einer Gechwindigkeit von 72 km fährt? h 2: Ein Latkran wird mit einem

Mehr

9.3 Blitz- und Überspannungsschutz für PV-Anlagen und Solarkraftwerke

9.3 Blitz- und Überspannungsschutz für PV-Anlagen und Solarkraftwerke .3 Blitz- und Überpannungchutz für PV-Anlagen und Solarkraftwerke.3. Blitz- und Überpannungchutz für PV-Anlagen Auf dem Sektor der Photovoltaik (PV) nimmt inzwichen Deutchland eine führende Rolle auf dem

Mehr

Beispiellösungen zu Blatt 84

Beispiellösungen zu Blatt 84 µatheaticher κorrepondenz- zirkel Matheatiche Intitut Georg-Augut-Univerität Göttingen Aufgabe 1 Beipiellöungen zu Blatt 84 Welche der folgenden Zahlen it größer? 2009 + 2010 + 2010 + 2009, 2009 + 2009

Mehr

Mechanik 2. Addition von Geschwindigkeiten 1

Mechanik 2. Addition von Geschwindigkeiten 1 Mechanik. Addition on Gechwindigkeiten 1. Addition on Gechwindigkeiten Wa beeinflut die Gechwindigkeit de Boote? a. Wind b. Waergechwindigkeit Haben beide die gleiche Richtung, o addieren ie ich. Haben

Mehr

FOS: Lösungen Vermischte Aufgaben zur Mechanik

FOS: Lösungen Vermischte Aufgaben zur Mechanik R. Brinkann http://brinkann-du.de Seite 1 5.11.01 FOS: Löungen Verichte Aufgaben zur Mechanik 1. ie Skala eine Krafteer it unkenntlich geworden. Nur die Marken für 0 N und 5 N ind erhalten geblieben. Wie

Mehr

Diffusion in der Gasphase

Diffusion in der Gasphase Diffuion in der Gaphae Bericht für da Praktikum Chemieingenieurween I WS06/07 Zürich, 22. Januar 2007 Studenten: Francico Joé Guerra Millán fguerram@tudent.ethz.ch Andrea Michel michela@tudent.ethz.ch

Mehr

HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT V 12-19.11.2004

HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT V 12-19.11.2004 Pro. Dr. F. Koch Dr. H. E. Porteanu koch@ph.tum.de porteanu@ph.tum.de WS 004-005 HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT V 1-19.11.004 OPTIK geometriche und phyikaliche Optik C. Polariation Al tranverale

Mehr

Fachhochschulreifeprüfung an Fachoberschulen und Berufsoberschulen 2003 (Bayern) Physik: Aufgabe III

Fachhochschulreifeprüfung an Fachoberschulen und Berufsoberschulen 2003 (Bayern) Physik: Aufgabe III Fachhochchulreifeprüfung an Fachoberchulen und Berufoberchulen 3 (Bayern) Phyik: Aufgabe III. Für alle Körper, die ich antrieblo auf einer Kreibahn it de Radiu R und der Ulaufdauer T u ein Zentralgetirn

Mehr

Institut für Thermische Verfahrenstechnik. Wärmeübertragung I. Lösung zur 4. Übung (ΔT LM (Rührkessel, Gleich-, Gegenstrom))

Institut für Thermische Verfahrenstechnik. Wärmeübertragung I. Lösung zur 4. Übung (ΔT LM (Rührkessel, Gleich-, Gegenstrom)) Prof. Dr.-Ing. Matthia Kind Intitut für hermihe Verfahrentehnik Dr.-Ing. homa Wetzel Wärmeübertragung I öung zur 4. Übung ( M (Rührkeel, Gleih-, Gegentrom Einführung Ein in der Wärmeübertragung häufig

Mehr

13.1 Die Laplace-Transformation

13.1 Die Laplace-Transformation 13.1 Die Laplace-ranformation 565 13.1 Die Laplace-ranformation Die Laplace-ranformation it eine Integraltranformation, die jeder Zeitfunktion f(t), t, eine Bildfunktion F () gemäß 13.1 F () = f (t) e

Mehr

DURCHFLUSSMESSUNGEN. Theorie

DURCHFLUSSMESSUNGEN. Theorie DURCHFLUSSMESSUNGEN Diee Experiment behandelt verchiedene "klaiche" Prinzipien zur Durchlumeung mit Hile von Blende, Venturimeter und Rotameter. Jede dieer Metechniken baiert au Beziehungen zwichen Druck,

Mehr

Protokoll zu Versuch M4: Stoßgesetze

Protokoll zu Versuch M4: Stoßgesetze Protokoll zu Veruch M4: toßgeetze. Einleitung In dieem Veruch läßt man zwei tahlkugeln zentral aufeinandertoßen. Dabei werden die Kugeln an Fäden aufgehängt und können omit al Fadenpendel angeehen werden.

