Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download ""

Transkript

1 ÃÔØÐ ÒÓÑÑÒ ¹ ÙÒ ËÙ ØØÙØÓÒ «Ø ËÐÙØÞݹÐÙÒ ÙÒ ËÐÙØ ÞµÝ ¼¹µ Ö ÏÐ ÎÓÖÞÒ Òººº Òкºº Þ Ð ß Ü Ü Ô Ô ßÞÐ ÃÖÙÞÔÖ «Ø ÞÛº ÒÒØ ÑÐ ĐÒÖÙÒÒ Þ Ð ß Ü Ü Ô Ô ÈÖ ĐÒÖÙÒ Ô ¼µØÞÛ «Ø º ĐÒÖÙÒ Ö ÖÐØÚÒ ÈÖ ËÙ ØØÙØÓÒ «Ø ¾º ĐÒÖÙÒ Ö ÃÙÖØ ÒÓÑÑÒ «Ø Ë Þºº Ô ¼º º ÙØ ÛÖ Ñ ÎÖÐ ÞÙ ÙØ ÐÐÖº Ö ÃÓÒ ÙÑÒØ ÛÖ ÙØ ÙÖ ÙØ Ù ØØÙÖÒº ¾º ËÒ ÃÙÖØ ÒÑÑØ ÞÙº ÒÒ ÆÓÑÒÐÒÓÑÑÒ ÒÒ Ö ØÞØ ÑÖ ÚÓÒ ÙØ ÓÖ µ Ð ØÒº Á Á ÓÐÖÙÒ Ö Ò «Ø Ð Ó ÞÙÖ Ø ØÛ ĐÒÖÙÒ ÈÖ ÚÖĐÐØÒ ÓÒ ØÒØÖ ÃÙÖØ ËÙ ØØÙØÓÒ «Øµ Ò ÒÒ ĐÒÖÙÒ Ö ÃÙÖØ ÓÒ ØÒØÒ ÖÐØÚÒ ÈÖ Ò ÒÓÑÑÒ «Øµ

2 ÅĐÓÐ ØÙ ÙÑÖØ ÊÒÓÐ ÙÖ Ø ÃÙÖØĐÒÖÙÒ ÓÒ ØÒØÒ ÖÐØÚÒ ÈÖ Ò Ò ĐÒÖÙÒ ÈÖ ÚÖĐÐØÒ ÓÒ ØÒØÖ ÃÙÖغµ Ö Ï Ø ÓÒ ØÒØ ÃÙÖØ ÅĐÓÐ ÒØÛÓÖØ ÌÖÓØÞ ÙÒÚÖĐÒÖØÖ ÖÐØÚÖ ÈÖ ÑÙ ÐØ ĐÙØÖĐÙÒÐ Ö¹ ÖÖ Òº ÖÔ ÎÖÙØÐÙÒ ĐÙÖ ÈÖ ÒÙÒÒ ÒÒÑ Ô ¼ Ô ¼ ÑØ«Ø ÒÖ ÈÖ ÒÙÒ ÙØ ÀÙ ÐØ ÐÛØ Ü Ü ¾µ Ü Ü ¾ µ ÐÙÒ º ÏÖÙÒ ÒÖ ÈÖ ÒÙÒ ÖÐÙÒ ÑØ«Ø Ò ÒÒ ËÙ ØØÙØÓÒ «Ø ÙÒ ÒÒ ÈÖ ¹ Ø º ÖÑØØÐÙÒ ËÙ ØØÙØÓÒ «Ø ÙÖ ÔÖĐÙÒÐ ÙØÖ Ñ Ô Ü Ô ¾ ÀÙ ÐØ ÐÛØ Ü Ü ¾µ ÙØÖ Ò ÈÖ ĐÒÖÙÒ ÙÒ ÙÒÚÖĐÒÖØÑ ÆÓÑÒÐÒÓÑÑÒ ¼ Ñ Ô Ü Ô ¾ ÀÙ ÐØ ÐÛØ Ü Ü ¾ µ ÙØÖ Ò ÈÖ ĐÒÖÙÒ Ö ÓÒ ØÒØÖ ÃÙÖØ Ñ ¼ Ô ¼Ü Ô ¾ Ü Ë ÜË ¾ µ

3 Ï ØÑÑØ Ñ ¼ ÈÖ ÒÙÒÒ ÒÑÑØ ÃÙÖØ ÞÙº ÍÑ ÃÙÖØ ÓÒ ØÒØ ÞÙ ÐØÒ ÑÙ Ò¹ ÓÑÑÒ ÒØÞÓÒ ÛÖÒ ÚÓÒ Ñ Ù Ñ ¼ º ÒÓÑÑÒ Ñ ¼ Ø Ó ØÑÑØ Ò ÒÙÒ ÈÖ Ò Ô ¼Ô ¾ µ ÐØ ĐÙØÖĐÙÒÐ Ü ¾µ ÖÖÖ Ò ÑÙº Ü Ð Ó ÑÙ ĐÙØÖĐÙÒÐ Ü ¾µ ÙØÐÙÒÒ ÖĐÙÐÐÒ Ü ËÙØÖØÓÒ ÐÖØ Ñ Ô Ü Ô ¾ Ü ¾ Ñ ¼ Ô ¼Ü Ô ¾ Ü ¾ Ñ ¼ Ñ Ô ¼ Ô µü Ô ¾ Ô ¾ µ ßÞ Ð ¼ Ü ¾ Ñ Ñ ¼ Ñ Ü Ñ Ø Ò ĐÒÖÙÒ ÒÓÑÑÒ ÒÖ ÈÖ ĐÒÖÙÒ ÖÓÖÖÐ Ø ÙÑ ÃÙÖØ ÓÒ ØÒØ ÞÙ ÐØÒ ÐØ Ñ ¼ ÐÐ ¼ ÙÒ Ñ ¼ Ñ Ñ ÐÙÒ º¾ ËÙ ØØÙØÓÒ «Ø

4 Ð ËÙ ØØÙØÓÒ «Ø ÞÒØ ÑÒ ÙÖ Ò ÈÖ ĐÒÖÙÒ ÒØ Æ¹ ÖĐÒÖÙÒ ÓÒ ØÒØÖ ÃÙÖØ Ò ØÐÐغ ÅÒ ÔÖØ Ù ÚÓÒ ÒÖ ÓÑÔÒ ÖØÒ ÆÖĐÒÖÙÒº ËÙ ØØÙØÓÒ «Ø Ò ËÐÙØ Ý Ø Ù ÒÒ Ë Ò À ¹ ÞÙ ÔĐØÖºµ ÒÖ ËÙ ØØÙØÓÒ «Ø Ü Ë ÞÛº Ü Ë Ô ÃÖÙÞ Ù ØØÙØÓÒ «Ø Ü Ë ¾ ÞÛº Ü Ë ¾ Ô ÙÔØÙÒÒ µ ÜË ¼ ÐØ Ù Ñ ÅÖ¹ĐÙØÖ¹Ðе Ö Ò Ë Ø ÒعÔÓ ØÚ ØÖÒ ÓÒÚÜÒ ÁÒ«ÖÒÞÙÖÚÒ Ø Ö ØÖØ ÒØÚ ¹ Ø Ö ĐÙÐ Ðкµ ¼ ÙÒ ØÖÒ ÓÒÚÜÒ ÁÒ«ÖÒÞÙÖÚÒ ÑÙ ÐØÒ Ü Ë Ü ºº ÜË Ü Ë Ü ¼ ÙÒ Ü Ë ¼ ¼ÛĐÖ Ü Ë ¼ ÎÖÙØÐÙÒ Ð ĐÍÙÒºµ µ ÁÑ Û¹ĐÙØÖ ÐÐ ÐØ Ü Ë ¾ ¼ Ò ÙÐ ÐÖµ ÁÑ ÅÖ Ð ÞÛ¹µĐÙØÖ¹ÐÐ ÐØ ÐÐÖÒ ÒØ ÑÖº ÅÒ ÒÖØ ÒÒ ĐÙÖ Ü Ë Ô ¼ ĐÙØÖ ÙÒ Ò ËÙ ØØÙØÓÒ ĐÙØÖ Ü Ë Ô ¼ ĐÙØÖ ÙÒ Ò ÃÓÑÔÐÑÒØĐÖĐÙØÖ

5 ÅÒ ÒÒ ÞÒ ÐØ Ë Ü Ë Ü Ô Ô ÃÖÙÞ Ù ØØÙØÓÒ «Ø Ò ÝÑÑØÖ ºµ ÔÐ ÞÙÖ ÖÒÙÒ ËÙ ØØÙØÓÒ «Ø ËÐÙØ Ýµ Ò ÆÖÙÒØÓÒ Ü ¼ Ñ ¼Ô ĐÙÖ Ñ ¾¼ Ô µ Ü ÒÒÑ ÈÖ ÒÙÒ ºº ¼ Ô ¾ ÙØ Ø Ü Ë ÞÛº Ü Ë º ÐÐÑÒ ÐØ Ü Ë Ü Ô ¼Ô ¾ Ñ ¼ µ ÖÑØØÐ Ñ ¼ Ñ ¼ Ñ Ñ Ñ Ü µ Ñ ¼ ¾¼ ¼ Ü Ë ¼ Ѽ ¼ ¼Ô ¼ ¼ ¼ ¾ µ ÜË Ü Ë Ü Ü Ë µ ÎÓÒ Ö ÓÑÔÒ ÖØÒ ÆÖĐÒÖÙÒ Ü Ë Ø ÒÓÖÑÐ ÙÒÓÑÔÒ ÖØ ÓÖ ÅÖ Ðг µ ÆÖĐÒÖÙÒ Ü Ü Ü ÞÙ ÙÒØÖ Òº

6 ÖÑØØÐ Ü Ü Ü Ü Ü Ô ¼Ô ¾ ѵ Ô Ô ¾ ѵ ¼ Ñ ¼ ¼Ô ¼ Ñ ¼Ô ¾ µ Ü ¾ ÖÑØØÐÙÒ ÒÓÑÑÒ«Ø ÁÑ ÞÛØÒ ËÖØØ ÛÖ ÙÒÚÖĐÒÖØÒ ÒÙÒµ ÈÖ Ò ØÚµ ÃÓÒ ØÒØÐØÙÒ Ö ÃÙÖØ ÙÓÒº Ö ÃÓÒ ÙÑÒØ ÖĐÐØ Ð Ó ÞÙÚÓÖ ÒØÞÓÒ ÒÓÑÑÒ Ñ ÞÙÖĐÙº ÐÙÒ º ËÙ ØØÙØÓÒ «Ø ÙÒ ÒÓÑÑÒ «Ø Ü Ñ Ü Ë Ü ÛÙÒ ÛÙÒ ËÙ ØØÙØÓÒ «Ø ÒÓÑÑÒ «Ø ÒÙÖ ÒÓÑÑÒ «Ø Ü Ñ Ü Ñ ¾ ÑØ Ü Ñ ¾ Ü Ë ¾ Ü ¾ µ ¼

7 ÒÐÝØ ÖÐÙÒ Ö ÑØÒ ÆÖĐÒÖÙÒ ÆÙÒ Ø Ü Ü Ü Ü Ü Ë µ Ü Ë Ü µ ÖÛØÖÙÒ ÑØ Ü Ë Ü Ë Ü µ Ü Ë Ü ÍÑÓÖÒÒ µ Ü Ë Ü Ñ Ü Ü Ë Ñ Ü µ Ñ Ü ÓÖ ÑÜ Ë Ü Ü Ü Ü Ñ Ñ Ü Ë Ü Ñ ËÙ ØØÙØÓÒ «Ø Ü Ñ ÒÓÑÑÒ «Ø ÑØ ÎÓÖÞÒµ ÒÐÓ ÖÑØØÐØ ÑÒ Ë ¾ Ü Ü Ü Ñ ¾ Ñ ÒÒØ ÑÐÖ ØÖØÙÒ ÛÖÒ ÐÙÒÒ ÞÙ Ü Ü Ô Ô Ë Ü ¾ Ô Ô Ë Ü Ü Ñ Ü Ñ ÐØÞØÒ ÚÖ ÐÙÒÒ ÒÒÒØ ÑÒ ËÄÍÌËùÐÙÒÒ ÒÓÖÑ ÛØ Ò Ö ÌÓÖ ÀÙ ÐØ µº

8 ÔÐ ÞÙÖ ÖÒÙÒ ÒÓÑÑÒ«Ø ÓÖØĐÙÖÙÒ ÔÐ ÞÙÖ ÖÒÙÒ ËÙ ØØÙØÓÒ «Ø µ Ü Ñ Ü Ë Ü ¼ Ü Ô Ô ¾ Ñ ¼ µ Ü Ô ¼Ô ¾ ѵ ¼ Ѽ ¼Ô ¼ ¼ Ñ ¼ ¼Ô ÑØ«Ø Ñ ÔÐ ÖĐÒÞÙÒÒ ¼ µ Ü Ñ ¼ Ë Ü Ü Ü Ü Ñ Ñ Ü Ñ Ü Ñ ËØØØ ÞÙÖ Ø Ò ËÙ ØØÙØÓÒ «Ø ÙÒ ÒÒ Ò ÒÓÑÑÒ «Ø ÞÙ ØÖØÒ ĐÓÒÒØ ÑÒ Ù ÙÑÖØ ÚÓÖÒº ËØØØ ÚÓÒ ÒÖ ÈÖ ÒÙÒ ĐÓÒÒØ ÑÒ Ù ÚÓÒ ÒÖ ÈÖ ÖĐÓÙÒ Ù Òº Îк ÞÙ ÓÐÒÒ ÐÙÒÒ ÓÛ ÁÒØÖÔÖØØÓÒÒº ÐÙÒ º ËÙ ØØÙØÓÒ «Ø ÙÖ ÖÙÒ Ò ) * + 2HAEIIAKC ) * + 5 K > IJABBA J - E ABBA J AHIJHA2 = =K B H=BJ 2HAEIAHDDKC+ * ) - E ABBA J 5 K > IJABBA J A HIJ = HA 2 HA EI A ¾

9 ÐÙÒ º ËÙ ØØÙØÓÒ «Ø ÙÖ ÖÙÒ Ò * ) + 2HAEIIAKC ) * + - E ABBA J 5 K > IJABBA J AHIJ =K B = HA 2 HA EI A 2HAEIAHDDKC+ * ) 5 K > IJABBA J - E ABBA J AHIJHA2 = =K B H=BJ Ù ÑÑÒÒ ÚÓÒ ÒÓÑÑÒ ¹ ÙÒ ËÙ ØØÙØÓÒ «Ø ÑØ ÒÓÖÑÐÑ ÙØ ÒÖÓÖÑ ÙØ «Ò¹ÙØ ÏÖ ØØÒ ÒÖØ Ü Ñ ¼ ÙØ ÒÓÖÑÐ Ü ¼ ÙØ ÒÖÓÖ Ñ Ü ¼ «Ò¹ÙØ ØÖØ ËÐÙØ Ý¹ÐÙÒ Ë Ü Ü Ü Ü Ñ Ñ

10 ÐÐÙÒØÖ ÙÒ µ ÙØ ÒÓÖÑÐ Ü Ë Ü Ñ Ü ßÞ Ð ßÞ Ñ Ð ¼ ¼ ßÞ Ð ¼ Ü ßÞÐ ¼ ÒÓÖÑÐÒ ĐÙØÖÒ Ò ËÙ ØØÙØÓÒ «Ø ÙÒ ÒÓÑÑÒ «Ø Ò Ð ÊØÙÒ ÐØ ÒÙØ Ü ¼º µ ÙØ ÒÖÓÖ Ü Ë Ü Ñ Ü Ñ ßÞ Ð ßÞ Ð ¼ ¼ ßÞ Ð ¼ Ü ßÞÐ ÎÓÖÞÒ ÙÒ ØÑÑØ Û ĐÐÐ ÑĐÓÐ µ Ü Ë Ü Ñ Ü Ñ µ Ü ¼ «Ò¹ÙØ ÐÙÒ º «Ò ÙØ 5

11 ¾µ Ü Ë Ü Ñ Ü Ñ µ Ü ¼ ÒÖÓÖ ÙØ Ö Ò «Ò¹ÙØ ÐÙÒ º ÁÒÖÓÖ Ö Ò «Ò ÙØ 5 Ð Ó ÁÒÖÓÖØĐØ Ø ÒÓØÛÒ Ö ÒØ ÒÖÒ ĐÙÖ «Ò¹ĐÙØÖ ËÔÞÐÐÐ ÒÓÑÑÒ ¹ ÙÒ ËÙ ØØÙØÓÒ «Ø ÕÙ ¹ÐÒÖÖ ÆÙØÞÒÙÒØÓÒ ÐÙÒ º ÉÙ ¹ÐÒÖ ÈÖĐÖÒÞÒ 5 ÃÒ ÒÓÑÑÒ «Ø ÞĐÙÐ ÙØ ºµ

