Modul Diskrete Mathematik WiSe 2011/12
|
|
- Hannah Cornelia Schäfer
- vor 5 Jahren
- Abrufe
Transkript
1 1 Modul Diskrete Mathematik WiSe 2011/12 Ergänzungsskript zum Kapitel 4.2. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung besuchen (also nicht nur körperlich anwesend sind, und es wurde auch nur für diesen Hörerkreis geschrieben. Es erhebt keinen Anspruch auf Vollständigkeit, Fehler sind zwar ärgerlich, aber leider nicht auszuschließen! 4 Kryptographie 2 Public Key Kryptographie Wir stellen zunächst eine Methode vor, die in der Schule behandelt werden kann, aber nur für Nichtmathematiker nicht leicht zu knacken ist. Beispiel: Eine Nachricht m {1, 2,..., 342} an E wird mit Hilfe des offiziell bekannten Zahlenpaars (n = 343, e = 109 folgendermaßen verschlüsselt: Die Rechnung ergibt den Geheimtext c = 50. c := (e m mod n = (109 m mod 343 Wie entschlüsselt der Empfänger E diese Nachricht? Er besitzt den geheimen, nur ihm bekannten Schlüssel d = 107 und rechnet einfach m = (d c mod n = ( mod 343 = 205 Wir machen die Probe: Die Nachricht m = 205 wird in der Tat zu c = ( mod 343 = 50 verschlüsselt. Zur Anwendung dieses Algorithmus hat sich E zwei Zahlen e, n N mit ggt (e, n = 1 ausgesucht. Die Verschlüsselung geschieht durch den öffentlichen Algorithmus f(x := (e x mod n. Damit verschiedene Nachrichten unterschiedlich chiffriert werden, muss f injektiv sein. Dies ist durch die Voraussetzung der Teilerfremdheit von e und n gewährleistet. Der von E öffentlich bekannt gemachte Schlüssel besteht aus dem Zahlenpaar (n, e. (Wie kann ein Angreifer A, der zwar c, n und e, aber nicht d kennt, an die geheime Originalnachricht m gelangen? Um m aus 50 = (109 m mod 343 bestimmen zu können, muss er ein α N finden mit 109 m = α m = α {1, 2,..., 342} Selbst bei den relativ kleinen Zahlen im Beispiel ist dies eine ziemlich langwierige Angelegenheit. Wenn ein Angreifer A allerdings in der Lage ist, aus dem öffentlichen Schlüssel (n, e den geheimen Schlüssel d zu berechnen, kann er den Code knacken. Wie hängt d mit dem öffentlichen Zahlenpaar (n, e zusammen? Kann man eventuell auf einfache Weise aus den bekannten Zahlen das unbekannte d herleiten?
2 2 4 KRYPTOGRAPHIE Wir halten fest: Verschlüsseln bedeutet c = (e m mod n me = αn + c c n me Entschlüsseln bedeutet m = (c d mod n cd = βn + m m n cd m n (med 1 n ed. Fazit: Man kann entschlüsseln, falls man d Z kennt mit ed n 1. Als nächstes geben wir ein Verfahren zur Berechnung von d an. Hierzu benötigt man den euklidischen Algorithmus und das Lemma von Bézout. Satz (Lemma von Bézout, siehe auch Beutelspacher 5.3.3, Seite 69 Seien a, b Z mit ggt (a, b = t a, b Z mit a a + b b = t. Beweisidee: Berechne zunächst ggt (a, b = t mit Hilfe des euklidischen Algorithmus und bestimme dann rückwärts a und b. Wir verzichten auf die Durchführung des Beweises und machen uns seine Vorgehensweise lediglich an unserem Zahlenbeispiel klar. Beispiel: Sei a = 343 und b = 109. Der euklidische Algorithmus liefert 343 = = = = Berechnung von a und b : 1 = = 13 4 ( = = ( = = ( = = a a + b b Aus der letzten Gleichung folgt = Fazit: Zur Anwendung dieses Algorithmus besorge man sich zwei nicht zu kleine teilerfremde Zahlen n und e, bestimme d wie oben und hoffe, dass keiner der Beteiligten das Lemma von Bézout kennt. Ein sichereres Verfahren, der sogenannte RSA Algorithmus, benutzt statt m (me mod n die Rechnung m m e mod n. Um seine Arbeitsweise zu verstehen, beginnen wir mit einigen vorbereitenden Aussagen. Def Die Abbildung ϕ : N N mit ϕ(n := {1 k n ggt (k, n = 1} heißt Eulersche ϕ Funktion. ϕ(n zählt alle natürliche Zahlen kleiner als n, die teilerfremd zu n sind. Beispiel: ϕ(1 = 1 = ϕ(2, ϕ(10 = {1, 3, 7, 9} = 4, ϕ(243 = 162. Einige Eigenschaften dieser Funktion fasst der nächste Satz zusammen.