Mehr

PHYSIK Wurfbewegungen 1

PHYSIK Wurfbewegungen 1 PHYSIK Wurfbewegungen 1 Senkrechter Wurf nach unten Senkrechter Wurf nach oben Datei Nr. 9111 Auführliche Löungen und Drucköglichkeit nur auf CD Friedrich W. Buckel Augut Internatgynaiu Schloß Torgelow

Mehr

Brustkrebs. Genetische Ursachen, erhöhte Risiken. Informationen über familiär bedingten Brust- & Eierstockkrebs

Brustkrebs. Genetische Ursachen, erhöhte Risiken. Informationen über familiär bedingten Brust- & Eierstockkrebs Brutkreb Genetiche Urachen, erhöhte Riiken Informationen über familiär bedingten Brut- & Eiertockkreb Brutkreb: Wie und wo er entteht Wenn bei der Zellteilung ein Fehler paiert Alle Zellen unere Körper

Mehr

( ) = ( ) ( ) ( ) ( )

( ) = ( ) ( ) ( ) ( ) R. Brinkmann http://brinkmann-du.de Seite 0.0.0 Löungen Grundaufgaben für lineare und quadratiche Funktionen I e: E e f( x) = x+ Py 0 f( x) = x+ Px 0 E E E E E6 E7 E8 E9 E0 f x = mx + b mit m = und P(

Mehr

Gegeben: v 1 = 120 km h. und v 2 = 150 km h. 2. Ein Radfahrer fährt 40 s mit der gleichbleibenden Geschwindigkeit von 18 km.

Gegeben: v 1 = 120 km h. und v 2 = 150 km h. 2. Ein Radfahrer fährt 40 s mit der gleichbleibenden Geschwindigkeit von 18 km. Übungen (en ohne Gewähr) ================================================================== 1. Ein Auto teigert eine Gechwindigkeit gleichmäßig von 120 km auf 150 km. h h Wie groß it die Bechleunigung

Mehr

Nach der Bearbeitung dieses Kapitels soll der Leser in der Lage sein,

Nach der Bearbeitung dieses Kapitels soll der Leser in der Lage sein, 3 1 Einführung Nach der Bearbeitung diee Kapitel oll der Leer in der Lage ein, die Funktionen Invetition und Finanzierung in die Geamtheit der Betriebwirtchaftlehre einzuordnen, ihre Bedeutung für die

Mehr

Einbau- und Anschlusshinweise EX-Nutenwiderstandsthermometer System RÜSTER V...f EX- NWT - Nutenwiderstandsthermometer

Einbau- und Anschlusshinweise EX-Nutenwiderstandsthermometer System RÜSTER V...f EX- NWT - Nutenwiderstandsthermometer Einbau- und Anchluhinweie EX-Nutenwidertandthermometer Sytem RÜSTER V...f EX- NWT - Nutenwidertandthermometer Gerätegruppe : II Gerätekategorie : 2G Zone : 1 bzw. 2 Zündchutzart : ia bzw. ib - eigenicher

Mehr

Nutzung der inhärenten sensorischen Eigenschaften von piezoelektrischen Aktoren

Nutzung der inhärenten sensorischen Eigenschaften von piezoelektrischen Aktoren Nuzung der inhärenen enorichen Eigenchafen von piezoelekrichen Akoren K. Kuhnen; H. Janocha Lehruhl für Prozeßauomaiierung (LPA), Univeriä de Saarlande Im Sadwald, Gebäude 13, 6641 Saarbrücken Tel: 681

Mehr

Abiturprüfung Mathematik 2014 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analytische Geometrie / Stochastik Aufgabe B 1 - Lösungen