12 ËÙ ØØÙØÓÒ «Ø ËÐÙØ Ý ÚÖ Ù À ÖÑØØÐÙÒ ÚÓÒ ËÙ ØØÙØÓÒ ¹ ÙÒ ÒÓÑÑÒ «Ø Ò ËÐÙØ Ý Ø Ò Ö ÄØÖ¹ ØÙÖ Ö ÙÒĐÙÐ ÎÖÒ Ø Ò ÓÖÒ Ò Ù Òѵº ÏØÙ ĐÙÐÖ Ø ÎÓÖÒ Û ÚÓÒ ÂºÊº À ¼¹ ÆÓÐÔÖ ¾µº Ò ÛÖ Ö ËÙ ØØÙØÓÒ «Ø ÒØ ÓÒ ØÒØÖ ÃÙÖØ ÓÒÖÒ ÓÒ ØÒ¹ ØÑ ÆÙØÞÒÒÚÙ ÖÑØØÐØ ÑØ ÒØÔÖÒÖ ĐÒÖÙÒ ÒÓÑÑÒ «Ø µº ÓÐÒ ÐÙÒ ÚÖÙØÐØ Ò ÍÒØÖ ÐÙÒ º À ¹ËÙ ØØÙØÓÒ «Ø ) * + * ÒÒØ ÑÐÖ ØÖØÙÒ ÚÖ ÛÒÒ ÍÒØÖ ÞÛ Ò À ÙÒ ËÐÙØ ¹ Ý ĐÙÐ ËÖÛ Ø ÒÒ Ù Ü Ô Ü Ô Ù Ü Ü Ñ ØØ ĐÙÖ ÓÒ ØÒØÖ ÆÙØÞÒ ĐÙÖ ØÙÖÔÓÐØ ÒÛÒÙÒÒ Ø ÐÐÖÒ ËÐÙØ Ý¹ÖÐÙÒ Ò ËÙ ØØÙØÓÒ ¹ ÙÒ ÒÓÑÑÒ «Ø ÒØÖº ÎÖÙØÐÙÒ Ñ ÔÐ ÅÒÖÐĐÓÐ ØÙÖ Ú º ÒÓÑÑÒ ØÙÖ ÚÓÒ ÓÒ Úк ÓÐÒ ÐÙÒº

13 ÐÙÒ º¼ ÒÓÑÑÒ ØÙÖ Ú º ÅÒÖÐĐÓÐ ØÙÖ 0 = K ID = JIC A E? D C A M E? D J L H 5 JA K A H ) > A E- E A I JA K A H * > A E E A H = I JA K A H + + * ) ÒØÓÒ ÙÒ ËÐÙÓÐÖÙÒÒ Ò ÒÓÑÑÒ ØÙÖ ÖÙØ Ò Ñ ÒÒ ÅÓÐе ÒÙÖ ÒÓÑÑÒ «Ø Ö Ò ËÙ ØØÙØÓÒ «Ø ÖÚÓÖ ºµ ËØÙÖÒ ÒÙÖ ÒÓÑÑÒ «Ø ÖÚÓÖÖÙÒ ÒÒÒØ ÑÒ È٠е ØÙÖÒ ÓÖ ÄÙÑÔ¹ ÙѹËØÙÖÒº ÎÖÖÙ ØÙÖÒ ÖÙÒ ÒÓÑÑÒ «Ø ÙÒ ËÙ ØØÙØÓÒ «Ø ÖÚÓÖ µº ÒÓÑÑÒ «Ø ĐÙÖÒ ÞÙ ÆÙØÞÒÚÖÐÙ ØÒ ÙÓÑÑÒ ÐÒ ØÙ¹ ÖÙÒ ÐØÖÒØÚÒ Ò ÒÓÑÑÒ «Ø ÙÒ ÒØ ÔÖÒÒ ÆÙØÞÒÚÖ¹ ÐÙ Ø Ð ÖÓº ËÙ ØØÙØÓÒ «Ø ĐÙÖÒ ÞÙ ÞÙ ĐØÞÐÒ ÆÙØÞÒÚÖÐÙ ØÒº ÆÙØÞÒÚÖÐÙ Ø ØÐÐÒ Ù ØÞÐ ØÒ Ö ØÙÖÙÒ Öº ËØÙÖÒ ÒÒ Ò ÒÓÑÑÒ «ØÒ Ù ËÙ ØØÙØÓÒ «Ø ÙÒ ÑØ Ù ØÞÐ ØÒ ÖÚÓÖÖÙÒ ÞÒØ ÑÒ Ð ÚÖÞÖÖÒ ËØÙÖÒº

14 ÑØ ÒÓÑÑÒ «ØÒ ÒÖÒÒ ÆÙØÞÒÚÖÐÙ Ø Ò ÙÒÚÖÑÐ ÑØ ËÙ ØØÙØÓÒ «ØÒ ÚÖÙÒÒÒ Ù ØÞÐ ØÒµ Ò ÔÖÒÞÔÐÐ ÚÖÑÖº ËØÙÖÔÓÐØ ËÐÙÓÐÖÙÒ ÏĐÐ ÓÐ ËØÙÖÒ ÒÒ Ù ØÞÐ ØÒ ÑÒÑÐ ÑĐÓÐ Ø ÆÙÐе Òº ÙÐØĐØ ØÓÖ Ù ÒÙÒØÓÒ ÙÒ ÒÖØ ÆÙØÞÒÙÒØÓÒ ÁÒ ÚÐÒ ØÓÖØ Ò ÙÒ ÑÔÖ Ò ÒÛÒÙÒÒ ÖÛ Ø Ð ÒÒÚÓÐÐ ØØØ ÑØ Ö ÖØÒµ ÆÙØÞÒÙÒØÓÒ ÑØ Ö Ù ÒÙÒØÓÒ ÜÔÒØÙÖ ÙÒØÓÒµ ÓÖ Ö ÒÖØÒ ÆÙØÞÒÙÒØÓÒ ÞÙ ÖØÒº Ù ÒÙÒØÓÒ ÅÜÑÖÙÒ ÔÖÓÐÑ ÀÙ ÐØ ÐÙØØ ÐÒ ÅÜ Ù Ü µ ÙººÆº Ô Ü Ô Ñ ÐÙÒ º ÆÙØÞÒÑÜÑÖÙÒ ÒÖ ÙØ ÖĐÒÙÒ K ÖÔ ÒÖ ÙØÖÒ ÛÖ ĐÓ Ø ÖÖÖ ÁÒ«ÖÒÞÙÖÚ Ùغ Ð ÖÒ ÖĐÐØ ÑÒ ÅÖ ÐÐ Òµ ÆÖÙÒØÓÒÒ Ü Ü Ô Ô ¾ ѵ ÙÒ Ô Ô ¾ ѵº ÃÓÒ ÙÑĐÙØÖĐÙÒÐ Ü ¾µ ÐĐØ Ö Ù Ð ÄĐÓ ÙÒ Ò ÒÖÒ ÇÔØѹ Ü ÖÙÒ ÔÖÓÐÑ Ö ØÐÐÒº ÅÒ ÖÑØØÐØ ÑÒÑÐÒ Ù Ò ÒÒ ÈÖ Ò ÒĐÓØØ ÛÖÒ ÙÑ Ò ÚÓÖÒ ÆÙØÞÒÒÚÙ ÞÙ ÖÖÒº Ù ÚÓÖ¹ Òº

15 ÖÔ ÖÑØØÐÙÒ Ö ÑÒÑÐÒ Ù Ò ÐÙÒ º¾ Ù ÒÑÒÑÖÙÒ ÒÑ ÆÙØÞÒÒÚÙ K ÓÖÑÐ ÇÔØÑÖÙÒ ÔÖÓÐÑ Ö ÄÖÒ¹Ò ØÞ ÐÙØØ ÅÒÑÖ Ô Ü Ô ¾ ÒººÆº Ù Ù Ü µ Ä Ü µô Ü Ô ¾ Ù Ù Ü µ ÒÙÒÒ Ö ØÖ ÇÖÒÙÒ ÒÓØÛÒ ÒÙÒÒµ ĐÙÖ Ò ÅÒÑÙÑ Ò Ä ¼ Ô Ù Ü Ü µ Ä ¼ Ô ¾ Ù µ Ä ¼ Ù Ù Ü µ µ Ð ÄĐÓ ÙÒ ÅÒÑÖÙÒ ÔÖÓÐÑ ÖĐÐØ ÑÒ ÒÖØÒ ÅÒÒ Ü ÙÒ Ò ĐÒØ Ö ÜÓÒÒ ÎÖÐÒ Ô Ô ¾ ÙÒ Ùº ÆÖÙÒØÓÒÒ ÐÙØÒ Ð Ó Ü Ü Ô Ô ¾ Ùµ Ô Ô ¾ Ùµ ÅÒ Ø ÒÖØÒ ÅÒÒ ØÞØ ÒØ Û Ò ÅÖ ÐÐ Ò Æ¹ ÖÙÒØÓÒÒ ÚÓÑ ÒÓÑÑÒ Ñ ÓÒÖÒ ÚÓÑ ÆÙØÞÒÒÚÙ Ù ĐÒÒº ÅÒ ÔÖØ ÚÓÒ ÒÖ ÓÑÔÒ ÖØÒ ÆÖÙÒØÓÒº

16 ËØÞØ ÑÒ ÒÙÒ ÓÑÔÒ ÖØÒ ÆÖÑÒÒ Ò ÐÙÒØÓÒ ÓÒ ÅÒ¹ ÑÖÙÒ ÔÖÓÐÑ Ò ÖĐÐØ ÑÒ Ù ÒÙÒØÓÒ ÚÓÒ Ò ÈÖ Ò ÙÒ Ñ ÆÙØÞÒÒÚÙ ĐÒØ Ô Ô ¾ ÙµÔ Ü Ô Ô ¾ Ùµ Ô ¾ Ô Ô ¾ Ùµ Ù ÒÙÒØÓÒ Ø ÑÒÑÐÒ Ù Ò Ò ÒÒ ÈÖ Ò ÞÙÖ ÊÐ ÖÙÒ Ò ÚÓÖÒÒ ÆÙØÞÒÒÚÙ ÖÓÖÖÐ Òº ÎÓÒ Ò Ò ØÒ Ö Ù ÒÙÒØÓÒ Ò ÛØ µ ËÔÖ³ ÄÑÑ µ Ô Ü Ô Ô ¾ Ùµ ¾ ÐØÙÒ Ö Ù ÒÙÒØÓÒ Ò Ñ ¹ØÒ ÈÖ ÖØ ÓÑÔÒ ÖØ ÆÖ Ò ÙØ ºµ Û µ Ô Ü Ô Ô ¾ Ùµ Ô Ü Ô Ô ¾ Ô ÖĐÙ Ø Ù µ Ô Ù Ü ÒÒ Ø µ Ô Ù Ü Ü Ô Ô ¾ Ùµ Ù Ü Ô Ô ËØÞØ ÑÒ ÓÑÔÒ ÖØÒµ ÆÖÙÒØÓÒÒ Ò ÆÒÒÙÒ µ Ò ÛÖ ÞÙÖ ÁÒØØĐغ Ù Ù Ü Ô Ô ¾ Ùµ Ô Ô ¾ Ùµµ Ø ÁÒØØĐص ÐØÙÒ Ò Ô ÐÖØ ÒÒ ÑØ ÓÐØ ÙÔØÙÒº ¼ Ù Ü Ü Ô Ù Ô ÖÒÖ ÐØ µ ¾ Ô Ô Ü Ô Ô Ô ¾ Ùµ ÞÛØ ÐØÙÒ Ö Ù ÒÙÒØÓÒ Ø Ö ËÙ ØØÙØÓÒ «Ø Ö ËÐÙØÞݹÐÙÒ ¹ Ò À ¹ Òºµ ¼

17 µ ¾ Ô Ô ¾ Ô Ô ÞÛº Ü Ô Ô Ô ¾ Ùµ Ü Ô Ô Ô ¾ Ùµ ËÙ ØØÙØÓÒ «Ø Ò ÝÑÑØÖ ÐÐ µ ÞÛÑÐ ØØ «ÖÒÞÖÖ ÓÙÒ³ ÌÓÖѵº ÁÒÖØ ÆÙØÞÒÙÒØÓÒ ËØÞØ ÑÒ ÅÖ ÐÐ Òµ ÆÖÙÒØÓÒÒ Ü Ô Ô ¾ ѵÙÒ Ô Ô ¾ ѵ Ò Öص ÆÙØÞÒÙÒØÓÒ Ò ÖĐÐØ ÑÒ ÒÖØ ÆÙØÞÒÙÒØÓÒ Î ÚÓÒ Ò ÈÖ Ò Ô Ô ¾ ÙÒ ÚÓÑ ÒÓÑÑÒ Ñ ĐÒØ Î Ô Ô ¾ ÑµÙ Ü Ô Ô ¾ ѵ Ô Ô ¾ ѵµ ÛØ Ø Ò Ø Ö ÒÖØÒ ÆÙØÞÒÙÒØÓÒ Ø ÓÒÒÒØ ÊǹÁÒØØĐØ ØØ ĐÐ Ö Ö Ò ÁÒØØĐØ Øµ Î Ô Î Ñ Ü Ô Ô ¾ ѵ ÅÖ ÐÐ µ ÆÖÙÒØÓÒ ÖĐÐØ ÑÒ Ð Ó Ð ÎÖĐÐØÒ Ö ÔÖØÐÐÒ Ð¹ ØÙÒÒ Ö ÒÖØÒ ÆÙØÞÒÙÒØÓÒ Ò ÒÑ ÈÖ ÙÒ Ñ ÒÓÑÑÒº Û Î Ù Ü Ù Ô Ü Ô Ô Î Ñ Ù Ü Ü Ñ Ù Ñ Ù Ò ÐÙÒÒ Áµ ÚÓÒ Ëº¾ ÖĐÐØ ÑÒ Ù Ü Ô Ù Ô ¾ ÙÒ Ò ØÞØ Î Ü Ô Ô ¾ Ô Ô Ô Î Ñ Ü Ô Ñ Ô ¾ Ñ

18 ËØÞØ ÑÒ ÒÙÒ ÆÖÙÒØÓÒÒ Ò ÙØ ÖĐÒÙÒ Ò ÛÖ ÞÙÖ ÁÒØØĐØ ÑØ Ò ÐØÙÒÒ Ô Ü Ô Ô ¾ ѵ Ô ¾ Ô Ô ¾ ѵ Ñ Ø ÁÒØØĐص Ü Ô Ü Ô Ô ¾ Ô ¼ µ Ô Ü Ô Ô ¾ Ô Ü Ü Ô Ñ Ô ¾ Ñ ÇÒ Ò ØÞØ ÙÒ ÚÖØ ÖĐÐØ ÑÒ Ö ÊǹÁÒØØĐغ ¾

ÎÓÖÖØÙÒ ÑØÖÐ ĐÙÖ Ò ËØÙÙÑ Ò Ò ĐÖÒ ÅØÑØ ÙÒ ÁÒÓÖÑØ Ò Ö ÍÒÚÖ ØĐØ ÄÔÞ ÀÖÙ Ò ÚÓÑ ËØÙÒÒ Ö ÙÐØĐØ ĐÙÖ ÅØÑØ ÙÒ ÁÒÓÖÑØ ÏÖÙÑ Ò ÌÙØÓÖÙÑ ÅØÑØ ÁÒ ÐÐÒ ÚÓÒ ÙÒ ÖÖ ÙÐØĐØ ÒÓØÒÒ ËØÙÒĐÒÒ Ø ĐØÙÒ ÑØ ÑØÑØ Ò ËÚÖÐØÒ Ð ØÚÖ ØĐÒк

Mehr

ÖÓÒÐÝ ÒÙÒ ÎÖÖÒ ÞÙÖ ÈÁƹÖÒÙÒ ÙÒ ÈÁƹÈÖĐÙÙÒ ĐÙÖ ¹ÃÖØÒ ÖÓÒÐÝ ÒÙ ÈÁƹÎÖÖÒ ½ ÁÒÐØ ÚÖÞÒ ½ Ù ÑÑÒ ÙÒ Ö Ê ÙÐØØ ¾ ¾ ÒÙ ÎÖÖÒ ¾º½ ÈÁƹÒÖÖÙÒ º º º º º º º º º º º º º º º º º º º º º º º º º ¾º½º½ ÈÁƹÒÖÖÙÒ Ù ÃÖØÒÒÓÖÑØÓÒÒ

Mehr

= 27

= 27 Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ ÇÃÌ»ÆÇÎ ¾¼½½ ½ ÎÓÖ ÙÐ ½ Ù ¹½½ ÁÒ ÂÙÐ Ë Ù Ö Ò Ø Ò Ö È Ö Ë Ù º Ë Ò ÑÑØ Ñ ÙÒ ÐÒ Ú Ö ÒÞ ÐÒ Ë Ù Ö Ù º Á Ø Ò ÞÙ ÑÑ Ò Ö Ò È Ö Ù ¹½¾ Û ÚÓÒ Ò Ð Ö Ò Ò Ú ÐÐ Ð º Ï Ð Ò ¾ À Ï Ò ÐÚÓ ÛÛÛº Ð

Mehr

= = = = =

= = = = = Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ Â Æ» ¾¼½ ½ ÎÓÖ ÙÐ ½ Ù ¹½½ Ù Ñ Ð Ò Û Ö Ê Ð Ñ Ø Ñ Ö Û Ö ÓÖÑØ Ò Òº Ø ÐÐ Ù Ø ÐÐØ Ò ËØ Ò Ñ Ö ÚÓÖ Ò Òº µ Ï Ú Ð Ú Ö Ò ÓÑÑ Ò ÚÓÖ µ Ï Ð Ø Ñ Ù Ø Ò Ú ÖØÖ Ø Ò µ Ï Ð Ø Ù Ñ ÐØ Ò Ø Ò ¾ À Ï Ò

Mehr

15+9 = 24 8 = 41 6 = 44+4 = 45 5 = = = = = 26 7 = 13 6 = = 27+6 = = =

15+9 = 24 8 = 41 6 = 44+4 = 45 5 = = = = = 26 7 = 13 6 = = 27+6 = = = Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ Ë ÈÌ»ÇÃÌ ¾¼½¾ ½ ÎÓÖ ÙÐ ½ Ù ¹½½ Ï Ú Ð Ö ÒÒ Ø Ù Ò Ö ÙÖ ÒØ Ò Ù ¹½¾ Ù Ô Ø Ö ÊØ ÐÖ Ø Ö ÙØ Å Ù Ò ÙÒ Ò Ã Ø Ö ÍÒ ÒÒ Ö Ò Ø Ù Û Ò Û ÐØ ÛÓ Ð Ò Ò Ò ÏÓ Òµ À ÒÛ ÙÒ Ò Û Ð Ò Ò Ð Ò Ò ÈÙÒ Ø ÙÒØ