3 2 Public Key Kryptographie 3 Satz Seien p und q verschiedene Primzahlen. Dann gelten (1 ϕ(p = p 1 (2 ϕ(p 2 = p(p 1 (3 ϕ(pq = (p 1(q 1 Beweis (1 ϕ(p = {1, 2,..., p 1} = p 1 (2 Sämtliche Teiler von p 2 sind außer 1 die Zahlen p, 2p, 3p,..., p p. Damit ist ϕ(p 2 = p 2 p = p(p 1. (3 Für jedes x {1, 2,..., pq} mit ggt (x, pq = a 1 gilt a x und a pq. Weil p und q Primzahlen sind, gilt a pq a p a q a {p, q}, also ist x ein Vielfaches von p oder von q, d.h., x {p, 2p,..., qp, q, 2q,... (p 1q}, einer Menge mit q + p 1 vielen Elementen. ϕ(pq = pq (q + p 1 = pq q p + 1 = (p 1(q 1 = ϕ(pϕ(q. Satz (Kleiner Satz von Fermat Für jede Primzahl p und jedes m N gilt m p mod p = m mod p bzw. p (m p m. Beweis: Wir führen eine Induktion nach m durch, wobei der Induktionsanfang m = 1 trivialerweise gilt. Induktionsannahme: Für ein m N sei m p = α p + m. Induktionsbehauptung: Für m + 1 gilt (m + 1 p = β p + (m + 1. (m + 1 p = p =0 ( p m p = m p + p 1 =1 ( p m p + 1 Wir untersuchen die Binomialkoeffizienten ( p für {1,..., p 1}. Beh.: p ( p Bew.: ( p = p! =: n p! = n! (p!!(p! Beweis: Es ist Weil p eine Primzahl ist, teilt p weder! noch (p!, also gilt p n = ( p für jedes dieser, und damit ist p 1 =1 ( p m p ein Vielfaches von p. Insgesamt folgt mit Hilfe der Induktionsannahme (m + 1 p = m p + x p + 1 = α p + m + x p + 1 = (α + x p + (m + 1. Der nächste Hilfssatz beschäftigt sich mit Modulorechnung. Hilfssatz Für alle m, r, n N gilt m r mod n = (m mod n r mod n Beweis: Wir setzen x = m mod n, es gilt also m = αn + x mit α N. Es folgt m r = (αn + x r = r ( r =0 (αn r x = ( n + x r (In r 1 =0 wurde n ausgeklammert. m r mod n = (αn + x r mod n = [( n + x r ] mod n = x r mod n = (m mod n r mod n Analog gelten (a b mod n = ((a mod n (b mod n mod n, (a±b mod n = ((a mod n±(b mod n mod n. Ausführliches Beispiel: 7 10 mod 11 = (7 2 5 mod 11 = (7 2 mod 11 5 mod 11 = (49 mod 11 5 mod 11 = 5 5 mod 11 = ( mod 11 = ((5 2 mod 11 (5 3 mod 11 mod 11 = ((25 mod 11 (125 mod 11 mod 11 = (3 4 mod 11 = 1
4 4 4 KRYPTOGRAPHIE Wir beschäftigen uns mit Spezialfällen des kleinen Fermat. Korollar 1 Sei p eine Primzahl und 1 m < p. Dann gilt m p 1 p 1. Beweis: Der kleine Fermat besagt p (m p m mit m p m = m(m p 1 1. Es gilt 1 m < p p m p ( m p 1 1 m p 1 1 = α p m p 1 = α p + 1 m p 1 p 1. Beispiel: = , also = α Korollar 2 Seien m, p wie oben, k N. Dann gilt m k(p 1 p 1. Beweis: Wir benutzen zuerst den Hilfssatz und dann Korollar 1: m k(p 1 mod p = ( m p 1 mod p k mod p = 1 k mod p = 1 Beispiel: 6 18 mod 7 = 6 3(7 1 mod 7 = 1 Ab jetzt seien p, q verschiedene Primzahlen. Korollar 3 Seien m, k N mit ggt (m, p = ggt (m, q = 1. Dann gilt m k(p 1(q 1 x 1 für x {p, q}. Beweis: Für x = p wenden wir Korollar 2 auf k = k(q 1 an, für x = q analog auf k = k(p 1. Beispiel: Für p = 3, q = 7, m = 16, k = 4 gilt ( = mod 7 = 1 Korollar 4 Seien p, q, m, k wie in Korollar 3. Dann gilt m k(p 1(q 1 pq 1. Beweis: Nach Korollar 3 ist m k(p 1(q 1 = α p + 1 = β q + 1 αp = βq q α αp = (α qp = α pq m k(p 1(q 1 = α pq + 1 Beispiel: mod 21 = 1 Im nächsten Satz kommt die Eulersche