Abiturprüfung Mathematik 2014 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analytische Geometrie / Stochastik Aufgabe B 1 - Lösungen 1 Abiturprüfung Mathematik 214 Baden-Württemberg Allgemeinbildende Gymnaien Wahlteil Analytiche Geometrie / Stochatik Aufgabe B 1 - Löungen klau_mener@eb.de.elearning-freiburg.de Wahlteil 214 Aufgabe B

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Inhalt. Vision ME Benutzerhandbuch s

Inhalt. Vision ME Benutzerhandbuch s Benutzerhandbuch Inhalt 1. Einleitung...2 1.1. Automatiche Anmeldung bei Viion ME...2 2. Schüler dazu einladen, einer Klae beizutreten...3 2.1. Schüler in der Klae anzeigen...6 2.2. Die App au Schülericht...7

Mehr

Marion Pucher Membrantechnik S26 Matthias Steiger. Membrantechnik. Betreuer: Univ. Prof. Dr. Anton Friedl. Durchgeführt von:

Marion Pucher Membrantechnik S26 Matthias Steiger. Membrantechnik. Betreuer: Univ. Prof. Dr. Anton Friedl. Durchgeführt von: Membrantechnik Betreuer: Univ. Prof. Dr. Anton Friedl Durchgeführt von: Marion Pucher Mtk.Nr.:0125440 Kennzahl: S26 Mtk.Nr.:0125435 Kennzahl: Datum der Übung: 17.3.2004 Seite 1/11 1. Ziel der Übung Mithilfe

Mehr

Zuverlässigkeitsorientiertes Testmanagement

Zuverlässigkeitsorientiertes Testmanagement Verwendung von Metriken in Tetplanung und -teuerung Zuverläigkeitorientierte Tetmanagement Benedikte Elbel Siemen AG, CT PP 2 Übericht Zuverläigkeit al zentrale Qualitätmetrik Zuverläigkeitorientierte

Mehr

Übungsmaterial. Lösen von Anfangswertproblemen mit Laplacetransformation

Übungsmaterial. Lösen von Anfangswertproblemen mit Laplacetransformation Prof. Dr. W. Roenheinrich 30.06.2009 Fachbereich Grundlagenwienchaften Fachhochchule Jena Übungmaterial Löen von Anfangwertproblemen mit Laplacetranformation Nachtehend ind einige Anfangwertprobleme zu

Mehr

Schaltwerke. e = 0 z. e = 0 1 z. z neu. z = z = z???? z(t + ) = z neu = z(t) Schaltnetze und Schaltwerke

Schaltwerke. e = 0 z. e = 0 1 z. z neu. z = z = z???? z(t + ) = z neu = z(t) Schaltnetze und Schaltwerke Schaltweke Schaltnete und Schaltweke Schaltnete dienen u Becheibung deen, wa innehalb eine Poeotakt abläuft. Die akteit de Poeo mu imme etwa göße ein al die Signallaufeit de Schaltnete. Damit wid ichegetellt,

Mehr

Mechanik. LD Handblätter Physik. Überprüfung der Bernoulli-Gleichung Messung mit Drucksensor und CASSY P

Mechanik. LD Handblätter Physik. Überprüfung der Bernoulli-Gleichung Messung mit Drucksensor und CASSY P GENZ 2014-10 Mechanik Aero- und Hydrodynamik Meungen in einem Windkanal LD Handblätter Phyik Überprüfung der Bernoulli-Gleichung Meung mit Druckenor und CASSY Veruchziele Überprüfen, ob der dynamiche Druck

Mehr

Test für medizinische Studiengänge II Originalversion II des TMS. 5. aktualisierte Auflage 2008 Hogrefe Verlag ISBN: 978-3-8017-2169-5

Test für medizinische Studiengänge II Originalversion II des TMS. 5. aktualisierte Auflage 2008 Hogrefe Verlag ISBN: 978-3-8017-2169-5 Löunwee und Erklärunen für die Aufaben 7-96 ( Quantitative und formale Probleme ) Seite - 55 de Übunbuche Tet für mediziniche Studienäne II Oriinalverion II de TMS 5. aktualiierte Auflae 008 Horefe Verla

Mehr

Wärmepumpe. Praktikumsanleitung. Inhaltsverzeichnis. Wärmepumpe. Gruppe Nr.: Praktikumsdatum: Abgabedatum:

Wärmepumpe. Praktikumsanleitung. Inhaltsverzeichnis. Wärmepumpe. Gruppe Nr.: Praktikumsdatum: Abgabedatum: Wärmeume aneitung Wärmeume Grue Nr.: datum: Abgabedatum: Name orname Semeter Matrike-Nr. Unterchrift ortetat Hauttetat Inhatverzeichni Thermodynamiche Grundagen.... Theoretiche Grundagen der Wärmeume....