Mehr

Ä ÖÓÒ ÅÐ ÄÓÖ ¼ º¼º¾¼¼¾ ÁÒÐØ ÚÖÞÒ ÒÐØÙÒ ¾ ÏÐÐÒÐØÖ ¾º ÅÜÛÐйÐÙÒÒ º º º º º º º º º º º º º º º º º º º º º º º ¾º¾ Ä ÙÒÒ Ö ÅÜÛÐйÐÙÒÒ Ö Ò ÐÐ Öع Ò ÏÐÐÒÐØÖ º º º º º º º º º º º º º º º º º º º º º º º ¾º

Mehr

Þ ÒÞÙÒØ Ö Ù ÙÒ Ò Ò Ö ÎÓÖ Ð Ò ÙÒ Î ÖØ Ù Ò ¹Å Ø Ó Ö ÙÓÖ ÒÙÒ ÔÖÓ Ð Ñ ÔÐÓÑ Ö Ø Ñ ÁÒ ÓÖÑ Ø Ò º Ò ÓÖѺ Ê Ò Ö À ÖÖÐ Ö ØÖ Ù Ö ÈÖÓ º Öº Ö Ò ÈÙÔÔ Ôк ÁÒ ÓÖѺ Ù Ä Ö ØÙ Ð Ö Ã Ò ØÐ ÁÒØ ÐÐ ÒÞ ÙÒ Ò Û Ò Ø ÁÒ ÓÖÑ Ø ÍÒ

Mehr

Verteilte Systeme/Sicherheit im Internet

Verteilte Systeme/Sicherheit im Internet ruhr-universität bochum Lehrstuhl für Datenverarbeitung Prof. Dr.-Ing. Dr.E.h. Wolfgang Weber Verteilte Systeme/Sicherheit im Internet Intrusion Detection und Intrusion Response Systeme (IDS & IRS) Seminar

Mehr

½ Ï ÐÐ ÓÑÑ Ò ÞÙÑ ËØÙ Ý Ù ÁÒ Ø ÐÐ Ø ÓÒ Ò ÓÒ ÙÖ Ø ÓÒ Á² ½µ ÖØ Þ ÖÙÒ º Ø Ö Ö Ø ÚÓÒ Ú Ö ÃÙÖ Ò ÞÙÑ Ë Ö Ä ÒÙÜ Ò ÆÍ ÖØ Ñ Ò ØÖ ØÓÖ Ä µº Ò Ö Ò Ö ÃÙÖ Ò ËÝ Ø Ñ Ñ Ò ØÖ Ø ÓÒ Ë ½µ Æ ØÛÓÖ Ò Æ Ì½µ ÙÒ Ë ÙÖ ¹ ØÝ Ë È½µº

Mehr

Ã Ô Ø Ð ¾ ØÙ ÐÐ Ö ËØ Ò ÙÒ Ì Ò ÒÞ Ò Ö Ã Þ¹ÁÒÒ ÒÖ ÙÑ ÖÛ ÙÒ ÁÒ ÐØ Ò ¾º½ ÅÓØ Ú Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾º¾ ÁÒÒ ÒÖ ÙÑ ÙØÞ Ñ Ã Þ¹ÁÒÒ ÒÖ ÙÑ º º º º º º º º º º º º º º

Mehr

Ê Ê ÙÒ ÒØ ÖÖ Ý Ó ÁÒ Ô Ò ÒØ ÙØÓÖ ÖÒ Ö Ë Ñ Ø Å Øº ÆÖº ¾ à ÒÒÞº ½ ½ ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ÁÒ ÐØ Ú ÖÞ Ò ½ ÅÓØ Ú Ø ÓÒ ¾ Ì Ð Ò Ê ËÝ Ø Ñ ÖÖ Ý Å Ò Ñ ÒØ ËÓ ØÛ Ö Ê Ä Ú Ð º½ Ö «Ò Ø ÓÒ Ò ººººººººººººººººººººººººººººººº

Mehr

ØÛ ÎØÓÒÐÝ ÐØÒ ÓÐÒÒ ÊÒÐÒ µ µ ¼ ¼ ¼ µ µ ¼ ¼ ¼ µ ¼ ¼ ¼ Û Ò ÐÐÑÒ Ú Úµ µ ÓÒ Øº µ ¼ Û µ µ ¼ ¼ ¼ ¼ ¼ ¼ ¼ µ ¼ ¼ ¼ µ ¼ ¼ ¼ µ ¼ ¼ ¼ ¼ ¼ ¼ ¼ Ø ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼

ØÛ ÎØÓÒÐÝ ÐØÒ ÓÐÒÒ ÊÒÐÒ µ µ ¼ ¼ ¼ µ µ ¼ ¼ ¼ µ ¼ ¼ ¼ Û Ò ÐÐÑÒ Ú Úµ µ ÓÒ Øº µ ¼ Û µ µ ¼ ¼ ¼ ¼ ¼ ¼ ¼ µ ¼ ¼ ¼ µ ¼ ¼ ¼ µ ¼ ¼ ¼ ¼ ¼ ¼ ¼ Ø ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ÀÐØÙÒ ÃÔÐ ØÞ Ù Ñ ÚØØÓÒ ØÞ Ò ÀÒ ÊÓØ ËØÒ ÒÙÔÔÒ Ã ÌÑÒØ ØÓÒÓÑ ÇÐÐ Ð ÎÐ µ º ØÛ ÎØÓÒÐÝ º ÒÒ Ò ÞÒØÐÒ ÃØÐÒ Ò Ò º ÐÒ ØÞ º ÑØÒ º Ò ÒØÞÐ ÒØ ÚØÓ º ÒØ Ò ÁÒÚÒØ º ÒÒ Ò ¹ÃØÐÒ Ò ÃÐ ÒØØ º ÜÞÒØÞØØ ÙÒ ÑØÒ º ØØ ØÞ ÚÓÒ ÃÔÐ

Mehr

Ð ÀÐØ ÐÐ ØØÖ Ù Ñ ÐÒ ÄÚÐ ÙÒ ÔÖ ØÒ Ò Ò ÐØØÖÒº ÞÙ ÖÐÙ ÑÖ Ð ÒÒ ËÐ Ð Ò ÒÑ ÒÒÖÒ ÃÒÓØÒ ÞÙ ÔÖÒº ÀØ Ò ÒÒÖÖ ÃÒÓØÒ x ÒÙ m ÃÒÖ Ó ÒÐØØ x ÒÙ m ËРк ËÐ Ð Ò ÒÑ ÌÐÙÑ

Ð ÀÐØ ÐÐ ØØÖ Ù Ñ ÐÒ ÄÚÐ ÙÒ ÔÖ ØÒ Ò Ò ÐØØÖÒº ÞÙ ÖÐÙ ÑÖ Ð ÒÒ ËÐ Ð Ò ÒÑ ÒÒÖÒ ÃÒÓØÒ ÞÙ ÔÖÒº ÀØ Ò ÒÒÖÖ ÃÒÓØÒ x ÒÙ m ÃÒÖ Ó ÒÐØØ x ÒÙ m ËРк ËÐ Ð Ò ÒÑ ÌÐÙÑ º ËÙÚÖÖÒ º (a,b) ¹ ÙÑ º ÂÙÒ Ð ÀÐØ ÐÐ ØØÖ Ù Ñ ÐÒ ÄÚÐ ÙÒ ÔÖ ØÒ Ò Ò ÐØØÖÒº ÞÙ ÖÐÙ ÑÖ Ð ÒÒ ËÐ Ð Ò ÒÑ ÒÒÖÒ ÃÒÓØÒ ÞÙ ÔÖÒº ÀØ Ò ÒÒÖÖ ÃÒÓØÒ x ÒÙ m ÃÒÖ Ó ÒÐØØ x ÒÙ m ËРк ËÐ Ð Ò ÒÑ ÌÐÙÑ T i ÔÖØ Ò Ò ÐÐ ÐÒÖ Ð Ù

Mehr

Peter Gienow Nr.11 Einfach heilen!

Peter Gienow Nr.11 Einfach heilen! Peter Gienow Nr.11 Einfach heilen! Reading excerpt Nr.11 Einfach heilen! of Peter Gienow Publisher: Irl Verlag http://www.narayana-verlag.com/b4091 In the Narayana webshop you can find all english books

Mehr

Ź Ö ÑÑ Ø ÑÓ ÐÐ ÖØ Ù Ö Á ÝÒØ Ø ÇÔ Ö Ø ÓÒ Ò Ð Ð Ñ ØØ Ð ØÖ Ø Ö ÑÓÖÔ Ó ÝÒØ Ø Ö Å Ö Ñ Ð ÙÒ Ø ÓÒ Ö Òº È ÓÒÓÐÓ ÙÒ Ö ØÖÖ Ð Ü Ð µ ÁÒ ÓÖÑ Ø ÓÒ Û Ö Ö Ø ÔØ Ò Ö Ë

Ź Ö ÑÑ Ø ÑÓ ÐÐ ÖØ Ù Ö Á ÝÒØ Ø ÇÔ Ö Ø ÓÒ Ò Ð Ð Ñ ØØ Ð ØÖ Ø Ö ÑÓÖÔ Ó ÝÒØ Ø Ö Å Ö Ñ Ð ÙÒ Ø ÓÒ Ö Òº È ÓÒÓÐÓ ÙÒ Ö ØÖÖ Ð Ü Ð µ ÁÒ ÓÖÑ Ø ÓÒ Û Ö Ö Ø ÔØ Ò Ö Ë ÈÓ Ø ÝÒØ Ø ÇÔ Ö Ø ÓÒ Ò Á È Ð ÔÔ Ï Ö ÍÒ Ú Ö ØØ Ä ÔÞ Ô Ð ÔÔºÛ ÖÙÒ ¹Ð ÔÞ º Ô Ð ÔÔÛ Öº ½ º ÔÖ Ð ¾¼½ ½» Ź Ö ÑÑ Ø ÑÓ ÐÐ ÖØ Ù Ö Á ÝÒØ Ø ÇÔ Ö Ø ÓÒ Ò Ð Ð Ñ ØØ Ð ØÖ Ø Ö ÑÓÖÔ Ó ÝÒØ Ø Ö Å Ö Ñ Ð ÙÒ Ø ÓÒ Ö Òº È ÓÒÓÐÓ

Mehr

ÞÙ ØÞÒ Øº Ö Ù ĐÓ ÙÒ ÚÓÒ ºµ ÒØ ºÄºÂÓÒ ÌÖÒ ÓÖÑØÓÒ ºµ Ü Ê Ø ¼ Å Ë ÐÖØ ÙÒ ºµ Ü Ü¼ Ü ¼ µø Ü Ü¼ µø ܼ Ü ¼ µø ÙÒ ÑØ Ò ºµ Ù ÄÒÞØÚÖÐØÒ ËÝ ØÑ ºµ Ü ÐÑ Ø Ü Ü ÐÑ Ø

ÞÙ ØÞÒ Øº Ö Ù ĐÓ ÙÒ ÚÓÒ ºµ ÒØ ºÄºÂÓÒ ÌÖÒ ÓÖÑØÓÒ ºµ Ü Ê Ø ¼ Å Ë ÐÖØ ÙÒ ºµ Ü Ü¼ Ü ¼ µø Ü Ü¼ µø ܼ Ü ¼ µø ÙÒ ÑØ Ò ºµ Ù ÄÒÞØÚÖÐØÒ ËÝ ØÑ ºµ Ü ÐÑ Ø Ü Ü ÐÑ Ø ÖÐØÙÒ Ö ÖØÒÚÐÐØ ÙÖ ÅÖØÓÒ ÒØÓÒÓ ËØÒÖ ÙÒ ÅÖØÒ Âº ÒÖ ØÖØ Ï ÒÚ ØØ Ø Ò ÙÒ Ó ÑÖØÓÒ ÓÒ Ø ÚÓÐÙØÓÒ Ó ÓÒ Ò ØÛÓ Ô ÐÚÒ Ò ÖÓÒ ÙÒÖ ÙÒØÒ ÓÒØÓÒ Û Ô Ø ØÓØÐ ÒÙÑÖ Ó ÒÚÙÐ ÓÒ ØÒغ ÁÒÚÙÐ ÑÖØ ÖÓÑ Ò Ö ÛØ ØØÖ ÐÚÒ ÓÒØÓÒ ØÓ Ò Ö

Mehr

ÁÒ Ø ØÙØ ĐÙÖ ÁÒ ÓÖÑ Ø Ö Ì Ò Ò ÍÒ Ú Ö ØĐ Ø ÅĐÙÒ Ò À ÙÔØ Ñ Ò Ö Ñ ËÓÑÑ Ö Ñ Ø Ö ½ ÈÖÓ º Öº Àº º À Ö Ò Î ÖÞ Ò Ò Ø ÙÒ Ö ÒÛ Ò ÙÒ Ò Ñ Æ ØÞ¹ ÙÒ ËÝ Ø ÑÑ Ò Ñ ÒØ Ä È Ú Ä ØÛ Ø Ö ØÓÖÝ ÈÖÓØÓÓÐ Î Ö ÓÒ Ê Ö ÒØ Ò Ö Ë ÐÐÑ

Mehr

ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ÌÀµ Ê Ù Ø ÙÒØ Ö Ù ÙÒ ÙÒ Æ ÒÓ ØÖÙ ØÙÖ ÖÙÒ Ñ Ø Ñ Ê Ø Ö Ö ØÑ ÖÓ ÓÔ ÜÔ Ö Ñ ÒØ ÙÒ Ð Ò ÐÝ Ò ÔÐÓÑ Ö Ø ÚÓÖ Ð Ø ÚÓÒ ËÚ Ò È ÙÐÙ ÁÒ Ø ØÙØ Ö Ò Û Ò Ø È Ý ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ¼º ÆÓÚ Ñ Ö ½ Ö Ø ÙØ Ø Ö

Mehr

Ð ÖØ Ø ÓÒ Ò Ñ Ø ÚÓÒ Ò Æ ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ò Ö ÍÒ Ú Ö¹ ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ÎÓÖ ØÞ Ò Ö Ö ÈÖÓÑÓØ ÓÒ ÓÑÑ ÓÒ Ö Ø Ö Ø Ö Ø ØØ Ö Û Ø Ö Ø Ö Ø ØØ

Ð ÖØ Ø ÓÒ Ò Ñ Ø ÚÓÒ Ò Æ ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ò Ö ÍÒ Ú Ö¹ ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ÎÓÖ ØÞ Ò Ö Ö ÈÖÓÑÓØ ÓÒ ÓÑÑ ÓÒ Ö Ø Ö Ø Ö Ø ØØ Ö Û Ø Ö Ø Ö Ø ØØ Ò Ò Ø Ó ÍÒØ Ö Ù ÙÒ Ö Ð ØÖÓÒ Ò ÄÓ Ð ÖÙÒ Ò Ò Ö Ñ Ò ÓÒ Ð Ò À Ð Ð Ø Ö ØÖÙ ØÙÖ Ò Ñ Ø Ï ÐÛ Ö ÙÒ ÙÒ ÍÒÓÖ ÒÙÒ Ò Ò ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ò Ö Ö Ö ¹ Ð Ü Ò Ö¹ÍÒ Ú Ö ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö ÚÓÖ Ð Ø ÚÓÒ Å Ö

Mehr

R ψ = {λ ψ, λ 0}. P ψ P H

R ψ = {λ ψ, λ 0}. P ψ P H Ã Ô Ø Ð Ç ÖÚ Ð Ù ØÒ ÙÒ ÍÒ Ø ÑÑØ Ø ÒØ Ò ÐÐ Ò Ö Ö ØØÐ Ò Ñ ÙÒ Ò ººº Ò Û Ö Ø ¹ Ø Ø Ö Ø Ö Ö È ¹ ÙÒ Ø ÓÒ ÙÒ Ñ Ø Ö Æ ØÙÖ ØÞ ººº Ò ËØ Ð Ö ØÞ Û Ò Ø Ò Ö Ò Â Ö ÙÒ ÖØ Ø ÑÑ Ò Û Ö ººº ÎÓÒ Ò Ñ Ï ÞÙÖ ÞÙ ØÖÙÑ Ò ÞÙÖ ÞÙÑ

Mehr

ËÓÖØ ÖÔÖÓ Ð Ñ ËÙ ÔÖÓ Ð Ñ ÃÓÑÔÐ Ü ØØ Ö Ò Ï ÖÙÑ Ø ÒØ Ö ÒØ Ï ÖÙÑ Ø Û Ø Ì Ð Á Ò ÖÙÒ ÂÓ ÒÒ Ë ÐÙÑ Ö Ö ËÓÖØ Ö Ò ÙÒ ËÙ Ò ¾»½

ËÓÖØ ÖÔÖÓ Ð Ñ ËÙ ÔÖÓ Ð Ñ ÃÓÑÔÐ Ü ØØ Ö Ò Ï ÖÙÑ Ø ÒØ Ö ÒØ Ï ÖÙÑ Ø Û Ø Ì Ð Á Ò ÖÙÒ ÂÓ ÒÒ Ë ÐÙÑ Ö Ö ËÓÖØ Ö Ò ÙÒ ËÙ Ò ¾»½ ËÓÖØ Ö Ò ÙÒ ËÙ Ò ÎÓÖØÖ Ñ À ÙÔØ Ñ Ò Ö À ÐÐÓ Ï ÐØ ÂÓ ÒÒ Ë ÐÙÑ Ö Ö Ô Ð Ôº Ò ÓÖÑ Ø ºÙÒ ¹ ÖÐ Ò Òº Ö Ö ¹ Ð Ü Ò Ö¹ÍÒ Ú Ö ØØ ÖÐ Ò Ò»Æ ÖÒ Ö ½º Å ¾¼¼ ÂÓ ÒÒ Ë ÐÙÑ Ö Ö ËÓÖØ Ö Ò ÙÒ ËÙ Ò ½»½ ËÓÖØ ÖÔÖÓ Ð Ñ ËÙ ÔÖÓ Ð Ñ