ϕ Funktion vor, wir erinnern uns an ϕ(pq = (p 1(q 1, falls p und q verschiedene Primzahlen sind. Satz (Satz von Euler Seien p, q verschiedene Primzahlen, k N, m {1, 2,..., pq 1}, n = pq. Dann gilt m kϕ(n+1 n m Beweis: 1. Fall: Sei ggt (m, p = ggt (m, q = 1. Nach Korollar 4 gilt m k(p 1(q 1 n 1, hieraus folgt unmittelbar m kϕ(n+1 n m. 2. Fall: Sei obda ggt (m, p > 1. Weil p eine Primzahl ist, bedeutet dies p m. Ferner ist ggt (m, q = 1, sonst folgt aus q m die Ausssage m > pq, ein Widerspruch zur Voraussetzung über die Größenordnung von m. Wir wenden Korollar 2 auf m, k = k(p 1 und ggt (m, q = 1 an: ( m kϕ(n = m k (q 1 q 1 q ( m kϕ(n 1 (pq = n ( m (m kϕ(n 1 = m kϕ(n+1 m.
5 2 Public Key Kryptographie 5 Beispiel: Wir berechnen 2 49 mod 65 auf zwei verschiedene Arten: a Aus (2 6 = 64 mod 65 = 1 folgt (2 49 = ( ( = 2 b Wir nutzen aus, dass 65 = 5 13 ein Produkt zweier Primzahlen ist: 2 49 = = = 2 (5 1 ( =65 2. Jetzt sind wir bereit für den RSA Algorithmus: Wähle (geheim sehr große Primzahlen p und q Berechne n = pq und ϕ(n = (p 1(q 1 (und vertraue darauf, dass eine Faktorisierung von n wegen der Größe der Primzahlen nicht möglich ist Wähle e N mit ggt (e, ϕ(n = 1 (beispielsweise geeignete Primzahl Berechne d N mit ed mod ϕ(n = 1 (hier hilft das Lemma von Bézout Veröffentliche (n, e (und den Algorithmus m c = m e mod n Halte geheim d (und natürlich p, q und ϕ(n Behauptung: Für m {1,..., n 1} und c = (m e mod n gilt c d mod n = m. Beweis: Es ist c d mod n = (m e mod n d mod n = m ed mod n mit ed = kϕ(n + 1, also c d mod n = m kϕ(n+1 mod n = m. Der RSA Algorithmus ist sicher, solange n nicht faktorisiert werden kann, weil dann ϕ(n nicht bestimmt werden kann, die Kenntnis von ϕ(n aber zur Berechnung des geheimen Schlüssels d benötigt wird. Beispiel: p = 3, q = 11 n = 33, ϕ(n = 2 10 = 20, ferner sei e = 13. Wir bestimmen d : 20 = , 13 = , 7 = Damit ist 1 = 7 1( = = 2( = Unsere Rechnung hat d = 3 ergeben. Um ein positive Zahl zu erhalten, benutzen wir einen einfachen Trick: 1 = = = Damit ist d = 17. Wir veröffentlichen (n = 33, e = 13 und halten geheim d = 17. Die Verschlüsselung von m = 2 ergibt c = 2 13 mod 33 = mod 33 = [ (2 5 mod ] mod 33 = [ ( ] mod 33 = 8 Wir entschlüsseln c = 8: m = 8 17 mod 33 = ( mod 33 = 2 51 mod 33 = ( mod 33 (( = 2 2 (3 1(11 1 mod 33 (2 11 mod 33 mod 33 = 1 (( 2 10 mod 33 (2 mod 33 ( (2 mod 33 = 5 mod 33 2 mod 33 2 mod 33 = ( = 2
11. Das RSA Verfahren und andere Verfahren
Chr.Nelius: Kryptographie (SS 2011) 31 11. Das RSA Verfahren und andere Verfahren Eine konkrete Realisierung eines Public Key Kryptosystems ist das sog. RSA Verfahren, das im Jahre 1978 von den drei Wissenschaftlern
Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer
Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der
5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)
Technische Universität München Zentrum Mathematik PD Dr. hristian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Aufgabe 5.1: In einer Implementierung
Primzahlen und RSA-Verschlüsselung
Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also