Mehr

Musteraufgaben für die zentrale Klassenarbeit

Musteraufgaben für die zentrale Klassenarbeit Muteraufgaben für die zentrale Klaenarbeit im ach Grundlagen der Technik im Technichen Berufkolleg I (BKT) Bewertungchlüel für die Korrektur der zentralen Klaenarbeit Endpunktezahl Note 60 7,,0 7,,,,0

Mehr

Mathematik und angewandte Mathematik 1. HAK (1. Jahrgang) 1. AUL (1. Jahrgang) Mathematik und angewandte Mathematik 1. HLW (1.

Mathematik und angewandte Mathematik 1. HAK (1. Jahrgang) 1. AUL (1. Jahrgang) Mathematik und angewandte Mathematik 1. HLW (1. Unterrichtfach Lehrplan HAK: Mathematik und angewandte Mathematik 1. HAK (1. Jahrgang) 1. AUL (1. Jahrgang) Lehrplan HLW: Mathematik und angewandte Mathematik 1. HLW (1. Jahrgang) Lehrplan HTL: Mathematik

Mehr

Belasteter Stahlbetonbalken ( Versuch Nr.4 )

Belasteter Stahlbetonbalken ( Versuch Nr.4 ) Belateter tahletonalken ( Veruch r. ). Grundlagen Ein tahletonalken mit Rechteckquerchnitt der Ameungen B = mm und H = mm wird mittel eine Prüfzylinder, deen Einzelkraft F durch eine I-Träger-Travere in

Mehr

Geometrie-Dossier Der Satz des Pythagoras

Geometrie-Dossier Der Satz des Pythagoras Geometrie-Doier Der Satz de Pythagora Name: Inhalt: Wer war Pythagora? Der Satz de Pythagora mit Beweien Anwendung de Satz von Pythagora in der Ebene Anwendung de Satz von Pythagora im Raum Kontruktion

Mehr

Streulichtmesstechnik

Streulichtmesstechnik Fakultät für Machinenbau Intitut für Lichttechnik und Techniche Optik Fachgebiet Techniche Optik Praktikum Wahlfach Techniche Optik Streulichtmetechnik Gliederung 1. Veruchziel 2. Veruchaufgaben 3. Veruchvorbereitung

Mehr

FOS: Die harmonische Schwingung. Wir beobachten die Bewegung eines Fadenpendels

FOS: Die harmonische Schwingung. Wir beobachten die Bewegung eines Fadenpendels R. Brinkmann http://brinkmann-du.de Seite 1 25.11.213 Bechreibung von Schwingungen. FOS: Die harmoniche Schwingung Veruch: Wir beobachten die Bewegung eine Fadenpendel Lenken wir die Kugel au und laen

Mehr

WIG-Schweißen mit Impulsen im höheren Frequenzbereich

WIG-Schweißen mit Impulsen im höheren Frequenzbereich WIG-Schweißen mit Impulen im höheren Frequenzbereich N. Knopp, Münderbach und R. Killing, Solingen Einleitung Beim WIG-Impulchweißen im khz-bereich wird der Lichtbogen eingechnürt und erhöht da Einbrandverhalten

Mehr

Richtungsweisend für Universalbanken

Richtungsweisend für Universalbanken n Deutche Bundebank beurteilt Steuerung nach dem Kundenfoku Richtungweiend für Univeralbanken Von den Umetzungerfolgen einzelner Sparkaen ermutigt, entchied ich der Vortand der Sparkae Berchtegadener Land

Mehr

Wärmeübertragung durch Bauteile (k-wert) nach ÖNORM EN ISO 6946. Copyright 1999 LandesEnergieVerein, Burggasse 9, 8010 Graz. Autor: G.