Mehr

(t M (x)) 1/k L(M) = A. µ(x) c. Prob µ [M( x,1 m ) χ A (x)] < 1 m. x 1

(t M (x)) 1/k L(M) = A. µ(x) c. Prob µ [M( x,1 m ) χ A (x)] < 1 m. x 1 T U M Á Æ Ë Ì Á Ì Í Ì Ê Á Æ Ç Ê Å Ì Á à ¼º ÏÓÖ ÓÔ Ö ÃÓÑÔÐ Ü ØØ Ø ÓÖ Ø Ò ØÖÙ ØÙÖ Ò ÙÒ Þ ÒØ Ð ÓÖ Ø Ñ Ò ÖÒ Ø Ïº Å ÝÖ ËÚ Ò ÃÓ Ù ÀÖ ºµ ÀÁ ÃÄÅÆÇ ÌÍŹÁ¼ ¼ ÅÖÞ ¾¼¼ Ì À Æ Á Ë À Í Æ Á Î Ê Ë Á Ì Ì Å Æ À Æ ÌÍŹÁÆ

Mehr

Î ÖÞ Ò Ö ÖÞÙÒ Ò ÔÛº Ô Ð Û Ôغ ÓÔØÖ Ò ÁÇÄ ÁÒØÖ Ó ÙÐ ÖÐ Ò Ä ËÁÃ Ä Ö Ò Ë ØÙ Ã Ö ØÓÑ Ð Ù ÑÑ Å ÐÐ Ñ Ø Ö µm Å ÖÓÑ Ø Ö ÈÊÃ È ÓØÓÖ Ö Ø Ú Ã Ö Ø ØÓÑ ÊÅË ÊÓÓØ Å

Î ÖÞ Ò Ö ÖÞÙÒ Ò ÔÛº Ô Ð Û Ôغ ÓÔØÖ Ò ÁÇÄ ÁÒØÖ Ó ÙÐ ÖÐ Ò Ä ËÁÃ Ä Ö Ò Ë ØÙ Ã Ö ØÓÑ Ð Ù ÑÑ Å ÐÐ Ñ Ø Ö µm Å ÖÓÑ Ø Ö ÈÊÃ È ÓØÓÖ Ö Ø Ú Ã Ö Ø ØÓÑ ÊÅË ÊÓÓØ Å Ò Ù ÚÓÒ È ÒÝÐ Ô Ö Ò ÙÒ ÌÖÓÔ Ñ Ù Ï ÐÐ Ò ÖÓÒØ ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö ÓØÓÖ Ñ Ò Öº Ñ ºµ ÚÓÖ Ð Ø Ñ Ê Ø Ö Å Þ Ò Ò ÙÐØØ Ö Ö Ö ¹Ë ÐÐ Ö¹ÍÒ Ú Ö ØØ Â Ò ÚÓÒ Ø Ò ÄÓÓ Ö ÓÖ Ò Ñ ¼¾º Ç ØÓ Ö ½ Ò Ç Ö Ù Ò ¾º ÔÖ Ð ¾¼¼ Î

Mehr

Ø Ò Ö Ù Ò Â ÓÚ Ò Ò Ò ÀÒ Ò Ò Ï ØØÙÖÑ ÙÒ ÖÛ Ø Ò Û ÖÛ ÒØ Ö Ð Ò Óº Å Ö Ð Ù Ù Ö Û ÒÐ Ø Ò ÒÞ ÐÔ Ö ÓÒ Ö Ù Ò Â ÓÚ Ö Ð Ò Ò Ð ËØ ÐÐ Ø ÐÐØ ÙÒ Â ÓÚ ÓØ Ø Ò Ø Øº Å

Ø Ò Ö Ù Ò Â ÓÚ Ò Ò Ò ÀÒ Ò Ò Ï ØØÙÖÑ ÙÒ ÖÛ Ø Ò Û ÖÛ ÒØ Ö Ð Ò Óº Å Ö Ð Ù Ù Ö Û ÒÐ Ø Ò ÒÞ ÐÔ Ö ÓÒ Ö Ù Ò Â ÓÚ Ö Ð Ò Ò Ð ËØ ÐÐ Ø ÐÐØ ÙÒ Â ÓÚ ÓØ Ø Ò Ø Øº Å Å Ò ÂÙ Ò Ò Ù Ò Â ÓÚ Ò Ù Ø Ö Ò Ö Ø Ø Ø Ö Ö ÏÓ Ò Ö Ð Ö ÙÒ Û ÐØ Ò ÙÐ Ö ÜØÖ Ñ ÑÙ Ö Ò Ò¹ Ò Ò Ñ Ò Û Ö Ì Ö Ì Ò Ò Æ Ö Ø Ò Ò ÙÒ Ö Ò Ó Ö Ò Ö ØÙÒ Ð Òº Ò Ò Û Ö ÒÙÖ ÒÑ Ð Ò Ö Ò ÖÙÒ ÙÑ Ò ½½º Ë ÔØ Ñ Ö ¾¼¼½ Ó Ö Ö Ð Ë ØÙ

Mehr

Ò Á Ò Ò ÃÓÐÐ Ò Ê Ò Ö Ë Ñ ÐÞ¹ ÖÙÒ Ê Ò Ö Ë Ñ Ø ÙÒ ÊÙ Ë Ñ Ö Ù ÖÓÖ ÒØÐ Ð Ö Ä Ø Ö ØÙÖ ÒÛ Ò Ö Ñ Ö Ò Ò Ö Ò Ù Ò ÞÙ Ñ Ö ÙÒÚ ÖØÖ ÙØ Ò Þ ÔÐ Ò Ò ÖÑ Ð Ø Òº

Ò Á Ò Ò ÃÓÐÐ Ò Ê Ò Ö Ë Ñ ÐÞ¹ ÖÙÒ Ê Ò Ö Ë Ñ Ø ÙÒ ÊÙ Ë Ñ Ö Ù ÖÓÖ ÒØÐ Ð Ö Ä Ø Ö ØÙÖ ÒÛ Ò Ö Ñ Ö Ò Ò Ö Ò Ù Ò ÞÙ Ñ Ö ÙÒÚ ÖØÖ ÙØ Ò Þ ÔÐ Ò Ò ÖÑ Ð Ø Òº Ö Å Ò Ò Ò Á Ò Ò ÃÓÐÐ Ò Ê Ò Ö Ë Ñ ÐÞ¹ ÖÙÒ Ê Ò Ö Ë Ñ Ø ÙÒ ÊÙ Ë Ñ Ö Ù ÖÓÖ ÒØÐ Ð Ö Ä Ø Ö ØÙÖ ÒÛ Ò Ö Ñ Ö Ò Ò Ö Ò Ù Ò ÞÙ Ñ Ö ÙÒÚ ÖØÖ ÙØ Ò Þ ÔÐ Ò Ò ÖÑ Ð Ø Òº ÁÒ ÐØ Ú ÖÞ Ò Ù Ò ÔÙÒ Ø ½ ½ ÖÔ ÖÐ ¹ Ø ½º½ Ö Û ÙÒ ÔÔ

Mehr

PTBS Belastung unterschiedlicher Populationen

PTBS Belastung unterschiedlicher Populationen Ù Ö È Ý ÓØÖ ÙÑ ØÓÐÓ ËØ Ø ÓÒ Ö ÃÐ Ò Ëغ ÁÖÑ Ò Ö Ò Ö ÖÙÒ Ö Ø Ä ÓÒ Ö ÃÖ ØÞ Ö Ö ÒÞ È ØÞ Ö È Ø Ö À ÒÞ È Ý ÓØÖ ÙÑ ØÓÐÓ ËØ Ø ÓÒ Ö ÃÐ Ò Ëغ ÁÖÑ Ò Ö ÈÖ Ò Ñ Ñ È Ý ÓØ Ö Ô ÓÖ ÙÒ Ö ÃÐ Ò ÙÒ ÈÓÐ Ð Ò Ö È Ý ØÖ ÙÒ È Ý ÓØ

Mehr

Ð ÖÙÒ ½ ÁÒØ ÖÔÓÐ Ø ÓÒ ÔÓÐÝÒÓÑ Ð ËÔÐ Ò ¾ ÆÙÑ Ö ÁÒØ Ö Ø ÓÒ ÃÐ Æ ÛØÓÒ¹ ÓØ Ï Ø Ö ÉÙ Ö ØÙÖ ÓÖÑ ÐÒ ¾» ¾

Ð ÖÙÒ ½ ÁÒØ ÖÔÓÐ Ø ÓÒ ÔÓÐÝÒÓÑ Ð ËÔÐ Ò ¾ ÆÙÑ Ö ÁÒØ Ö Ø ÓÒ ÃÐ Æ ÛØÓÒ¹ ÓØ Ï Ø Ö ÉÙ Ö ØÙÖ ÓÖÑ ÐÒ ¾» ¾ ÁÒØ ÖÔÓÐ Ø ÓÒ ÒÙÑ Ö ÁÒØ Ö Ø ÓÒ º ÎÓÖÐ ÙÒ ½ ¼ ¼¼ ÆÙÑ Ö Å Ø Ó Ò Á º Ö Ò ÙÒ º À Ù Ò Ð ¾ º Å ¾¼½ ½» ¾ Ð ÖÙÒ ½ ÁÒØ ÖÔÓÐ Ø ÓÒ ÔÓÐÝÒÓÑ Ð ËÔÐ Ò ¾ ÆÙÑ Ö ÁÒØ Ö Ø ÓÒ ÃÐ Æ ÛØÓÒ¹ ÓØ Ï Ø Ö ÉÙ Ö ØÙÖ ÓÖÑ ÐÒ ¾» ¾ ÁÒØ ÖÔÓÐ

Mehr

Ò Ì Ò Ú º ÓÖ Ò ØÓÖ Ë Ö Ø Ô Ð ÇÖ Ò ØÓÖ Ö Ë Ö Ø Ñ Ò Ñ Ò Ë Ö Ø Ñ Ò Ñ ÒØÔÖÓÞ Ë ÙÖ Øݵ ÈÓÐ È ¹ÅÓ ÐÐ ËØ Ò Ö ÙÒ ÆÓÖÑ Ò ÞÙ ÁÌ¹Ë Ö Ø Ë Ö Ø ÓÒÞ ÔØ Ä Ø Ö ØÙÖ ¾»

Ò Ì Ò Ú º ÓÖ Ò ØÓÖ Ë Ö Ø Ô Ð ÇÖ Ò ØÓÖ Ö Ë Ö Ø Ñ Ò Ñ Ò Ë Ö Ø Ñ Ò Ñ ÒØÔÖÓÞ Ë ÙÖ Øݵ ÈÓÐ È ¹ÅÓ ÐÐ ËØ Ò Ö ÙÒ ÆÓÖÑ Ò ÞÙ ÁÌ¹Ë Ö Ø Ë Ö Ø ÓÒÞ ÔØ Ä Ø Ö ØÙÖ ¾» ØÓ Ë ÙÖ ØÝ ÎÇ ÁÒØÖÓ ÙØ ÓÒ Ë Ö Ø»Ë Ö Ø Ñ Ò Ñ ÒØ ÇÖ Ò ØÓÖ ÁÒ Ù ØÖ Ð ËÓ ØÛ Ö ÁÆËÇ Ö Ê Ò Ö Ø ØÞØ ÙØÓÑ Ø ÓÒ ÙÐØØ Ö ÁÒ ÓÖÑ Ø Ì Ò ÍÒ Ú Ö ØØ Ï Ò ÁÒ Ø ØÙØ ÐÓÖ Ò Ò Ù Ö Ö ÒÞ Å Ö Ó Ö Ò Ì Ò Ú º ÓÖ Ò ØÓÖ Ë Ö Ø Ô Ð ÇÖ

Mehr

Å Ø Ò Ñ ÙÒ Ö Å Þ Ò Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ Å Ò Ò Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº Ê Ö ÚÓÒ ÃÖ ¾º Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº ØÐ ÃÙÒÞ Å Ø Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº À Ò ¹È Ø Ö Ë Û

Å Ø Ò Ñ ÙÒ Ö Å Þ Ò Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ Å Ò Ò Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº Ê Ö ÚÓÒ ÃÖ ¾º Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº ØÐ ÃÙÒÞ Å Ø Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº À Ò ¹È Ø Ö Ë Û Ù Ñ ÁÒ Ø ØÙØ Ö ËÓÞ Ð È ØÖ ÙÒ ÂÙ Ò Ñ Þ Ò Ö ÄÙ Û ¹Å Ü Ñ Ð Ò ¹ÍÒ Ú Ö ØØ Å Ò Ò ÎÓÖ Ø Ò ÃÓÑÑ Ö Ö Ä Ø Öµ ÈÖÓ º Öº Ê Ö ÚÓÒ ÃÖ Ê Ó ØÓÖ Ò Ö Ò Ð ÔÓ Ø ÍÒØ Ö Ð Ø ÒÓÖÑ Ð¹ ÙÒ Ö Û Ø Ò Ã Ò ÖÒ ÖØ Ø ÓÒ ÞÙÑ ÖÛ Ö Ó ØÓÖ Ö

Mehr

arxiv:math/ v1 [math.ho] 29 Sep 2004 ǫ = 180 (α+β +γ) = C F.

arxiv:math/ v1 [math.ho] 29 Sep 2004 ǫ = 180 (α+β +γ) = C F. º º Ù³ ÈÖÞ ÓÒ Ñ ÙÒ Ò Ø ÖÖ ØÖ Ö Ö ÙÒ Ò ÖÐ ÙÒ Ò ÞÙÖ ÑÔ Ö Ò ÙÒ ÖÙÒ Ö ÓÑ ØÖ Ò Ò ½ ¾¼ Ö Â Ö Ò Ö Ö Ë ÓÐÞ ÏÙÔÔ ÖØ Ð ½ arxiv:math/0409578v1 [math.ho] 29 Sep 2004 Ù ÑÑ Ò ÙÒ ÁÒ Ø ØÓÖ Ð Ð Ø Ö ØÙÖ Ø Ö Ò Ò ÜØ Ò Ù ÓÒ

Mehr

Ò Ù Ù Ò Ë ØÞÚ ÒØ Ð Ó Ò ÖÓ ÐÛ Ö ÙÒ µ ÙÒ ÃÓÐ ÒÚ Ò¹ Ø Ð Ñ Ø ÖÓ ÐÛ Ö ÙÒ µ B A B A ØØ ÙÒ Ö Ø ÙÖ Ñ Ò Ð ØÖÓÑ Ò Ø Ý Ö ÙÐ Ó Ö ÔÒ ÙÑ Ø ËØ ÐÐ Ò Ø Ò Ò Ö Ø ÙÖ Ý Ö

Ò Ù Ù Ò Ë ØÞÚ ÒØ Ð Ó Ò ÖÓ ÐÛ Ö ÙÒ µ ÙÒ ÃÓÐ ÒÚ Ò¹ Ø Ð Ñ Ø ÖÓ ÐÛ Ö ÙÒ µ B A B A ØØ ÙÒ Ö Ø ÙÖ Ñ Ò Ð ØÖÓÑ Ò Ø Ý Ö ÙÐ Ó Ö ÔÒ ÙÑ Ø ËØ ÐÐ Ò Ø Ò Ò Ö Ø ÙÖ Ý Ö ËÔ ÖÖÚ ÒØ Ð Ø ÑÑØ ÎÓÐÙÑ Ò ØÖÓÑÖ ØÙÒ ËÔ ÖÖ Òµ ÖÙ Ú ÒØ Ð Ø ÑÑØ Ð Ø ÖÙ Ñ ËÝ Ø Ñ Ö Ò¹ Å Ò ÖÒ Ù ÐØ Òµ Þ Ò ËØÖÓÑÚ ÒØ Ð Ø ÑÑØ ÎÓÐÙÑ Ò ØÖÓÑ Ñ ËÝ Ø Ñ ÖÓ ÐÒ Î ÒØ Ð Ä ØÙÒ Ù ÙÖ Ò Ù ÙÒ ÚÓÒ p ËØ Ù ÖÙÒ ÙÒ ËØÖ ÑÙÒ Ö ØÙÒ

Mehr

α : Σ γ Σ α γ : Σ α Σ γ

α : Σ γ Σ α γ : Σ α Σ γ Ë Ñ Ò Ö Ö Ø ØÖ Ø ÁÒØ ÖÔÖ Ø Ø ÓÒ Á È Ò ½¼º ÂÙÐ ¾¼¼ ÄÙ Û ¹Å Ü Ñ Ð Ò ¹ÍÒ Ú Ö ØØ Å Ò Ò ÁÒ Ø ØÙØ Ö ÁÒ ÓÖÑ Ø Ä Ö¹ ÙÒ ÓÖ ÙÒ Ò Ø Ì ÓÖ Ø ÁÒ ÓÖÑ Ø ØØ Ò Ò ØÖ ¹ ¼ Å Ò Ò Î Ö Ö ÓÞ ÒØ ØÖ Ù Ö Æ Þ Å ÝÐÓÚ ÈÖÓ º Å ÖØ Ò ÀÓ

Mehr

0 = 2x+2y 5 y = 4x+6

0 = 2x+2y 5 y = 4x+6 ÌÐ ÁÁ ÙÒÒ ÙÒ ½ ½º ÖÒ (((4/3+5/2) 6/5) 2/5) 5/2º 1 ¾º ÖÒ µ )) µ 1 ÙÒ µ (1 ( 2 2 ) ( 3 4 ( (2 3 ) 4 ) ( 3)º 4 º Î ÖÒ µ ( 4 xy + 3 yz )(4z xy 2 y ) µ x y z x 2 x + z y ÙÒ µ x º 1 1 1 x º Û 2 Ò Ö Ø ÓÒ Ð Ð

Mehr

Ä Ä Óµ Ö Ò Ð Ö Ä Óµ Ö Ò Ù Ò Ù Ò Û ÖØ Ò Ù Ä ÙÒ Òº ÆÙÖ ÅÙØ Ù Û ÒÒ Ù Ò Å Ø Ò Ò Ø Ù Ò Ò Ó Ø ÐØ Ø Ù ÞÙÖ Ä ÙÒ Ò Ø ÙÒ Ò Ø Ò Å Ø ¹ËØÓ Ö Ë ÙÐ Ö Ù Øº Î ÐÑ Ö Û Ö