Lenstras Algorithmus für Faktorisierung
Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit
Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009
Das RSA-Verfahren Armin Litzel Proseminar Kryptographische Protokolle SS 2009 1 Einleitung RSA steht für die drei Namen Ronald L. Rivest, Adi Shamir und Leonard Adleman und bezeichnet ein von diesen Personen
Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009)
Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009) Probleme unseres Alltags E-Mails lesen: Niemand außer mir soll meine Mails lesen! Geld abheben mit der EC-Karte: Niemand außer mir soll
RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008
RSA-Verschlüsselung von Johannes Becker Gießen 2006/2008 Zusammenfassung Es wird gezeigt, wieso das nach Ronald L. Rivest, Adi Shamir und Leonard Adleman genannte RSA-Krptosstem funktioniert, das mittlerweile
Asymmetrische. Verschlüsselungsverfahren. erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau
Asymmetrische Verschlü erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau Gliederung 1) Prinzip der asymmetrischen Verschlü 2) Vergleich mit den symmetrischen Verschlü (Vor- und Nachteile)
1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:
Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:
10. Kryptographie. Was ist Kryptographie?
Chr.Nelius: Zahlentheorie (SoSe 2015) 39 10. Kryptographie Was ist Kryptographie? Die Kryptographie handelt von der Verschlüsselung (Chiffrierung) von Nachrichten zum Zwecke der Geheimhaltung und von dem
a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:
Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend
Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema
Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x
Elliptische Kurven in der Kryptographie
Elliptische Kurven in der Kryptographie Projekttage Mathematik 2002 Universität Würzburg Mathematisches Institut Elliptische Kurven in der Kryptographie p.1/9 Übersicht Kryptographie Elliptische Kurven
Verschlüsselung. Chiffrat. Eve
Das RSA Verfahren Verschlüsselung m Chiffrat m k k Eve? Verschlüsselung m Chiffrat m k k Eve? Aber wie verteilt man die Schlüssel? Die Mafia-Methode Sender Empfänger Der Sender verwendet keine Verschlüsselung
RSA-Verschlüsselung. Verfahren zur Erzeugung der beiden Schlüssel:
RSA-Verschlüsselung Das RSA-Verfahren ist ein asymmetrisches Verschlüsselungsverfahren, das nach seinen Erfindern Ronald Linn Rivest, Adi Shamir und Leonard Adlemann benannt ist. RSA verwendet ein Schlüsselpaar
Über das Hüten von Geheimnissen
Über das Hüten von Geheimnissen Gabor Wiese Tag der Mathematik, 14. Juni 2008 Institut für Experimentelle Mathematik Universität Duisburg-Essen Über das Hüten von Geheimnissen p.1/14 Rechnen mit Rest Seien
Analysis I für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe 2015/16 Prof. Dr. M. Hinze Dr. P. Kiani Analysis I für Studierende der Ingenieurwissenschaften Lösungshinweise zu Blatt 2 Aufgabe 1: (12 Punkte) a) Beweisen
Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.
Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren
RSA Verfahren. Kapitel 7 p. 103
RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen
Zeichen bei Zahlen entschlüsseln
Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren
Computeralgebra in der Lehre am Beispiel Kryptografie
Kryptografie Grundlagen RSA KASH Computeralgebra in der Lehre am Beispiel Kryptografie Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA KASH Überblick Kryptografie mit
Informationsblatt Induktionsbeweis
Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln
1 Kryptosysteme 1 KRYPTOSYSTEME. Definition 1.1 Eine Kryptosystem (P(A), C(B), K, E, D) besteht aus
1 RYPTOSYSTEME 1 ryptosysteme Definition 1.1 Eine ryptosystem (P(A), C(B),, E, D) besteht aus einer Menge P von lartexten (plaintext) über einem lartextalphabet A, einer Menge C von Geheimtexten (ciphertext)
Verschlüsselung. Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern. 12.10.2011 Fabian Simon Bfit09
Verschlüsselung Fabian Simon BBS Südliche Weinstraße Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern 12.10.2011 Fabian Simon Bfit09 Inhaltsverzeichnis 1 Warum verschlüsselt man?...3
Zur Sicherheit von RSA
Zur Sicherheit von RSA Sebastian Petersen 19. Dezember 2011 RSA Schlüsselerzeugung Der Empfänger (E) wählt große Primzahlen p und q. E berechnet N := pq und ϕ := (p 1)(q 1). E wählt e teilerfremd zu ϕ.
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
Einfache kryptographische Verfahren
Einfache kryptographische Verfahren Prof. Dr. Hagen Knaf Studiengang Angewandte Mathematik 26. April 2015 c = a b + a b + + a b 1 11 1 12 2 1n c = a b + a b + + a b 2 21 1 22 2 2n c = a b + a b + + a b
7 Rechnen mit Polynomen
7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn
Also kann nur A ist roter Südler und B ist grüner Nordler gelten.
Aufgabe 1.1: (4 Punkte) Der Planet Og wird von zwei verschiedenen Rassen bewohnt - dem grünen und dem roten Volk. Desweiteren sind die Leute, die auf der nördlichen Halbkugel geboren wurden von denen auf
Der Zwei-Quadrate-Satz von Fermat
Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat
Kryptographie mit elliptischen Kurven
Kryptographie mit elliptischen Kurven Gabor Wiese Universität Regensburg Kryptographie mit elliptischen Kurven p. 1 Problemstellung Kryptographie mit elliptischen Kurven p. 2 Problemstellung Caesar Kryptographie
Wir gehen aus von euklidischen Anschauungsraum bzw. von der euklidischen Zeichenebene. Parallele Geraden schneiden einander nicht.
2 Ein wenig projektive Geometrie 2.1 Fernpunkte 2.1.1 Projektive Einführung von Fernpunkten Wir gehen aus von euklidischen Anschauungsraum bzw. von der euklidischen Zeichenebene. Parallele Geraden schneiden
8. Quadratische Reste. Reziprozitätsgesetz
O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung
Erste Vorlesung Kryptographie
Erste Vorlesung Kryptographie Andre Chatzistamatiou October 14, 2013 Anwendungen der Kryptographie: geheime Datenübertragung Authentifizierung (für uns = Authentisierung) Daten Authentifizierung/Integritätsprüfung
5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56
5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten
Kryptographie Reine Mathematik in den Geheimdiensten
Kryptographie Reine Mathematik in den Geheimdiensten Priska Jahnke 10. Juli 2006 Kryptographie Reine Mathematik in den Geheimdiensten Kryptographie (Kryptologie) = Lehre von den Geheimschriften Kaufleute,
10.6 Authentizität. Geheimhaltung: nur der Empfänger kann die Nachricht lesen
10.6 Authentizität Zur Erinnerung: Geheimhaltung: nur der Empfänger kann die Nachricht lesen Integrität: Nachricht erreicht den Empfänger so, wie sie abgeschickt wurde Authentizität: es ist sichergestellt,
Die Post hat eine Umfrage gemacht
Die Post hat eine Umfrage gemacht Bei der Umfrage ging es um das Thema: Inklusion Die Post hat Menschen mit Behinderung und Menschen ohne Behinderung gefragt: Wie zufrieden sie in dieser Gesellschaft sind.
Was meinen die Leute eigentlich mit: Grexit?
Was meinen die Leute eigentlich mit: Grexit? Grexit sind eigentlich 2 Wörter. 1. Griechenland 2. Exit Exit ist ein englisches Wort. Es bedeutet: Ausgang. Aber was haben diese 2 Sachen mit-einander zu tun?