Wärmeübertragung durch Bauteile (k-wert) nach ÖNORM EN ISO 6946. Copyright 1999 LandesEnergieVerein, Burggasse 9, 8010 Graz. Autor: G. Wärmeübertragung durch Bauteile (k-wert) nach ÖNOM EN ISO 6946 Copyright 999 LandesEnergieVerein, Burggasse 9, 800 Graz Autor: G. Bittersmann 4.07.000 :3 Seite von 9 Wärmeübertragung durch Bauteile (k-wert)

Mehr

Grundlagenpraktikum Elektrotechnik Teil 1 Versuch 4: Reihenschwingkreis

Grundlagenpraktikum Elektrotechnik Teil 1 Versuch 4: Reihenschwingkreis ehrstuhl ür Elektromagnetische Felder Friedrich-Alexander-Universität Erlangen-Nürnberg Vorstand: Pro. Dr.-Ing. Manred Albach Grundlagenpraktikum Elektrotechnik Teil Versuch 4: eihenschwingkreis Datum:

Mehr

R. Brinkmann Seite f 2 ( x)

R. Brinkmann  Seite f 2 ( x) R. Brinkmnn http://brinkmnn-du.de Seite 08.0.0 Löungen linere Funktionen Teil XII Ergebnie: E Aufgbe f = + ;P( );D = { 0 6} Die Gerde mit der Funktion f () wird von einer zweiten Gerden mit der Funktion

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informatik III Winteremeter 2010/2011 Wolfgang Heene, Patrik Schmittat 8. Aufgabenblatt mit Löungvorchlag 10.01.2011 Hinwei: Der Schnelltet und die Aufgaben ollen in den Übunggruppen bearbeitet

Mehr

Physik LK 11, 2. Klausur Energie, Leistung, Impuls, Rotation Lösung Learjet 60

Physik LK 11, 2. Klausur Energie, Leistung, Impuls, Rotation Lösung Learjet 60 Phyik LK 11,. Klauur Energie, Leitung, Impul, Rotation Löung..1 Name: Die Rechnungen bitte volltändig angeben und die Einheiten mitrechnen. Antwortätze chreiben. Die Reibung it bei allen Aufgaben zu vernachläigen,

Mehr

Praktische Einführung in die Chemie Integriertes Praktikum:

Praktische Einführung in die Chemie Integriertes Praktikum: Praktische Einführung in die Chemie Integriertes Praktikum: Versuch 1-2 (MWG) Massenwirkungsgesetz Versuchs-Datum: 20. Juni 2012 Gruppenummer: 8 Gruppenmitglieder: Domenico Paone Patrick Küssner Michael

Mehr

Institut für Technische Chemie Technische Universität Clausthal

Institut für Technische Chemie Technische Universität Clausthal Institut für Technische Chemie Technische Universität Clausthal Technisch-chemisches Praktikum TCB Versuch: Filtration Einleitung Ein in einer Flüssigkeit suspendierter Feststoff kann durch Filtrieren

Mehr

Sage Office Line Umsatzsteuererhöhung 2007

Sage Office Line Umsatzsteuererhöhung 2007 Sage Office Line Umatzteuererhöhung 2007 Ohne audrückliche chriftliche Erlaubni dürfen weder da Handbuch noch Auzüge darau mit mechanichen oder elektronichen Mitteln, durch Fotokopieren oder auf irgendeine

Mehr

Physikalisches Praktikum am von Uhr. Interferenz und Beugung am Einfach- und Mehrfachspalt

Physikalisches Praktikum am von Uhr. Interferenz und Beugung am Einfach- und Mehrfachspalt www.chlurcher.de.vu Edited by Schlurcher Phyikaliche Praktikum am 09.07.2004 von 3.00 5.00 Uhr Interferenz und Beugung am Einfach- und Mehrfachpalt Verwendete Geräte: Laer mit Netzgerät Luxmeter x y Schreiber

Mehr

banking Das Vorstandsduo der höchst erfolgreichen Kreissparkasse Wiedenbrück bestbanking 191 2012 Foto: bestbanking medien

banking Das Vorstandsduo der höchst erfolgreichen Kreissparkasse Wiedenbrück bestbanking 191 2012 Foto: bestbanking medien Foto: bet medien Da Vortandduo der höcht erfolgreichen Kreiparkae Wiedenbrück 24 bet 191 2012 n Deutliche Ergebniverbeerung mit einer konequenten Aurichtung Strategiche Primärziel: Kundenfoku Die Kreiparkae