Ä Ä Óµ Ö Ò Ð Ö Ä Óµ Ö Ò Ù Ò Ù Ò Û ÖØ Ò Ù Ä ÙÒ Òº ÆÙÖ ÅÙØ Ù Û ÒÒ Ù Ò Å Ø Ò Ò Ø Ù Ò Ò Ó Ø ÐØ Ø Ù ÞÙÖ Ä ÙÒ Ò Ø ÙÒ Ò Ø Ò Å Ø ¹ËØÓ Ö Ë ÙÐ Ö Ù Øº Î ÐÑ Ö Û Ö Â Ö Ò ¼ À Ø ½¼¾ ÂÙÒ ¾¼½¼ Ò Ñ Ø Ñ Ø Ø Ö Ø Ö Ë Ð Ö ÒÒ Òµ ÙÒ Ä Ö Ö ÒÒ Òµ ½ ¼ Ö Ò Ø ÚÓÒ Å ÖØ Ò Å ØØÐ Ö Ö Ù Ò ÚÓÑ ÁÒ Ø ØÙØ Ö Å Ø Ñ Ø Ò Ö ÂÓ ÒÒ ÙØ Ò Ö ¹ÍÒ Ú Ö ØØ ÞÙ Å ÒÞ JG U JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Mehr

¾¼¼

¾¼¼ Ù Ù ÙÖ Å Ø Ñ Ø Å Ø Ó Ò ÙÒ Ô Ð ËÓÑÑ Ö Ñ Ø Ö ¾¼¼ ÂÓ Ä Ý ÓÐ Ô ÖØÑ ÒØ Ö ËØ Ø Ø ÙÒ Å Ø Ñ Ø Ö Ï ÖØ Ø ÙÒ Ú Ö ØØ Ï Ò ½ º ÂÙÒ ¾¼¼ ¾¼¼ Josef.Leydold@wu-wien.ac.at ÙÒ Ø ÓÒ Ò Ò Ñ Ö Ö Ò Î Ö Ð Ò ½º Ò Ø ÆÙØÞ Ò ÙÒ Ø ÓÒ

Mehr

Ò Ê Ö ÒØ ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Ñ º ÖØ ÅÙ Ö ÈÖÓ º Öº Ñ º Ã Ö Ø Ò Ë Ñ Ö ÈÖ Úº ÓÞº Öº Ñ º ËØ Ô Ò Ö Ò Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ¾ º½½º¾¼¼

Ò Ê Ö ÒØ ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Ñ º ÖØ ÅÙ Ö ÈÖÓ º Öº Ñ º Ã Ö Ø Ò Ë Ñ Ö ÈÖ Úº ÓÞº Öº Ñ º ËØ Ô Ò Ö Ò Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ¾ º½½º¾¼¼ Ù Ö Æ ÙÖÓ ÖÙÖ Ò ÃÐ Ò ÃÒ ÔÔ Ø Ö Ò Ò Ù Ó ÙÑ¹Ä Ò Ò Ö Ö ¹ ÍÒ Ú Ö ØØ Ð Ò ¹ Ö ÊÙ Ö¹ÍÒ Ú Ö ØØ Ó ÙÑ Ö ØÓÖ ÈÖÓ º Öº Ñ º º À Ö Ö Ê ØÖ ÖÙÒ ÚÓÒ ¹ÍÐØÖ Ðй ÙÒ Ì¹ Ø Ò Ö Ä Ò ÒÛ Ö Ð ÙÐ ÞÙÖ ÍÒØ Ö Ø ØÞÙÒ Ò Ú ÖØ Ö È Ð Ö Ù

Mehr

9 Dynamische Programmierung (Tabellierung)

9 Dynamische Programmierung (Tabellierung) 9 (Tabellierung) PrinzipºÊ ÙÖ ÓÒ ÒÑ Ø ĐÙ ÖÐ ÔÔ Ò ÒÌ Ð Ù ÒÛ Ö Ò 9.1 Grundlagen Ì ÐÐ ÖÙÒ Ö ÖÄĐÓ ÙÒ Ò Ù Û ÖØ Ø ÙÑÛ Ö ÓÐØ ÆÞ ÒØ Ö ÙÖ Ý Ø Ñ Ø ÙÖ Ð Ù Ò ÖÌ Ð Ù ÒÙÒ Ö ÒÙÒ ÒÞÙÚ ÖÑ Òº Ì ÐÐ Ò ĐÓÒÒ Ò Ø Ø Ø ÖÁÒ Ü Ö

Mehr

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG Å ÙÖ ØØÐ Ö ÃÓÒÞ ÔØÓÔØ Ñ ÖÙÒ ÙÒ ÒØÛ ÐÙÒ Ò Ö Ó ÒØ Ö ÖØ Ò Ä Ø ÖÔÐ ØØ ÔÐÓÑ Ö Ø À ¹ÃÁȹ½¼¹ KIRCHHOFF-INSTITUT FÜR PHYSIK ÙÐØÝ Ó È Ý Ò ØÖÓÒÓÑÝ ÍÒ Ú Ö ØÝ Ó À Ð Ö ÔÐÓÑ Ø

Mehr

ÖÖ Ö Ø ÚÓÒ ÓÑÔÙØ Ö Ý Ø Ñ Ò Ë Ö ÔØ ÞÙÑ Ë Ñ Ò Ö ËÓÑÑ Ö Ñ Ø Ö ½ À Ö Ù Ö Å Ò Ö Ã Ö Ö Ü Ð ÈÖĐ Ð Ò Ö ÁÒ ÓÖÑ Ø ÍÒ Ú Ö ØĐ Ø Ã Ö Ð ÙØ ÖÒ ¹ ¼ Ã Ö Ð ÙØ ÖÒ Ï Ø ÖÑ ÒÝ ÁÒ ÐØ Á Ø Ò ÙØÞ ½ Ø Ò ÙØÞ ß Ö ØÐ Ä ½º½ ÏÓ Ö ÓÑÑØ

Mehr

ÊÓ ÖØ Â Ò Ä Ø Ò ÓÖ ÈÖÓ Ù Ø ÓÒ Ö Ø Ö È ÓØÓÒ Ò Ò ÙÐØÖ Ö Ð Ø Ú Ø Ò Ù Ù ËØ Ò Ñ ÈÀ ÆÁ ¹ ÜÔ Ö Ñ ÒØ ¾¼¼ ÜÔ Ö Ñ ÒØ ÐÐ È Ý ÈÖÓ Ù Ø ÓÒ Ö Ø Ö È ÓØÓÒ Ò Ò ÙÐØÖ Ö Ð Ø Ú Ø Ò Ù Ù ËØ Ò Ñ ÈÀ ÆÁ ¹ ÜÔ Ö Ñ ÒØ ÔÐÓÑ Ö Ø ÚÓÒ

Mehr

Ò Ò Ò Ë ÖÒ ½ ¾ Ö ÁÒØ ÖÒ Ø¹ Šع Ö ÙÒ ÙÒ ÐØ ÒØÒÓÑÑ Ò Ò Ö Ñ ØÑ Ø Å Ø Ø ÙÒ ÒØ Ö ÖØ Ã ÒÖ ØÐ Òº ÀÖ Ù ÓÒÖ Ò ØÙ ÙÒ ÃÐ Ò ÙÒ º Þ Ø ÃÓÒ Ø Ò Ñ Ø Ö Ë ÙÐ ÚÓÖÞÙÙÒ Ò

Ò Ò Ò Ë ÖÒ ½ ¾ Ö ÁÒØ ÖÒ Ø¹ Šع Ö ÙÒ ÙÒ ÐØ ÒØÒÓÑÑ Ò Ò Ö Ñ ØÑ Ø Å Ø Ø ÙÒ ÒØ Ö ÖØ Ã ÒÖ ØÐ Òº ÀÖ Ù ÓÒÖ Ò ØÙ ÙÒ ÃÐ Ò ÙÒ º Þ Ø ÃÓÒ Ø Ò Ñ Ø Ö Ë ÙÐ ÚÓÖÞÙÙÒ Ò ÁÒÐØ Ö ÖÓ Ö ÙÒØ ÖÐÒ Ö ÖØ Ú ÓÑÑÓÒ ÙÒØ Ö ÐÒ Ò ÙÒÒ º¼ ÍÒ¹ Æ Ñ Ò Ò ÒÒÙÒ ¹ÏØ Ö ÙØ Ø Ò Ó Ø ÒÐÓ Ù ÓÑÑ ÖÞÐÐ ÆÙØÞÙÒ ÓÐÒÒ Ò ÙÒÒ ÑÐ Ø ÙÒØ Ö Ð ÍÖÖ Ò Û Ö À Ï ÒÐÚÓ Ò ÒÒغ ÇÒÐ Ò ¹ÅÒ Û Ö Ö Ä Þ ÒÞØ ÜØ Ú ÖÐ Ò Øº ÐØ ÖÒ Ø

Mehr

±0, 1m 2 m 3..m 53 2 e 10e 9..e

±0, 1m 2 m 3..m 53 2 e 10e 9..e Ê Ò Ò Ï ÖÙÑ Ð Ö Ö Ò Ò Ø Ó ÓÑÔÙØ Ö Ì ÐÒ Ñ Ö Ö Ø Ò Ö Ö ÒÒ Å Ò È ØÖ Å ÙØ Ò Ö ÊÓÞ È ØÖ ÃÐ ØÞ Ö ØÓÔ Ö Ë Ñ Ø ÊÓ ÖØ Ë ÐÑ ÒÒ Ò Ö ¹Ç Ö ÙÐ À ÒÖ ¹À ÖØÞ¹Ç Ö ÙÐ ÁÑÑ Ò٠йà ÒØ¹Ç Ö ÙÐ À Ö Ö¹Ç Ö ÙÐ Ò Ö ¹Ç Ö ÙÐ ÁÑÑ ÒÙ

Mehr

Ò Ö Ø Ö ÙØ Ø Ö Û Ø Ö ÙØ Ø Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ Ì Ö ÈÖÓÑÓØ ÓÒ ÈÖÓ ÓÖ Öº ƺ Ë Ñ ØÞ ÈÖÓ ÓÖ Öº Ϻ º Ë ØØ Ö ÈÖÓ ÓÖ Öº Àº Ö ¾ º¼ º ¾ º¼ º

Ò Ö Ø Ö ÙØ Ø Ö Û Ø Ö ÙØ Ø Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ Ì Ö ÈÖÓÑÓØ ÓÒ ÈÖÓ ÓÖ Öº ƺ Ë Ñ ØÞ ÈÖÓ ÓÖ Öº Ϻ º Ë ØØ Ö ÈÖÓ ÓÖ Öº Àº Ö ¾ º¼ º ¾ º¼ º ËÌÊÇÆÇÅÁ ÆÙØÞÙÒ ØÖÓÒÓÑ Ö ÈÐ ØØ Ò Ö Ú ÁÒ Ù ÙÖ Ð ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö Ö Æ ØÙÖÛ Ò Ø Ò Ñ Ö È Ý Ö Å Ø Ñ Ø Æ ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ö Ï Ø Ð Ò Ï Ð ÐÑ ÍÒ Ú Ö ØØ Å Ò Ø Ö ÚÓÖ Ð Ø ÚÓÒ Ê Ò Ø Ù ÐÐ Ù ÓØØÖÓÔ ½ Ò Ö Ø

Mehr

Ä ÓÔÓÐ ¹ Ö ÒÞ Ò ¹ÍÒ Ú Ö ØØ ÁÒÒ ÖÙ ÁÒ Ø ØÙØ Ö ÁÒ ÓÖÑ Ø Ø Ò Ò Ò ÙÒ ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ ËÓ Ð¹Å ÃÓÒÞ ÔØ Ò È Ö ÓÒ Ð¹ÁÒ ÓÖÑ Ø ÓÒ¹Å Ò Ñ ÒعËÝ Ø Ñ Ò ÐÓÖ¹ Ö Ø ØÖ ÙØ ÚÓÒ ÏÓÐ Ò Ð Ö Ú Ò ÖÐ ÁÒÒ ÖÙ ½ º ÂÙÒ ¾¼½¾ Ù ÑÑ

Mehr

Ò ĐÙ ÖÙÒ Ò ÒØÛ ÐÙÒ Ø Ò Ö ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ ÃÓÒÞ ÔØ Å Ø Ó Ò ÙÒ Ï Ö Þ Ù ÞÙÖ ÒØÛ ÐÙÒ ÒØ Ö ÖØ Ö ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ Ñ Ø Ò Ò ÍÑ Ð ß ÎÓÖÐ ÙÒ ÙÒØ ÖÐ Ò ß Öº Å ÖØ Ò Ò Ö ÙÒ Ó Ö ÁÒ Ø ØÙØ ĐÙÖ Ö ØÖ ÙÒ ¹ ÙØÓÑ Ø ÖÙÒ Å

Mehr

ÒØÛ ÐÙÒ ÚÓÒ Å ØÖ Ò Ö ÅĹ Ó ÙÑ ÒØ ÓÐÐ Ø ÓÒ Ò ÔÐÓÑ Ö Ø ÍÒ Ú Ö ØØ ÊÓ ØÓ Ö ÁÒ ÓÖÑ Ø ÚÓÖ Ð Ø ÚÓÒ ÓÖ Ò Ñ Ä Ö Ë Ò Ö ¾½º ÔÖ Ð ½ Ò ÊÓ ØÓ ØÖ Ù Ö ÈÖÓ º Öº Ò Ö À Ù Ö ÈÖÓ º Öº Ð Ñ Ò Ô Öº¹ÁÒ º Å ÃÐ ØØ ØÙÑ ¾ º Þ Ñ Ö

Mehr

ÔÐÓÑ Ö Ø ÈÖÓ Ù Ø ÓÒ ÔÐ ÒÙÒ Ñ Ø À Ð ÚÓÒ ÅÙÐØ ÒØ Ò Ý Ø Ñ Ò Ë ÄĐÙ ÔÐÓÑ Ö Ø Ñ Ö ÁÒ ÓÖÑ Ø Ö ÍÒ Ú Ö ØĐ Ø ÓÖØÑÙÒ ½ º Ç ØÓ Ö ¾¼¼½ ØÖ Ù Ö ÈÖÓ º Öº Ã Ø Ö Ò ÅÓÖ Ôк ÁÒ ÓÖѺ ËØ Ò À Ù Ø Ò À ÖÑ Ø ØĐ Ø Ö Ø Ð Ø ØĐ Ò Ú

Mehr

Lehrstuhl und Institut für Strömungslehre

Lehrstuhl und Institut für Strömungslehre ÙÒ Ò ÞÙÑ È Ø ËØÖ ÑÙÒ Ð Ö Ö Ñ Ò Ò ÙÖÛ Ò ÙÒ Î Ö Ö Ò Ø Ò ½º Ù Ò Ð ØØ ËØÖ ÑÙÒ Ö ÀÝ ÖÓ Ø Ø Ù ½º½ ÙÒ Ù ËØÖ ÑÙÒ Ñ Ò Ù ¾º½º½µ º ½º½ ÃÖ Ø ÖÞ Ù ÙÑ ØÖ ÑÙÒ Ò ÃÖ Ø ÖÞ Ù Û Ö ÚÓÒ Ò Ö Ö ÙÒ Ö Ò È Ö ÐÐ Ð ØÖ ÑÙÒ Ö Û Ò Ø

Mehr

ÙÐØĐ Ø ĐÙÖ È Ý ÙÒ ØÖÓÒÓÑ ÊÙÔÖ Øßà ÖÐ ßÍÒ Ú Ö ØĐ Ø À Ð Ö ÔÐÓÑ Ö Ø Ñ ËØÙ Ò Ò È Ý ÚÓÖ Ð Ø ÚÓÒ Ö Ø Ò Å Ö Ù ÄÙ Ó»ÊÙÑĐ Ò Ò ½ Æ ¹ÁÒ Ö ÖÓØ È ÓØÓÑ ØÖ ÚÓÒ ÉÙ Ö Ò Ñ Ø Þ ÔÐÓÑ Ö Ø ÛÙÖ ÚÓÒ Ö Ø Ò Å Ö Ù ĐÙ ÖØ Ò Ö Ä Ò

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ½¼ ½º½ ÎÓÖÛÓÖØ ÚÓÒ Ñ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½¼ ½º¾ ÎÓÖÛÓÖØ ÚÓÒ ÓÑ Ò ÕÙ º º º º º º º

ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ½¼ ½º½ ÎÓÖÛÓÖØ ÚÓÒ Ñ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½¼ ½º¾ ÎÓÖÛÓÖØ ÚÓÒ ÓÑ Ò ÕÙ º º º º º º º ÎÓÖ Ö ØÙÒ Ö Î ÖØ ÙÒ ÔÖ ÙÒ Ã Ò ØÐ ÁÒØ ÐÐ ÒÞ Ï Ò Ö ÔÖ ÒØ Ø ÓÒ ÙÒ Ø Ò Ò Ò Ò Ö ÏÓÖØÑ ÒÒ Ò Ö ºÛÓÖØÑ ÒÒÖÛØ ¹ Òº µ Ö Ò Ù Ò ÎÓÖ Ö ØÙÒ Ò ÚÓÒ ÓÑ Ò ÕÙ ÐÑ Ý Ö ÓÑ Ò ÕÙ ºÞ ÐÑ Ý ÖÖÛØ ¹ Òº µ ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ½¼ ½º½

Mehr

ÅÓØ Ú Ø ÓÒ ÅÓØ Ú Ø ÓÒ ØÞØ ÐÐ ÒÞ Ð Ñ ÒØ Ö Ù Ø Ò ÆÙÒ À Ö Û Ö Ò Ö ÖÙÒ Û Ø Ò ÙÖ Ö µ ÌÓÓÐ ÒÙØÞÙÒ ÚÓÒ ËØ Ò Ö ÓÑÔÓÒ ÒØ Ò Ù ÒÑ Ö Ñ Ö Ù ËÓ ØÛ Ö Ø