10. Public-Key Kryptographie
Stefan Lucks 10. PK-Krypto 274 orlesung Kryptographie (SS06) 10. Public-Key Kryptographie Analyse der Sicherheit von PK Kryptosystemen: Angreifer kennt öffentlichen Schlüssel Chosen Plaintext Angriffe
Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur
Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit Thema: Asymmetrische Verschlüsselung, Digitale Signatur Vortragender: Rudi Pfister Überblick: Asymmetrische Verschlüsselungsverfahren - Prinzip
Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens
Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv
1 topologisches Sortieren
Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung
ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN
ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,
GnuPG für Mail Mac OS X 10.4 und 10.5
GnuPG für Mail Mac OS X 10.4 und 10.5 6. Nachrichten verschlüsseln und entschlüsseln mit Mail http://verbraucher-sicher-online.de/ 22.10.2009 Sie haben GPG installiert. Sie haben ein Schlüsselpaar und
Leichte-Sprache-Bilder
Leichte-Sprache-Bilder Reinhild Kassing Information - So geht es 1. Bilder gucken 2. anmelden für Probe-Bilder 3. Bilder bestellen 4. Rechnung bezahlen 5. Bilder runterladen 6. neue Bilder vorschlagen
Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.
040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl
Mathematik und Logik
Mathematik und Logik 6. Übungsaufgaben 2006-01-24, Lösung 1. Berechnen Sie für das Konto 204938716 bei der Bank mit der Bankleitzahl 54000 den IBAN. Das Verfahren ist z.b. auf http:// de.wikipedia.org/wiki/international_bank_account_number
Lineare Gleichungssysteme
Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen
Lösungshinweise zur Einsendearbeit 2 SS 2011
Lösungshinweise zur Einsendearbeit 2 zum Kurs 41500, Finanzwirtschaft: Grundlagen, SS2011 1 Lösungshinweise zur Einsendearbeit 2 SS 2011 Finanzwirtschaft: Grundlagen, Kurs 41500 Aufgabe Finanzierungsbeziehungen
0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )
Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,
RSA Verfahren. Ghazwan Al Hayek Hochschule für Technik Stuttgart. 2. November 2008
RSA Verfahren Ghazwan Al Hayek Hochschule für Technik Stuttgart 2. November 2008 1 Inhaltsverzeichnis 1. Einleitung 1.1. Übersicht 1.2. Private-Key-Verfahren 1.3. Public-Key-Verfahren 1.4. Vor/ Nachteile
Mathematischer Vorbereitungskurs für Ökonomen
Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen
Grundbegriffe der Informatik
Grundbegriffe der Informatik Kapitel 6: Induktives Vorgehen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische
Kryptographische Verfahren auf Basis des Diskreten Logarithmus
Kryptographische Verfahren auf Basis des Diskreten Logarithmus -Vorlesung Public-Key-Kryptographie SS2010- Sascha Grau ITI, TU Ilmenau, Germany Seite 1 / 18 Unser Fahrplan heute 1 Der Diskrete Logarithmus
Digitale Signaturen. Sven Tabbert
Digitale Signaturen Sven Tabbert Inhalt: Digitale Signaturen 1. Einleitung 2. Erzeugung Digitaler Signaturen 3. Signaturen und Einweg Hashfunktionen 4. Digital Signature Algorithmus 5. Zusammenfassung
27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln
27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln Autor Dirk Bongartz, RWTH Aachen Walter Unger, RWTH Aachen Wer wollte nicht schon mal eine Geheimnachricht übermitteln?
Anleitung Thunderbird Email Verschlu sselung
Anleitung Thunderbird Email Verschlu sselung Christoph Weinandt, Darmstadt Vorbemerkung Diese Anleitung beschreibt die Einrichtung des AddOn s Enigmail für den Mailclient Thunderbird. Diese Anleitung gilt
Professionelle Seminare im Bereich MS-Office
Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion
Sicherer Datenaustausch mit Sticky Password 8
JAKOBSOFTWARE INFO Sicherer Datenaustausch mit Sticky Password 8 Mit Sticky Password lassen sich vertrauliche Daten wie Zugangspasswörter sicher austauschen. Dazu bietet Sticky Password die Funktion Sichere
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der
WS 2013/14. Diskrete Strukturen
WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314
Kapitel 3: Etwas Informationstheorie
Stefan Lucks 3: Informationstheorie 28 orlesung Kryptographie (SS06) Kapitel 3: Etwas Informationstheorie Komplexitätstheoretische Sicherheit: Der schnellste Algorithmus, K zu knacken erfordert mindestens
Probabilistische Primzahlensuche. Marco Berger
Probabilistische Primzahlensuche Marco Berger April 2015 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einleitung 4 1.1 Definition Primzahl................................ 4 1.2 Primzahltest...................................