Mehr

Physik-Übung * Jahrgangsstufe 8 * Herleitung einer Formel für die Spannenergie

Physik-Übung * Jahrgangsstufe 8 * Herleitung einer Formel für die Spannenergie Phyik-Übung * Jahrgangtufe 8 * Herleitung einer Formel für die Spannenergie A. Hookeche Geetz ie ehnung einer Feder hängt ab von der Kraft F, mit der an der Feder gezogen wird. Unteruche den Zuammenhang

Mehr

CPB Software AG: Der neue Weg zum Kunden

CPB Software AG: Der neue Weg zum Kunden betbanking.at bet banking Da Bankenmagazin ISSN 2077 9410 10. Jahrgang Augut-September 2014 Euro: 8, # 197 # Augut-September 2014 CPB Software AG: Der neue Weg zum Kunden Seite 16 Mobile Betreuung mittel

Mehr

Kennlinie der Vakuum-Diode

Kennlinie der Vakuum-Diode Physikalisches Praktikum für das Hauptfach Physik Versuch 20 Kennlinie der Vakuum-Diode Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9

Mehr

Übertragungsglieder mit Sprung- oder Impulserregung

Übertragungsglieder mit Sprung- oder Impulserregung Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 4 Übertragungsglieder mit Sprung- oder Impulserregung Protokollant: Jens Bernheiden Gruppe: Aufgabe durchgeführt:

Mehr

Sparkassen. Gut für Deutschland. s WEITERLESEN

Sparkassen. Gut für Deutschland. s WEITERLESEN Sparkaen. Gut für Deutchland. WEITERLESEN Leitfaden Mitarbeiterdialog b Vorwort 2 Vorwort Georg Fahrenchon Liebe Mitarbeiterinnen und Mitarbeiter der Sparkaen-Finanzgruppe, e it o weit: Endlich tartet

Mehr

Lineare Funktionen. Arbeitsschritte Tastenfolge Display. Arbeitsschritte Tastenfolge Display. y p TableStart bei x = -10 Schrittweite: 0,5

Lineare Funktionen. Arbeitsschritte Tastenfolge Display. Arbeitsschritte Tastenfolge Display. y p TableStart bei x = -10 Schrittweite: 0,5 Lineare Funktinen Beiiel: y = 2x - 1 1. Eingabe der Funktingleichung Eingabe der Funktingleichung Y 1 eingeben Á ¹À 2. Wertetabelle Eintellungen für die Wertetabelle y TableStart bei x = -10 Schrittweite:

Mehr

Übung 5 : G = Wärmeflussdichte [Watt/m 2 ] c = spezifische Wärmekapazität k = Wärmeleitfähigkeit = *p*c = Wärmediffusität

Übung 5 : G = Wärmeflussdichte [Watt/m 2 ] c = spezifische Wärmekapazität k = Wärmeleitfähigkeit = *p*c = Wärmediffusität Übung 5 : Theorie : In einem Boden finden immer Temperaturausgleichsprozesse statt. Der Wärmestrom läßt sich in eine vertikale und horizontale Komponente einteilen. Wir betrachten hier den Wärmestrom in

Mehr

10 Musterprotokoll. vaph = molare Verdampfungsenthalpie. = Molvolumen des Dampfes V = Molvolumen der Flüssigkeit

10 Musterprotokoll. vaph = molare Verdampfungsenthalpie. = Molvolumen des Dampfes V = Molvolumen der Flüssigkeit 0 Muterrotokoll Muterrotokoll Damfdruck M. Mutermann, Grue heoretiche Grundlagen: Die Gleichung von Clauiu-Claeyron bechreibt den Zuammenhang zwichen dem Gleichgewichtdamfdruck über einer reinen, flüigen

Mehr

Praktikum Messtechnik

Praktikum Messtechnik Praktikum Metechnik Fachhochchule Stuttgart, Hochchule der Medien Winteremeter 2008/2009 Veruchdatum: 10. Dezember 2008 Veruch 2: Glührücktand von Papier Veruch 5: 5/1 Betimmung von Opazität, Tranparenz