ÅÓØ Ú Ø ÓÒ ÅÓØ Ú Ø ÓÒ ØÞØ ÐÐ ÒÞ Ð Ñ ÒØ Ö Ù Ø Ò ÆÙÒ À Ö Û Ö Ò Ö ÖÙÒ Û Ø Ò ÙÖ Ö µ ÌÓÓÐ ÒÙØÞÙÒ ÚÓÒ ËØ Ò Ö ÓÑÔÓÒ ÒØ Ò Ù ÒÑ Ö Ñ Ö Ù ËÓ ØÛ Ö Ø ËÓ Ø ÁÈ ÈÖÓÞ ÓÖ Ò ÙÒ Ò ØØ ËÝ Ø Ñ Ò ÖÙÒ ÈÖ Ø ÙÑ È Ö ÐÐ Ð Ê Ò Ö Ö Ø ØÙÖ Ò Ñ Û Ø ÐÐÙÐ Ö ÙØÓÑ Ø Å Ö Ê Ò Ä Ö ØÙ Ð Ö ÁÒ ÓÖÑ Ø Ê Ò Ö Ö Ø ØÙÖµ Ö Ö ¹ Ð Ü Ò Ö¹ÍÒ Ú Ö ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö ÏË ¾¼½¼»½½ ÅÓØ Ú Ø ÓÒ ÅÓØ Ú

Mehr

ÎÓÒ Ö ÖÞ ÙÒ Û Ò ØÐ Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ ÞÙ Ã ÐÒ Ò ÒÓѹ Ñ Ò ÖØ Ø ÓÒº Ö Ø Ö ÙØ Ø Ö À ÖÖ ÈÖÓ º Öº ÊÓÐ È Ð Ø Ö Û Ø Ö ÙØ Ø Ö À ÖÖ È Öº Ò Ö À Ø Ù Ò Ö ØØ Ö ÙØ

ÎÓÒ Ö ÖÞ ÙÒ Û Ò ØÐ Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ ÞÙ Ã ÐÒ Ò ÒÓѹ Ñ Ò ÖØ Ø ÓÒº Ö Ø Ö ÙØ Ø Ö À ÖÖ ÈÖÓ º Öº ÊÓÐ È Ð Ø Ö Û Ø Ö ÙØ Ø Ö À ÖÖ È Öº Ò Ö À Ø Ù Ò Ö ØØ Ö ÙØ ÖÛ Ø ÖØ Å Ð Ø Ò Ö ÜÔ Ö Ñ ÒØ Ö Ò Ñ È Ý ÙÒØ ÖÖ Ø ÙÖ Ò Ò ØÞ Ò Ò Ù ÒØÛ ÐØ Ò Ò Ö Ù Ò Ò Ø ØÓÖ Ö Ê ÒØ Ò ØÖ Ð Ò ÁÒ Ù ÙÖ Ð ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö Ö ÖÞ ÙÒ Û Ò ØÐ Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ ÞÙ Ã ÐÒ ÚÓÖ Ð Ø ÚÓÒ ÖØ Ñ

Mehr

Ò ĐÙ ÖÙÒ Ò ÒØÛ ÐÙÒ Ø Ò Ö ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ ÃÓÒÞ ÔØ Å Ø Ó Ò ÙÒ Ï Ö Þ Ù ÞÙÖ ÒØÛ ÐÙÒ ÒØ Ö ÖØ Ö ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ Ñ Ø Ò Ò ÍÑ Ð ß ÎÓÖÐ ÙÒ ÙÒØ ÖÐ Ò ß Öº Å ÖØ Ò Ò Ö ÙÒ Ó Ö ÁÒ Ø ØÙØ ĐÙÖ Ö ØÖ ÙÒ ¹ ÙØÓÑ Ø ÖÙÒ Å

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ½º½ ÅÓØ Ú Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ à ÖÞ Ø ¹Ï ¹ Ð ÓÖ Ø Ñ Ò º º

ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ½º½ ÅÓØ Ú Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ à ÖÞ Ø ¹Ï ¹ Ð ÓÖ Ø Ñ Ò º º Ö ÒÙÒ ÖÞ Ø Ö È ÙÒØ Ö ØÙÒ ÚÓÒ Ú Ö ÓØ Ò Ã Ö ÐÐ Å ÐÐ Ö ËØÙ Ò Ö Ø Ñ ÁÒ Ø ØÙØ Ö Ì ÓÖ Ø ÁÒ ÓÖÑ Ø Ä Ö ØÙ Ð ÈÖÓ º Öº ÓÖÓØ Ï Ò Ö ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ÙÐØØ Ö ÁÒ ÓÖÑ Ø ¾ º Ç ØÓ Ö ¾¼¼ ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ½º½ ÅÓØ Ú

Mehr

x y x+y x+15 y 4 x+y 7

x y x+y x+15 y 4 x+y 7 Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¼ ¹ Â Æ» ¾¼½ ½ ½ ÎÓÖ ÙÐ Ä ÙÒ ¼¹½½ Î ¾ Ï ¾ Ä ÙÒ ¼¹½¾ È Ö Ö Ö Ò ÓÖ Ò Ø Ò ÅÓÓÒ Ñ Ù ÊÓÑ Ó Ä Ë ÒØÓ ÄÓ Ä Ó Ð Ò Ø Ö Ø Ä ÙÒ ¼¹½ Ä ÙÒ ¼¹½ ¹¾ ¹ ¹½ ¹ Ä ÙÒ ¼¹½ Ò Ã Ò Öº Ë Ñ Ò ½ ¾ ÙÒ Ó Ò ØÖÓ

Mehr

½ ÍÆÀ ĐÆÁ ÊÁÆÁËË ÁÆ ÁËÃÊÌÆ ÏÀÊËÀÁÆÄÁÀÃÁÌËÅÇÄÄÆ Ù ÑÑÒ ÙÒ ÚÓÒ ØÑÖ ÈÖ ÇÐÒÙÖ ÒÒ ÓÒÖØÖ ÙÒ Ù ÚÖ ÒÒ ËÙÐĐÙÖÒ ÞÙÖ ËØÓ Ø ÛÖ ÈÖÓÐÑØ Ö Ü ØÒÞ ÙÒĐÒÖ ÖÒ ÓÐÒ Ò ÖØÒ ÏÖ Ò¹ ÐØ ÑÓÐÐÒ ÙØÖغ ÁÒ ÓÒÖ ÛÖ Ò Ò ÖØÒ ÅÓÐÐÒ ĐÙÐØ Ò ĐØÞÙÒ

Mehr

ÈÖÓº Öº ØÑÖ ÈÖ ÈÖÚØ ÃÖÒÒÚÖ ÖÙÒ ÈÃε ÏË ¾¼¼½»¼¾ Áº ÊØÐ ÙÒ ÚÖ ÖÙÒ ÑØÑØ ÖÙÒÐÒ Ö ÈÃÎ Áº½º ĐÕÙÚÐÒÞÔÖÒÞÔ Ö ÈÃÎ Áº¾º ÃÓÔ ĐÒ ÙÒ ËÒÔÖÓ Ð Áº º ÆØØÓÔÖĐÑ Áºº ÖÙØØÓÔÖĐÑ ÁÁº ØÖ ÒÔ ÙÒÒ ÁÁº½º ÐØÖÙÒ ÖĐÙ ØÐÐÙÒ ÁÁº¾º ØÒ

Mehr

ÍÒÚÖ ØØ ÐÐ ÁÒØÖÒÖ ÖØ Ö ÌÒ Ò ÙÐØØ ØÐÙÒ ÁÒÓÖÑØÓÒ ØÒ ËÖÔØ ÞÙÖ ÎÓÖÐ ÙÒ ÌÒ ÁÒÓÖÑØ Á ÅÖÓ ÀÐÖØ ËÓÑÑÖ Ñ ØÖ ¾¼¼½ ËØÒ ½º ÔÖÐ ¾¼¼½µ Ê Ë ¼ ʳ Ê Ê Ë³ Ë Å ØÖ ¼ ʳ Ê Ê É Ë Ë³ É ËÐÚ ÍÒÚÖ ØØ ÐÐ ÈÓ Ø ½¼ ¼½ ½ ¼½ ÐÐ ÎÓÖÛÓÖØ

Mehr

BS Registers/Home Network HLR/AuC

BS Registers/Home Network HLR/AuC Ë Ö Ø Ñ ÅÓ Ð ÓÑÑÙÒ Ø ÓÒ Ò ØÞ Ö º Ò Ö Ø ÓÒ ÍÅÌ˵ ÃÐ Ù ÚÓÒ Ö À Ý ¾¼¼¾¹¼ ¹¾ ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ¾ ½º½ Ï ÖÙÑ Ö ÙÔØ Ë Ö Ø ÓÒÞ ÔØ ÑÓ Ð Ö ÃÓÑÑÙÒ ¹ Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½¾ ÂĐÙÒ Ð Ò Ö ½ ¼ ½¾ º½ Ë Þ ÒØ Â Ö ½¼ Òº Öºµ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ¼ ½¾ º¾ Ë Þ ÒØ Â Ö ½½ Òº Öºµ º º

ÁÒ ÐØ Ú ÖÞ Ò ½¾ ÂĐÙÒ Ð Ò Ö ½ ¼ ½¾ º½ Ë Þ ÒØ Â Ö ½¼ Òº Öºµ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ¼ ½¾ º¾ Ë Þ ÒØ Â Ö ½½ Òº Öºµ º º ÍÖ ÒØ Ù ½¾ ¹ ÂĐÙÒ Ð Ò Ö Á ÁÁ ÁÁÁ ÁÎ ÒØÖ ÐÙÒ Ú Ö ÙÑ ÙÒ ËÙÔ ÖÙÒ Ú Ö Ò ÄÓ ÐÙÒ Ú Ö ÙÑ Ø ÍÖ ÒØ Ä Ò ÙÒ Ä Ö Ò Â Ù ÛÛÛºÙÖ ÒØ ºÓÖ ½ ÛÛÛºØÖÙØ ÓÓ ºÓÑ ¾ ½ ÁÒØ ÖÒ Ø ØØÔ»»ÛÛÛºÙÖ ÒØ ºÓÖ» º ¾ ÁÒØ ÖÒ Ø ØØÔ»»ÛÛÛºØÖÙØ ÓÓ

Mehr

Betriebssysteme (BTS)

Betriebssysteme (BTS) Ä ÙÒ ÞÞ Ò ÞÙÖ ÐÙ Ð Ù ÙÖ ØÖ Ý Ø Ñ Ì˵ º ÂÙÐ ¾¼½½ Æ Ñ ÎÓÖÒ Ñ Å ØÖ ÐÒÙÑÑ Ö ËØÙ Ò Ò À ÒÛ ÌÖ Ò Ë ÞÙ Ö Ø Ù ÐÐ Ò ÐØØ ÖÒ Ò Ð Ð Ð ØØ µ Á Ö Ò Æ Ñ Ò Á Ö Ò ÎÓÖÒ Ñ Ò ÙÒ Á Ö Å ØÖ ÐÒÙÑÑ Ö Òº Ä ÙÒ Ò Ó Ò Ò Ò ÒÒ Ò Ò Ø Û

Mehr

1 Die Invariantentechnik. Algorithmen mit Intervallen. s = 0; i = 0; // i <= M while (i < M) { s = s + f(i); i = i + 1 ; // i <= M.

1 Die Invariantentechnik. Algorithmen mit Intervallen. s = 0; i = 0; // i <= M while (i < M) { s = s + f(i); i = i + 1 ; // i <= M. ĐÍ ÖÐ Ò Û Ö Ó ÈÖÓ Ö ÑÑ Ò Ò Ù ÖÙÒ Ò ÒĐÙ Ø Û Öº ÐØ ÙÒ ÒÓ Ë ÐÙ ÞÙ ÖÙÒ º Ë Û Ö ÒÙÖ ÒÒ ÆÙÒ 1 Die Invariantentechnik Algorithmen mit Intervallen Ò Û Ø Å Ø Ó ÞÙÑ Ö Ø ÐÐ Ò Ö ÒØ ÖØ ÓÖÖ Ø Ö ÈÖÓ Ö ÑÑ Ø ÁÒÚ Ö ÒØ ÒØ

Mehr

ÌĹËÝ Ø Ñ ¾

ÌĹËÝ Ø Ñ ¾ Ê Ú Ö Ò Ò Ö Ò ÞÙÖ ÈÖÓ Ö ÑÑ ÖÛ Ø ÖÙÒ ÎÓÑ Ò Ö ÖÛ Ø ÖØ Ò Ë Ö ÔØ ÔÖ Ò Ò Ñ Ê Ð ÖÙÒ ËÓ ØÛ Ö ¹ ÐØ Ý Ø Ñ ÞÙÖ ÃÖ Ø ÐÐ Ò ÐÝ Ú ÑÑ ÂÙÐÝ ¾¼¼ ½ ÌĹËÝ Ø Ñ ¾ ÅÓØ Ú Ø ÓÒ ÙÒ Ù Ò Ø ÐÐÙÒ ÙÒ Ø ÓÒ Ð ÙÒ ÓÑ ÓÖØ Ð À Ð Ñ ØØ Ð Ò

Mehr

¾ ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË º ÜÔÙÒ Ø Ñ ÒØ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾¼ º º½ Æ Ø¹ ØÖ Ø ÜÔÙÒ Ø Ñ ÒØ º º º º º º º º º º º º º º

¾ ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË º ÜÔÙÒ Ø Ñ ÒØ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾¼ º º½ Æ Ø¹ ØÖ Ø ÜÔÙÒ Ø Ñ ÒØ º º º º º º º º º º º º º º ÙÒ Ø ÓÒ Ð ÈÖÓ Ö ÑÑ ÖÙÒ ÈÖÓ º Öº ú ÁÒ ÖÑ Ö Ä Ö ØÙ Ð ĐÙÖ ÁÒ ÓÖÑ Ø ÁÁ Ê Ò ¹Ï Ø Đ Ð Ì Ò ÀÓ ÙÐ Ò ÓÖÒ ØÖ ¾¼ ¾ Ò ÏÏÏ ØØÔ»»ÛÛÛ¹ ¾º Ò ÓÖÑ Ø ºÖÛØ ¹ Òº» È» ÏË ½» Ë Ö ÔØ ½ ß½ À Ò ¹ ÓÖ Ö ÊÓ ÖÑÓÒ Ö ËØÖº ¾ ¾¼ ¾ Ò º

Mehr

A BC T EF

A BC T EF ÇϹÈÖÓ Ø ØØÔ»» Ô º Ù¹ ÖÐ Òº»ÓÛ» Ç Ë ÓÛÒÐÓ Ý Ø Ñ ÇÏ Ñ Ä ÔÞ Ö ÓÖÑ Øµ ØØÔ»» Ô º Ù¹ ÖÐ Òº»ÓÛ» ÓÛÒÐÓ» Ò ÖÙÒ Ò Ï ÓÖÔÙ ¹ Ù Ë Ö Ò Ð Ù Ö ¾¼½ ØÓ ÔÔ Öµ ØØÔ»»ÛÛÛºÑÓÖ ÒÐ ÝÔÓÓкÓÑ»ØÓ» ÐØ»½»½ Ð Ü Ð Ù Ö ÙÒ ÊÓÐ Ò Ë Ö ÐÔ

Mehr

ÁÒ Ø Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ¾ Å ÒÞ Ö ÌÖ Ø Ùѹ ¹ ÜÔ Ö Ñ ÒØ ¾º½ ÌÖ Ø Ùѹ ¹ËÔ ØÖÙÑ º º º º º º º º º º º º º º º º º º º º º º º º º ¾º¾ ÜÔ Ö Ñ ÒØ Ò Å ÒÞ º º º º º º º º º º º º º º º º º º º º º º º º ½½ ¾º¾º½

Mehr

Ê Ö ÒØ ÈÖÓ º Öº ÏÓÐ Ò ÖØÑ Ö ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Â Ò ÖÐØ Ì Ö ÈÖÓÑÓØ ÓÒ ½ º ¼ º ¾¼¼

Ê Ö ÒØ ÈÖÓ º Öº ÏÓÐ Ò ÖØÑ Ö ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Â Ò ÖÐØ Ì Ö ÈÖÓÑÓØ ÓÒ ½ º ¼ º ¾¼¼ ÍÐØÖ ÐØ Ø ÖÓÒÙ Ð Ö ¹ÅÓÐ Ð ÎÓÒ Ö ÙÐØØ Ö Å Ø Ñ Ø ÙÒ È Ý Ö ÓØØ Ö Ï Ð ÐÑ Ä Ò Þ ÍÒ Ú Ö ØØ À ÒÒÓÚ Ö ÞÙÖ ÖÐ Ò ÙÒ Ö Ó ØÓÖ Ö Æ ØÙÖÛ Ò Ø Ò ¹ Öº Ö Öº Ò Øº ¹ Ò Ñ Ø ÖØ Ø ÓÒ ÚÓÒ Ôк¹È Ý º Ì ÓÖ Ø Ò À ÒÒ Ò Ö ÓÖ Ò Ñ ¾

Mehr

= S 11 + S 21S 12 r L 1 S 22 r L

= S 11 + S 21S 12 r L 1 S 22 r L ÈÖ Ø ÙÑ Ö ÀÓ Ö ÕÙ ÒÞØ Ò Ö ËØÙ ÒØ Ò Ö Ð ØÖÓØ Ò Ä Ò Ö Ö Ö Ù ÖÑ Ö Ë ¹Î Ö ØÖ Ö Î Ö ÓÒ ½º º Å ¾¼½¾ Ó ÙÐ Ò Ð ØÖÓØ Ò ÙÒ ÁÒ ÓÖÑ Ø ÓÒ Ø Ò Ä Ö Ø ÀÓ ¹ ÙÒ À Ø Ö ÕÙ ÒÞØ Ò ÈÖÓ º Öº¹ÁÒ º Àº À Ù ÖÑ ÒÒ ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË

Mehr

ËÓÑÑ Ö Ñ Ø Ö ¾¼¼½ ÝÒ Ñ ËÝ Ø Ñ ¾ ÎÓÖÐ ÙÒ Ö ÔØ Ñ Ø ÄĐÓ ÙÒ Òµ Í Ó Ù Þ ÒØÖ Ð Ò ËÝ Ø Ñ Ö ÎÓÖÐ ÙÒ Å Ò Ð ÖÓØÑ Ò ÂÙÐ Ñ Ò ÙÒ ÒÞÙ Ø ÈÓ Ð³ Ò Ê Ñ Ø ÍÒÛÙ Ø ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ÁÒ ÐØ Ú ÖÞ Ò ÒÐ Ò Ä ÖÒÞ Ð Ú ½ ½ º ÔÖ Ð ¾¼¼½

Mehr

c 2 = a 2 + b 2 ab c 2 = h 2 + (a b 2 )2 = 3 4 b2 + a 2 ab b2 = a 2 + b 2 abº c 2 = a 2 + b 2 ab 2 h 2 = 1 2 b2 ÙÒ h = 2

c 2 = a 2 + b 2 ab c 2 = h 2 + (a b 2 )2 = 3 4 b2 + a 2 ab b2 = a 2 + b 2 abº c 2 = a 2 + b 2 ab 2 h 2 = 1 2 b2 ÙÒ h = 2 Â Ö Ò ¾ À Ø Ë ÔØ Ñ Ö ¾¼¼ Ò Ñ Ø Ñ Ø Ø Ö Ø Ö Ë Ð Ö ÒÒ Òµ ÙÒ Ä Ö Ö ÒÒ Òµ ½ ¼ Ö Ò Ø ÚÓÒ Å ÖØ Ò Å ØØÐ Ö ÒÛÖØ Ö Ù Ò ÚÓÑ ÁÒ Ø ØÙØ Ö Å Ø Ñ Ø Ò Ö ÂÓ ÒÒ ÙØ Ò Ö ¹ÍÒ Ú Ö ØØ ÞÙ Å ÒÞ Ä Ä Óµ Ö Ò Ð Ö Ä Óµ Ö Ò Ù Ò Ù Ò

Mehr

Ù ÑÑ Ò ÙÒ ÁÒ Ö Ö Ø Û Ö Ò Ù Ó Ó ÖÙÒ Ò Ò Ó Ò ÒÒØ Ö ÑÙ Ð Ö Ò¹ Ö Ö ÙÒØ Ö Ù Øº ËÓÐ Ò Ö Ö Ø ÙÑ Ò Ð µ Ò Ö Û Ð ÅÙ Ø Ö ÔÖ ÒØ Ø Ú Ì Ð Þº º Ê Ö Ò ËØÖÓÔ ºººµº Ò Ø

Ù ÑÑ Ò ÙÒ ÁÒ Ö Ö Ø Û Ö Ò Ù Ó Ó ÖÙÒ Ò Ò Ó Ò ÒÒØ Ö ÑÙ Ð Ö Ò¹ Ö Ö ÙÒØ Ö Ù Øº ËÓÐ Ò Ö Ö Ø ÙÑ Ò Ð µ Ò Ö Û Ð ÅÙ Ø Ö ÔÖ ÒØ Ø Ú Ì Ð Þº º Ê Ö Ò ËØÖÓÔ ºººµº Ò Ø Ù Ó Ó ÖÙÒ ÙÖ ÑÙ Ð Ò Ö Ö ÔÐÓÑ Ö Ø ÌÓ ÅÙÖ ØÖ Ù Ö ÍÒ Úº º Á Öº ÐÓ ËÓÒØ ÙØ Ø Ö ÓºÍÒ Úº ÈÖÓ º Å º Á Öº ÊÓ ÖØ À Ð Ö ÁÒ Ø ØÙØ Ö Ð ØÖÓÒ ÅÙ ÙÒ Ù Ø ÍÒ Ú Ö ØØ Ö ÅÙ ÙÒ Ö Ø ÐÐ Ò ÃÙÒ Ø Ö Þ Ø ÖÖ Ë ÔØ Ñ Ö ¾¼¼ Ù ÑÑ Ò ÙÒ

Mehr

¾¾ Ö ÙÖ Ã Ô Ò Ù Ö¹ÁÒ Ø ØÙØ Ö ËÓÒÒ ÒÔ Ý Ë Ö Ø Ö Ø ÙÒ Î ÖÛ ÐØÙÒ º Ⱥ à ÑÑ Ö Íº ÊÝÒ ÖÞ Û Î ÖÛ ÐØÙÒ Ð ØÙÒ µ Àº ËØÖÓ º ÈÖ Ø Ò Ò Åº Ò Ù Ö ½º½¾ºµº Ì Ò È Ö ÓÒ

¾¾ Ö ÙÖ Ã Ô Ò Ù Ö¹ÁÒ Ø ØÙØ Ö ËÓÒÒ ÒÔ Ý Ë Ö Ø Ö Ø ÙÒ Î ÖÛ ÐØÙÒ º Ⱥ à ÑÑ Ö Íº ÊÝÒ ÖÞ Û Î ÖÛ ÐØÙÒ Ð ØÙÒ µ Àº ËØÖÓ º ÈÖ Ø Ò Ò Åº Ò Ù Ö ½º½¾ºµº Ì Ò È Ö ÓÒ Â Ö Ö Ø ¾¼¼ Å ØØ ÐÙÒ Ò Ö ØÖÓÒÓÑ Ò ÐÐ Ø ¾¼¼ µ ¾¾ ¾ ½ Ö ÙÖ º Öº Ã Ô Ò Ù Ö¹ÁÒ Ø ØÙØ Ö ËÓÒÒ ÒÔ Ý Ë Ò ØÖ ½¼ Ö ÙÖ Ì Ðº ¼ ½µ ½ ¹¼ Ü ¼ ½µ ½ ¹½½½ ¹Å Ð Ö ºÙÒ ¹ Ö ÙÖ º ÏÏÏ ØØÔ»»ÛÛÛº ºÙÒ ¹ Ö ÙÖ º Ù Ò Ø ÐÐ Ñ Ç ÖÚ ØÓÖ

Mehr

: lim. f(x) = o(1) Ö x 0. f(x) = o(g(x)) Ö x. x 2 = lim. x 0 lim

: lim. f(x) = o(1) Ö x 0. f(x) = o(g(x)) Ö x. x 2 = lim. x 0 lim Ì Ð ÁÁ Ä Ò Ö Ð ÙÒ Ý Ø Ñ ¹ Ö Ø Å Ø Ó Ò Ä Ò Ù¹ËÝÑ ÓÐ Ä Ò Ù¹ËÝÑ ÓÐ Ð Ò Î Ö ÐØ Ò ÚÓÒ ÙÒ Ø ÓÒ Ò Ò Ò Ö ÍÑ ¹ ÙÒ ÚÓÒ Ø ÑÑØ Ò Ï ÖØ Ò ÞÙ Ð Þ Ö Òº Ò Ø ÓÒ º½º Ò f,g : D R R ÙÒ Ø ÓÒ Ò ÙÒ a D Ò ÀÙ ÙÒ ÔÙÒ Øº ÐØ f(x)

Mehr

f : N R a 1 = = 2 a 2 = = 1 a 3 = = 6 a 4 = = 13 a 5 = = 22

f : N R a 1 = = 2 a 2 = = 1 a 3 = = 6 a 4 = = 13 a 5 = = 22 Å Ø Ñ Ø º Ë Ñ Ø Ö ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ½ ÁÒ ÐØ Ú ÖÞ Ò ½ ÓÐ Ò Ä ½º½ Ö Ö Ö ÓÐ ½Ä º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ ÜÔÐ Þ Ø ÙÒ Ö ÙÖ Ú Ö ÙÒ ÚÓÒ ÓÐ Ò Ä º º º º º º º º º ½º ËÙÑÑ Ò¹ ÙÒ ÈÖÓ Ù

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½ ÂÓ ÒÒ Ö ÌĐ Ù Ö ½ ¼ ½ º½ÂÓ ÒÒ Û Ö Æ ÖĐ Ö ½ º¾ Ö ÌÓ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ¼ º º º º º º

ÁÒ ÐØ Ú ÖÞ Ò ½ ÂÓ ÒÒ Ö ÌĐ Ù Ö ½ ¼ ½ º½ÂÓ ÒÒ Û Ö Æ ÖĐ Ö ½ º¾ Ö ÌÓ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ¼ º º º º º º ÍÖ ÒØ Ù ½ ¹ ÂÓ ÒÒ Ö ÌĐ Ù Ö Á ÁÁ ÁÁÁ ÁÎ ÒØÖ ÐÙÒ Ú Ö ÙÑ ÙÒ ËÙÔ ÖÙÒ Ú Ö Ò ÄÓ ÐÙÒ Ú Ö ÙÑ Ø ÍÖ ÒØ Ä Ò ÙÒ Ä Ö Ò Â Ù ÛÛÛºÙÖ ÒØ ºÓÖ ½ ÛÛÛºØÖÙØ ÓÓ ºÓÑ ¾ ½ ÁÒØ ÖÒ Ø ØØÔ»»ÛÛÛºÙÖ ÒØ ºÓÖ» º ¾ ÁÒØ ÖÒ Ø ØØÔ»»ÛÛÛºØÖÙØ

Mehr

½ Î Ê ÆÌÄÁ ÀÍÆ Æ ¾ º ʺ À ÔÔÐ Ö Àº Ë Û Ö ÙÒ ÀºÇº ÄÙØÞ È ÓØÓ Ð ØÖÓÒ¹ Ô ØÖÓ ÓÔÝ Ó ÅÙÐØ Ô ÓØÓÒ ÓÒ Þ Ø ÓÒ Ó Ê Ö Û Ø ÖÙÖ¹ Ð ÖÐÝ Ò Ð Ò ÖÐÝ ÔÓÐ Ö Þ Ð Ø Ø Ö Ø

½ Î Ê ÆÌÄÁ ÀÍÆ Æ ¾ º ʺ À ÔÔÐ Ö Àº Ë Û Ö ÙÒ ÀºÇº ÄÙØÞ È ÓØÓ Ð ØÖÓÒ¹ Ô ØÖÓ ÓÔÝ Ó ÅÙÐØ Ô ÓØÓÒ ÓÒ Þ Ø ÓÒ Ó Ê Ö Û Ø ÖÙÖ¹ Ð ÖÐÝ Ò Ð Ò ÖÐÝ ÔÓÐ Ö Þ Ð Ø Ø Ö Ø ÈÖÓ º Öº Ë Ö Â ØÞ Ä Ø Ö Î Ö ÒØÐ ÙÒ Ò ÎÓÖØÖ Ä ÖÚ Ö Ò Ø ÐØÙÒ Ò ÙÒ ÜÔÓÒ Ø Ù Ù Ø ¾¼½½ ½ ½º½ Î Ö ÒØÐ ÙÒ Ò Ø Ö Ø Ò ½º ʺ À ÔÔÐ Ö Àº¹Âº ÀÙÑÔ ÖØ Àº Ë Û Ö ÙÒ ÀºÇº ÄÙØÞ Ò ÙÐ Ö ØÖ ÙØ ÓÒ Ó Ô ÓØÓ Ð ØÖÓÒ ÖÓÑ ÑÙÐØ Ô

Mehr

½º ÒÐ ØÙÒ ¾º Î Ö Ð Ò Ð Ø ÓÒ Ð Ò Ö Ö Ê Ö ÓÒ º ÍÒ Ú Ö Ø ÒÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ º Ø ÒØÖ Ò ÓÖÑ Ø ÓÒ º ÊÓ Ù Ø Ë ØÞÙÒ º Ø Ú Ñ Ô Ö Ñ ØÖ Ê Ö ÓÒ ½

½º ÒÐ ØÙÒ ¾º Î Ö Ð Ò Ð Ø ÓÒ Ð Ò Ö Ö Ê Ö ÓÒ º ÍÒ Ú Ö Ø ÒÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ º Ø ÒØÖ Ò ÓÖÑ Ø ÓÒ º ÊÓ Ù Ø Ë ØÞÙÒ º Ø Ú Ñ Ô Ö Ñ ØÖ Ê Ö ÓÒ ½ ÆÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ ÙÒØ Ö Î ÖÛ Ò ÙÒ Ý Ò Ö Î Ö Ð Ò Ð Ø ÓÒ ¹ źËÑ Ø ² ʺÃÓ Ò ¹ ½º ÒÐ ØÙÒ ¾º Î Ö Ð Ò Ð Ø ÓÒ Ð Ò Ö Ö Ê Ö ÓÒ º ÍÒ Ú Ö Ø ÒÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ º Ø ÒØÖ Ò ÓÖÑ Ø ÓÒ º ÊÓ Ù Ø Ë ØÞÙÒ º Ø Ú Ñ Ô Ö Ñ ØÖ

Mehr

Grundtypen von Lägern

Grundtypen von Lägern º Ä Ö Ý Ø Ñ Ñ Ö Î Á¹Ê ØÐ Ò ¾ ½½ Ø Ä ÖÒ ÔÐ ÒØ Ä Ò Ö Ø ¹ Ò Ø Ò Ñ Å Ø Ö Ð Ù º Ä Ö Ø Ò Ê ÙÑ ÞÛº Ò Ð ÞÙÑ Ù Û Ö Ò ÚÓÒ ËØ ¹ ÙÒ»Ó Ö Ë ØØ ÙØ Ò ÓÖÑ ÚÓÒ ÊÓ ØÓ Ò Û ¹ ÒÔÖÓ Ù Ø Ò Ó Ö ÖØ Û Ö Ò Ñ Ò Ò¹ ÙÒ»Ó Ö Û ÖØÑ Ö Ø

Mehr

Ê Ñ Ò¹ËÔ ØÖÓ ÓÔ Ò Ò Ö Ñ Ò ÓÒ Ð Ò Ð ØÖÓÒ Ò Ý Ø Ñ Ò ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö Ö È Ý Ö ÍÒ Ú Ö ØĐ Ø À Ñ ÙÖ ÚÓÖ Ð Ø ÚÓÒ Þ Ö ÍÐÖ Ù À Ñ ÙÖ À Ñ ÙÖ ¾¼¼¼ ÙØ Ø Ö Ö ÖØ Ø ÓÒ ÙØ Ø Ö Ö ÔÙØ Ø ÓÒ ØÙÑ Ö ÔÙØ Ø ÓÒ ËÔÖ Ö

Mehr

)XQGDPHQWDOH &3$ /DVHU QP 6WHXHUXQJ 'DWHQDXIQDKPH 9HU] JHUXQJV VWUH NH /R N,Q :HL OL KWN YHWWH KURPDWRU 3KRWRGLRGH )LOWHU,) =HUKD NHU 0RQR 3UREH

)XQGDPHQWDOH &3$ /DVHU QP 6WHXHUXQJ 'DWHQDXIQDKPH 9HU] JHUXQJV VWUH NH /R N,Q :HL OL KWN YHWWH KURPDWRU 3KRWRGLRGH )LOWHU,) =HUKD NHU 0RQR 3UREH Ã Ô Ø Ð ¾ ÜÔ Ö Ñ ÒØ ÐÐ Å Ø Ó Ò ¾º½ ÒÐ ØÙÒ ÖÓÑÓÔÖÓØ Ò Û Ò Ò Ø Ù Ö ÓÐÓ Ê Ø ÓÒ ÙÖ Ä Ø¹ ÓÖÔØ ÓÒ ÒÞÙØÖ Òº Ù Ñ ÖÙÒ Û Ö Ò Ä Ø ØÖ Ð ÞÙÖ ÒÖ ÙÒ ÈÖÓØ Ò ÙÒ ÞÙÑ ËØ ÖØ Ö Ê Ø ÓÒ Ò Ø Øº Ñ Ø Ú Ö ÙÒ Ò Ò ÖÙÒ Ð ØÖÓÒ Ò Ù Ø

Mehr

Ö Ø Ö Ø ÃÓÒÞ ÔØ ÓÒ ÙÒ Ê ÖÙÒ Ò Ö Ù ÓÒ Ô Øع ÓÖÑ Ù ÒÒØ Ò Í Ò Ø ÍÒ Ü Í Ö Æ ØÛÓÖ µº Ä ÙÒ ÙÑ Ø Ò Ò Æ Û ÖÙÔÔ Ò¹Ë ÖÚ Ö Ö Ö Ò Ò Ò ÙÒ Ò Ò Ö Ø ÓÒ Ø Ò¹ Ò Ñ Ò Ñ Ò

Ö Ø Ö Ø ÃÓÒÞ ÔØ ÓÒ ÙÒ Ê ÖÙÒ Ò Ö Ù ÓÒ Ô Øع ÓÖÑ Ù ÒÒØ Ò Í Ò Ø ÍÒ Ü Í Ö Æ ØÛÓÖ µº Ä ÙÒ ÙÑ Ø Ò Ò Æ Û ÖÙÔÔ Ò¹Ë ÖÚ Ö Ö Ö Ò Ò Ò ÙÒ Ò Ò Ö Ø ÓÒ Ø Ò¹ Ò Ñ Ò Ñ Ò ÒØÛ ÙÒ Ò Æ Û ÖÙÔÔ Ò¹Ë ÖÚ Ö Ñ Ø Ø Ò Ò Ò Ò ÙÒ ÙÒ Å Ò Ø Ò¹ Ø Û Ý Ö Ø Ò Ä Ò Ö Ø Òº Ò ¹Ó Ò ÖÙ º ¾ º ÂÙÒ ¾¼¼ Ö Ø Ö Ø ÃÓÒÞ ÔØ ÓÒ ÙÒ Ê ÖÙÒ Ò Ö Ù ÓÒ Ô Øع ÓÖÑ Ù ÒÒØ Ò Í Ò Ø ÍÒ Ü Í Ö Æ ØÛÓÖ µº Ä ÙÒ ÙÑ Ø Ò Ò Æ Û