vorab noch ein paar allgemeine informationen zur de-mail verschlüsselung:
Kurzanleitung De-Mail Verschlüsselung so nutzen sie die verschlüsselung von de-mail in vier schritten Schritt 1: Browser-Erweiterung installieren Schritt 2: Schlüsselpaar erstellen Schritt 3: Schlüsselaustausch
Simplex-Umformung für Dummies
Simplex-Umformung für Dummies Enthält die Zielfunktion einen negativen Koeffizienten? NEIN Optimale Lösung bereits gefunden JA Finde die Optimale Lösung mit dem Simplex-Verfahren! Wähle die Spalte mit
Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)
Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler
50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte
50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien
Musterlösungen zur Linearen Algebra II Blatt 5
Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische
Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.
Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33
Grundlagen der Verschlüsselung und Authentifizierung (2)
Grundlagen der Verschlüsselung und Authentifizierung (2) Benjamin Klink Friedrich-Alexander Universität Erlangen-Nürnberg Benjamin.Klink@informatik.stud.uni-erlangen.de Proseminar Konzepte von Betriebssystem-Komponenten
Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz
Tobias Kraushaar Kaiserstr. 178 44143 Dortmund Matr.- Nr.: 122964 Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz 1. EINLEITUNG... 2 2. HAUPTTEIL... 3 2.1. Der
Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.
6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente
Kryptographie in der Moderne
Kryptographie in der Moderne Sicherheit im Internet Kryptographie in der Moderne Kryptographie ist die Lehre der Datensicherheit im Allgemeinen Verschlüsselung nur noch kleiner Bestandteil der Kryptographie
! " # $ " % & Nicki Wruck worldwidewruck 08.02.2006
!"# $ " %& Nicki Wruck worldwidewruck 08.02.2006 Wer kennt die Problematik nicht? Die.pst Datei von Outlook wird unübersichtlich groß, das Starten und Beenden dauert immer länger. Hat man dann noch die.pst
Algorithmische Kryptographie
Algorithmische Kryptographie Walter Unger Lehrstuhl für Informatik I 16. Februar 2007 Quantenkryptographie 1 Einleitung Grundlagen aus der Physik 2 Datenübertragung 1. Idee 2. Idee Nochmal Physik 3 Sichere
Das sogenannte Beamen ist auch in EEP möglich ohne das Zusatzprogramm Beamer. Zwar etwas umständlicher aber es funktioniert
Beamen in EEP Das sogenannte Beamen ist auch in EEP möglich ohne das Zusatzprogramm Beamer. Zwar etwas umständlicher aber es funktioniert Zuerst musst du dir 2 Programme besorgen und zwar: Albert, das
Verschlüsseln Sie Ihre Dateien lückenlos Verwenden Sie TrueCrypt, um Ihre Daten zu schützen.
HACK #39 Hack Verschlüsseln Sie Ihre Dateien lückenlos Verwenden Sie TrueCrypt, um Ihre Daten zu schützen.»verschlüsseln Sie Ihren Temp-Ordner«[Hack #33] hat Ihnen gezeigt, wie Sie Ihre Dateien mithilfe
Technische Universität München SS 2006 Fakultät für Informatik 12. Oktober 2006 Prof. Dr. A. Knoll. Aufgabe 1 Transferfragen (Lösungsvorschlag)
Technische Universität München SS 2006 Fakultät für Informatik 12. Oktober 2006 Prof. Dr. A. Knoll Lösungsvorschläge der Klausur zu Einführung in die Informatik II Aufgabe 1 Transferfragen (Lösungsvorschlag)
Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?
Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V
Vorkurs Mathematik Übungen zu Polynomgleichungen
Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.