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Systematik hoch übersetzender koaxialer Getriebe

TECHNISCHE UNIVERSITÄT MÜNCHEN. Systematik hoch übersetzender koaxialer Getriebe TECHNISCHE UNIVERSITÄT MÜNCHEN Intitut für Machinen- und Fahrzeugtechnik Lehrtuhl für Machinenelemente Sytematik hoch überetzender koaxialer Getriebe Florian Mulzer Volltändiger Abdruck der von der Fakultät

Mehr

Forschungsbericht zum Projekt: Kosten und CO2-Emissionen im Produktionsnetzwerk von Magna Europe

Forschungsbericht zum Projekt: Kosten und CO2-Emissionen im Produktionsnetzwerk von Magna Europe Forchungbericht zum Projekt: Koten und CO2-Emiionen im Produktionnetzwerk von Magna Euroe Sebatian Rötzer, Walter S.A. Schwaiger Bereich Finanzwirtchaft und Controlling Intitut für Managementwienchaften

Mehr

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur David Riemenschneider & Felix Spanier 31. Januar 2001 1 Inhaltsverzeichnis 1 Einleitung 3 2 Auswertung 3 2.1 Darstellung sämtlicher PL-Spektren................

Mehr

Definition. Wichtige Beziehungen. Geometrische Konstruktion

Definition. Wichtige Beziehungen. Geometrische Konstruktion Mathematik/Informatik Gierhardt Goldener Schnitt und Kreiteilung Definition Eine Strecke mit der Länge r oll nach dem Verfahren de Goldenen Schnitt geteilt werden. Dann verhält ich die Geamttreckenlänge

Mehr

f a m t Sahle Wohnen Albert Sahle Uwe Sahle GBR

f a m t Sahle Wohnen Albert Sahle Uwe Sahle GBR J u n r g g f b u a m e r n t i e g H Sahle Wohnen Albert Sahle Uwe Sahle GBR Ihre 1A Adree J u n r g b u a m H Auf den Blick kommt e an Wer da Ziel kennt, kann entcheiden. Wer entcheidet, findet Ruhe.

Mehr

Wertsteigerung Frei Haus. Der Kostenlose Glasfaseranschluss für Hauseigentümer.

Wertsteigerung Frei Haus. Der Kostenlose Glasfaseranschluss für Hauseigentümer. Wertteigerung Frei Hau. Der Kotenloe Glafaeranchlu für Haueigentümer. Darüber freuen ich nicht nur Ihre Mieter. 40 Millimeter, 1.000 Vorteile. Im Bereich der Kommunikation it Glafaer die Zukunft. 12.000

Mehr

Schnell und kosteneffizient. ELO E-Mail-Management. Die richtige Entscheidung für heute und morgen

Schnell und kosteneffizient. ELO E-Mail-Management. Die richtige Entscheidung für heute und morgen E-Mail-Management E-Mail-Lifecycle-Management al Bai effizienter Gechäftprozee Schnell und koteneffizient Die richtige Entcheidung für heute und morgen Die Enterprie-Content-Management-Löungen (ECM) der

Mehr

T6 - Verbrennungswärmen

T6 - Verbrennungswärmen T6 - Verbrennungswärmen 1. Problemstellung: Die molaren Standardbildungs- und Standardverbrennungsenthalpien und V ür n-exan und Cyclohexan, zweier verwandter Strukturen, sind zu bestimmen. Die unterschiedlichen

Mehr

Praktikum Elektrische Maschinen und Antriebe. Versuch: Asynchronmotor - Schleifringläufer

Praktikum Elektrische Maschinen und Antriebe. Versuch: Asynchronmotor - Schleifringläufer Pratium Eletriche achinen und Antriebe Veruch: Aynchronmotor - Schleifringläufer Gruppe Gruppe 3 ame Veruchdurchführung am 11.1.6 Abgabe am 16.1.6 Blattzahl (inl. Decblatt): 17 Veruch: Aynchronmotor -

Mehr

Mechanik Kinematik des Punktes

Mechanik Kinematik des Punktes Mechanik Kineatik de Punkte In der Kineatik werden die Bewegunggeetze von Körpern bechrieben. Die gechieht durch die Angabe der Ortkoordinaten und deren Zeitabhängigkeit. In der Kineatik de Punkte wird

Mehr