Seminar zur Kryptologie
Seminar zur Kryptologie Practical Key Recovery Schemes Basierend auf einer Veröffentlichung von Sung-Ming Yen Torsten Behnke Technische Universität Braunschweig t.behnke@tu-bs.de Einführung Einführung
3.5 Kryptographie - eine Anwendung der Kongruenzrechnung
1 3.5 Kryptographie - eine Anwendung der Kongruenzrechnung Das Wort Kryptographie leitet sich aus der griechischen Sprache ab, nämlich aus den beiden Worten κρυπτ oς(kryptos)=versteckt, geheim und γραϕɛιν(grafein)=schreiben.
Was können Schüler anhand von Primzahltests über Mathematik lernen?
Was können Schüler anhand von Primzahltests über Mathematik lernen? Innermathematisches Vernetzen von Zahlentheorie und Wahrscheinlichkeitsrechnung Katharina Klembalski Humboldt-Universität Berlin 20.
Die Invaliden-Versicherung ändert sich
Die Invaliden-Versicherung ändert sich 1 Erklärung Die Invaliden-Versicherung ist für invalide Personen. Invalid bedeutet: Eine Person kann einige Sachen nicht machen. Wegen einer Krankheit. Wegen einem
Informatik für Ökonomen II HS 09
Informatik für Ökonomen II HS 09 Übung 5 Ausgabe: 03. Dezember 2009 Abgabe: 10. Dezember 2009 Die Lösungen zu den Aufgabe sind direkt auf das Blatt zu schreiben. Bitte verwenden Sie keinen Bleistift und
Thunderbird Portable + GPG/Enigmail
Thunderbird Portable + GPG/Enigmail Bedienungsanleitung für die Programmversion 17.0.2 Kann heruntergeladen werden unter https://we.riseup.net/assets/125110/versions/1/thunderbirdportablegpg17.0.2.zip
Nachrichten- Verschlüsselung Mit S/MIME
Nachrichten- Verschlüsselung Mit S/MIME Höma, watt is S/MIME?! S/MIME ist eine Methode zum signieren und verschlüsseln von Nachrichten, ähnlich wie das in der Öffentlichkeit vielleicht bekanntere PGP oder
Sicherer Datenaustausch mit EurOwiG AG
Sicherer Datenaustausch mit EurOwiG AG Inhalt AxCrypt... 2 Verschlüsselung mit Passwort... 2 Verschlüsseln mit Schlüsseldatei... 2 Entschlüsselung mit Passwort... 4 Entschlüsseln mit Schlüsseldatei...
Nationale Initiative für Internet- und Informations-Sicherheit
Sichere Kommunikation im Zeitalter von PRISM? Nationale Initiative für Internet- und Informations-Sicherheit Mathias Gärtner, NIFIS e.v. zweiter Vorstand Öffentlich bestellter und vereidigter Sachverständiger
Eine Logikschaltung zur Addition zweier Zahlen
Eine Logikschaltung zur Addition zweier Zahlen Grundlegender Ansatz für die Umsetzung arithmetischer Operationen als elektronische Schaltung ist die Darstellung von Zahlen im Binärsystem. Eine Logikschaltung
Grundlagen der Theoretischen Informatik, SoSe 2008
1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)
Welches Problem denn? Das Heiratsproblem. Formale Beschreibung. Paarungen
Das Heiratsproblem Welches Problem denn? Eine Heirat: ein Problem. Mehrere Heiraten: mehrere Probleme. Viele Heiraten: viele Probleme? Martin Schönhacker (P.S.: Heiraten muss kein Problem sein!) 1 2 Formale
Datenbank-Verschlüsselung mit DbDefence und Webanwendungen.
Datenbank-Verschlüsselung mit DbDefence und Webanwendungen. In diesem Artikel werden wir Ihnen zeigen, wie Sie eine Datenbank verschlüsseln können, um den Zugriff einzuschränken, aber trotzdem noch eine
Effizienten MAC-Konstruktion aus der Praxis: NMAC Idee von NMAC:
Effizienten MAC-Konstruktion aus der Praxis: NMAC Idee von NMAC: Hashe m {0, 1} auf einen Hashwert in {0, 1} n. Verwende Π MAC3 für Nachrichten fixer Länge auf dem Hashwert. Wir konstruieren Π MAC3 mittels
Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt
Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung
Import des persönlichen Zertifikats in Outlook Express
Import des persönlichen Zertifikats in Outlook Express 1.Installation des persönlichen Zertifikats 1.1 Voraussetzungen Damit Sie das persönliche Zertifikat auf Ihrem PC installieren können, benötigen
Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen
4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.