Mehr

[π i, π j ] = p i e c A i, p j e ] c F ij = ie. c ǫ ijkb k, t ρ + = 0. H = 1. c c 2 2

[π i, π j ] = p i e c A i, p j e ] c F ij = ie. c ǫ ijkb k, t ρ + = 0. H = 1. c c 2 2 Ã Ô Ø Ð ½¼ Ð Ò Ì Ð Ò Ñ Ð ØÖÓÑ Ò Ø Ò Ð ÁÒØ Ö ÒØ Ø Ö Ø ÒÛÖØ ÜÔ Ö Ñ ÒØ ÚÓÒ ËØ ÖÒ ÙÒ Ö¹ Ð º Ò Ø ÐÐÙÒ Ö ØÓÑ Ó Ò Ù ÑÑ Ò Ø Ø Ò Ò ØÞ Ò ÖÐ ÙÒ Ñ Ø Ó Ò ÙÖ ËØÖ ÐÙÒ Ò Ø ÞÙ Ú Ö Ø Ò Ò Ò Ø ÐÐÙÒ ÓÐй Ø ÚÓÒ Ê Ø Û Ò Ñ Ö

Mehr

Ë Ö Ø ÒĐÙ ÖØÖ ÙÒ ĐÙ Ö ÁÒØ ÖÒ Ø Ñ ØØ Ð ÁÈË ËØÙ Ò Ö Ø ÎÓÖ Ð Ø ÚÓÒ Ì ÐÓ ÊÙ ÞÙÖ ÙØ ØÙÒ ÙÖ ÈÖÓ º Öº ÃÐ Ù ÖÙÒÒ Ø Ò ½ º Þ Ñ Ö ½ ÍÒ Ú Ö ØĐ Ø À Ñ ÙÖ Ö ÁÒ ÓÖÑ Ø Ö Ø Ö ÒÛ Ò ÙÒ Ò Ö ÁÒ ÓÖÑ Ø Ò Ø ¹ ÙÒ Æ ØÙÖÛ Ò Ø Ò ÁÒ

Mehr

t r+1 t ÓÖ : {P[1..q] 0 q m} {P[1..q] 0 q < m} { },

t r+1 t ÓÖ : {P[1..q] 0 q m} {P[1..q] 0 q < m} { }, Ã Ô Ø Ð Ì ÜØ Ð ÓÖ Ø Ñ Ò º½ º½º½ ÖÙÒ Ö ÈÖÓ Ð Ñ ÁÒ Ñ Ã Ô Ø Ð Ø ÙÑ ÈÖÓ Ð Ñ Ö Ì ÜØ Ù Ò Ðº Ô ØØ ÖÒ Ñ Ø Ò µº ÁÑ À ÒØ Ö ÖÙÒ Ø Ø ÑÑ Ö Ò ÐÔ Ø Σ Ñ Ø Σ 2 ÞÙÑ Ô Ð {0,1} ÒÖ ÐÔ Ø Ë ÁÁ ÐÔ Ø Ö ¾ Ë ÁÁ¹ Ù Ø Ò {0,1} 8 ÒÖ

Mehr

ÈÓØ Ñ ØÖÓÔ Ý Ð ÁÒ Ø ØÙØ ½ È Ö ÓÒ Ð ÙÒ Ù Ø ØØÙÒ ½º½ È Ö ÓÒ Ð Ø Ò ÚÓÑ ½º½¾º¾¼¼½ Ï Ò ØÐ Ö ÎÓÖ Ø Ò ÈÖÓ º Öº ÃÐ Ù º ËØÖ Ñ Ö Ñ Ò ØÖ Ø Ú Ö ÎÓÖ Ø Ò È Ø Ö º ËØ

ÈÓØ Ñ ØÖÓÔ Ý Ð ÁÒ Ø ØÙØ ½ È Ö ÓÒ Ð ÙÒ Ù Ø ØØÙÒ ½º½ È Ö ÓÒ Ð Ø Ò ÚÓÑ ½º½¾º¾¼¼½ Ï Ò ØÐ Ö ÎÓÖ Ø Ò ÈÖÓ º Öº ÃÐ Ù º ËØÖ Ñ Ö Ñ Ò ØÖ Ø Ú Ö ÎÓÖ Ø Ò È Ø Ö º ËØ Â Ö Ö Ø ¾¼¼½ Å ØØ ÐÙÒ Ò Ö ØÖÓÒÓÑ Ò ÐÐ Ø ¾¼¼¾µ ½ ÈÓØ Ñ ØÖÓÔ Ý Ð ÁÒ Ø ØÙØ ÈÓØ Ñ ¼ ÐÐ Ñ Ò ËØ ÖÒÛ ÖØ Ð Ö Ò Ö ËØ ÖÒÛ ÖØ ½ ¹½ ¾ ÈÓØ Ñ Ì Ð ÓÒ ¼ ½µ ¼ Ì Ð Ü ¼ ½µ ¾ ¹Å Ð Ö ØÓÖ Ôº ÁÒØ ÖÒ Ø ØØÔ»»ÛÛÛº Ôº Ù Ò Ø ÐÐ Ò

Mehr

Ø ØØÐ Ö ÐÖÙÒ À ÖÑ Ø Ú Ö Ö ÚÓÖÐ Ò ÔÐÓÑ Ö Ø Ó Ò À Ð Ö ØØ Ö ÙÒ ÒÙÖ Ñ Ø Ò Ò Ò Ò ÉÙ ÐÐ Ò ÙÒ À Ð Ñ ØØ ÐÒ Ò ÖØ Ø º Ö Ø Ø Ò Ð Ö Ó Ö ÒÐ Ö ÓÖÑ ÒÓ Ò Ö ÈÖ ÙÒ Ö ÚÓ

Ø ØØÐ Ö ÐÖÙÒ À ÖÑ Ø Ú Ö Ö ÚÓÖÐ Ò ÔÐÓÑ Ö Ø Ó Ò À Ð Ö ØØ Ö ÙÒ ÒÙÖ Ñ Ø Ò Ò Ò Ò ÉÙ ÐÐ Ò ÙÒ À Ð Ñ ØØ ÐÒ Ò ÖØ Ø º Ö Ø Ø Ò Ð Ö Ó Ö ÒÐ Ö ÓÖÑ ÒÓ Ò Ö ÈÖ ÙÒ Ö ÚÓ Ö ÁÒ ÓÖÑ Ø Ø Ë Ö Ø Ò Ö ÁÒ ÓÖÑ Ø ÓÒ Ø Ò Ö ÙÒ Ó Ö¹ÁÒ Ø ØÙØ Ö Ë Ö ÁÒ ÓÖÑ Ø ÓÒ Ø ÒÓÐÓ ËÁÌ ÈÖÓ º Öº Ð Ù ÖØ Ì Ò ÍÒ Ú Ö ØØ ÖÑ Ø Ø ÔÐÓÑ Ö Ø Ë Ö ÐÙ ØÓÓØ ¹ÃÓÑÑÙÒ Ø ÓÒ Ò ¹ Ó¹ËÞ Ò Ö Ò ÂÙÐ Ò Ë ØØ ¾º ÅÖÞ ¾¼¼ ØÖ Ù Ö

Mehr

R = λ 1 f(r) = sf(x 1,x 2,...,x n ) ¾º µ

R = λ 1 f(r) = sf(x 1,x 2,...,x n ) ¾º µ Ë Ñ Ò Ö ÞÙÖ Ì ÓÖ Ö ØÓÑ Ã ÖÒ ÙÒ ÓÒ Ò ÖØ Ò Å Ø Ö Æ ØÞÐ Ì ÓÖ Ñ ÙÒ Ö ÒÛ Ò ÙÒ Ò Ö ÅÓÐ ÐÔ Ý Ä Ä Ò ¾ ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ¾ ÙÐ Ö¹Ì ÓÖ Ñ ¾º½ ÀÓÑÓ Ò ØØ Ò Ö ÙÒ Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º

Mehr

¾ Ê Ö ÒØ ÈÖÓ º Öº ÏÓÐ Ò ÖØÑ Ö ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Ã Ö Ø Ò ÒÞÑ ÒÒ Ì Ö ÈÖÓÑÓØ ÓÒ ¾ º ÆÓÚ Ñ Ö ¾¼¼

¾ Ê Ö ÒØ ÈÖÓ º Öº ÏÓÐ Ò ÖØÑ Ö ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Ã Ö Ø Ò ÒÞÑ ÒÒ Ì Ö ÈÖÓÑÓØ ÓÒ ¾ º ÆÓÚ Ñ Ö ¾¼¼ Ó ÒÐ Ö Ñ Ø À ÖØÞ¹Ä Ò Ò Ö Ø ĐÙÖ Ò ÓÔØ Ð Ùѹ Ö ÕÙ ÒÞÒÓÖÑ Ð ÎÓÑ Ö È Ý Ö ÍÒ Ú Ö ØĐ Ø À ÒÒÓÚ Ö ÞÙÖ ÖÐ Ò ÙÒ Ö Ó ØÓÖ Ö Æ ØÙÖÛ Ò Ø Ò Öº Ö Öº Ò Øº Ò Ñ Ø ÖØ Ø ÓÒ ÚÓÒ Ôк¹È Ý º À Ö Ó ËØÓ Ö ÓÖ Ò Ñ ½ º¼ º½ ½ Ò À Ð

Mehr

t r+1 t ÓÖ : {P[1..q] 0 q m} {P[1..q] 0 q < m} { },

t r+1 t ÓÖ : {P[1..q] 0 q m} {P[1..q] 0 q < m} { }, Ã Ô Ø Ð Ì ÜØ Ð ÓÖ Ø Ñ Ò º½ º½º½ ÖÙÒ Ö ÈÖÓ Ð Ñ ÁÒ Ñ Ã Ô Ø Ð Ø ÙÑ ÈÖÓ Ð Ñ Ö Ì ÜØ Ù Ò Ðº Ô ØØ ÖÒ Ñ Ø Ò µº ÁÑ À ÒØ Ö ÖÙÒ Ø Ø ÑÑ Ö Ò ÐÔ Ø Σ Ñ Ø Σ 2 ÞÙÑ Ô Ð {0,1} ÒÖ ÐÔ Ø {,,, Ì} ½ Ë ÁÁ Ò Ð Ö Ó Ñ Ø ½¾ Ò Ö ØÑ

Mehr

ÌÐ ÁÁ ÏØ ËÐĐÙ ÐÞÖĐÐÐ ĐÙÖ ¹ÖÒ ß Â Ã Ë ÙÖ ØÑÑÙÒ ÚÓÒ ß ØÑÑÙÒ ÚÓÒ «ß µ ÙÖ ØÑÑÙÒ ÚÓÒ ¾ ȹÎÖÐØÞÙÒ Ò ÐÒÒ ¹ÖĐÐÐÒ ß ÑÔÐØÙÒÖÐØÓÒÒ ß Ù Ã ÙÖ ØÑÑÙÒ ÚÓÒ ß ÙÖ ØÑÑÙÒ

ÌÐ ÁÁ ÏØ ËÐĐÙ ÐÞÖĐÐÐ ĐÙÖ ¹ÖÒ ß Â Ã Ë ÙÖ ØÑÑÙÒ ÚÓÒ ß ØÑÑÙÒ ÚÓÒ «ß µ ÙÖ ØÑÑÙÒ ÚÓÒ ¾ ȹÎÖÐØÞÙÒ Ò ÐÒÒ ¹ÖĐÐÐÒ ß ÑÔÐØÙÒÖÐØÓÒÒ ß Ù Ã ÙÖ ØÑÑÙÒ ÚÓÒ ß ÙÖ ØÑÑÙÒ ¹ÈÝ ÙÒ È¹ÎÖÐØÞÙÒ ÌÓÖØ ÖÙÒÐÒ ÊÓÖØ Ð Ö Ë ÀÑÙÖ ÌÓÖ¹ÖÙÔÔ ¾º ÀÖ Ø ÙÐ ĐÙÖ ÀÓÒÖÔÝ ÅÖ Ä ¼ºß½º ËÔØÑÖ ¾¼¼¼ ÁÁµ ÌÐ ÁÁ ÏØ ËÐĐÙ ÐÞÖĐÐÐ ĐÙÖ ¹ÖÒ ß Â Ã Ë ÙÖ ØÑÑÙÒ ÚÓÒ ß ØÑÑÙÒ ÚÓÒ «ß µ ÙÖ ØÑÑÙÒ ÚÓÒ ¾ ȹÎÖÐØÞÙÒ Ò ÐÒÒ ¹ÖĐÐÐÒ

Mehr

ÃÓÒÞÔØÓÒ Ò ÙØ Ò ØÒÒÜ ĐÙÖ ÓÖ ÙÒ ÞÛ Çµ ÀÖÑÒÒ ĐÓÔÔÐ ÀÒÖ ËĐÙØÞ Ù ÓÒ ÔÔÖ ÆÖº ½¾ ÃÙÖÞ ÙÒ ĐÙÖ ÏÓÖÐÏÏ ØÙÐÐ ÎÖ ÓÒ ÂÒÙÖ ½ ÊĐÙÖÒ ØØ Ò ÓÐÒ Ö ÁÒ ØØÙØ ĐÙÖ ÒØ ÙÒ ØÓÖ ÙÒ ÍÒØÖÒÑÒ ÓÖ ÙÒ ÍÒÚÖ ØĐØ ÃÖÐ ÖÙ ÌÀµ ÈÓ Ø ¼ ½¾ ÃÖÐ

Mehr

Å ØØ ÐÙÒ Ò Ö ØÖÓÒÓÑ Ò ÐÐ Ø ¾¼¼¼µ ½¼ ¾ Ì Ò Ò ÁÒ Ø ØÙØ Ö ØÖÓÒÓÑ ÙÒ ØÖÓÔ Ý Áº Ø ÐÙÒ ØÖÓÒÓÑ Ï Ð Ù Ö ËØÖ ¾¼ Ì Ò Ò Ì Ðº ¼ ¼ ½µ¾ ¹ ¾ Ü ¼ ¼ ½µ¾ ¹ ¹Å Ð Æ Ò Ñ Ø

Å ØØ ÐÙÒ Ò Ö ØÖÓÒÓÑ Ò ÐÐ Ø ¾¼¼¼µ ½¼ ¾ Ì Ò Ò ÁÒ Ø ØÙØ Ö ØÖÓÒÓÑ ÙÒ ØÖÓÔ Ý Áº Ø ÐÙÒ ØÖÓÒÓÑ Ï Ð Ù Ö ËØÖ ¾¼ Ì Ò Ò Ì Ðº ¼ ¼ ½µ¾ ¹ ¾ Ü ¼ ¼ ½µ¾ ¹ ¹Å Ð Æ Ò Ñ Ø Å ØØ ÐÙÒ Ò Ö ØÖÓÒÓÑ Ò ÐÐ Ø ¾¼¼¼µ ¼ Ì Ò Ò ÍÒ Ú Ö ØØ Ì Ò Ò ÁÒ Ø ØÙØ Ö ØÖÓÒÓÑ ÙÒ ØÖÓÔ Ý ¼ ÐÐ Ñ Ò ÁÒ Ø ØÙØ Ö ØÖÓÒÓÑ ÙÒ ØÖÓÔ Ý ÛÙÖ Ñ º  ÒÙ Ö ½ Ö Ò Ø ÙÖ Ù ÑÑ ÒÐ ÙÒ Ö Ö Ò ÒÖ ØÙÒ Ò ØÖÓÒÓÑ ÁÒ Ø ØÙØ Ä Ö¹ ÙÒ ÓÖ¹

Mehr

ËØ Ø Ø Ò ÐÝ ÚÓÒ Î Ö Ö Ø Ò ÙÒ ÅÓ ÐÐ ÖÙÒ ÚÓÒ Î Ö Ö Ù Ñ ØØ Ð Þ ÐÐÙÐ Ö Ö ÙØÓÑ Ø Ò ÎÓÑ Ö È Ý ß Ì ÒÓÐÓ Ö Ö Ö ¹Å Ö ØÓÖ¹ÍÒ Ú Ö ØĐ Ø Ù ÙÖ ÞÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö Ò Ó ØÓÖ Ö Æ ØÙÖÛ Ò Ø Ò Ò Ñ Ø ÖØ Ø ÓÒ ÚÓÒ ÄÙØÞ Æ Ù ÖØ Ù

Mehr

ÐØÖÓÒ Ò ØÒ ÚÓÒ ÑÒØ ÙÒ ÑÒØÖØÒ ÃÓÐÒ ØÓ«Ò ÁËËÊÌÌÁÇÆ ÞÙÖ ÖÐÒÙÒ Ñ Ò Ö ÓØÓÖ ÖÖÙÑ ÒØÙÖÐÙÑ Öº ÖÖº Òغµ ÚÓÖÐØ Ö ÙÐØĐØ ÅØÑØ ÙÒ ÆØÙÖÛ Ò ØÒ Ö ÌÒ Ò ÍÒÚÖ ØĐØ Ö Ò ÚÓÒ Ôк¹ÈÝ º ËØÔÒ ÏÑÒÒ ÓÖÒ Ñ ¾º½¼º½ Ò ÊÐÒÒ ÙØØÖ ÈÖÓº

Mehr

Daniel Senkowski: Neuronal Correlates of Selective Attention. Leipzig: Max Planck Institute for Human Cognitive and Brain Sciences, 2004 (MPI Series

Daniel Senkowski: Neuronal Correlates of Selective Attention. Leipzig: Max Planck Institute for Human Cognitive and Brain Sciences, 2004 (MPI Series Daniel Senkowski: Neuronal Correlates of Selective Attention. Leipzig: Max Planck Institute for Human Cognitive and Brain Sciences, 2004 (MPI Series in Human Cognitive and Brain Sciences; 42) Æ ÙÖÓÒ Ð

Mehr

ÉÙ ¹ÆÛØÓÒ¹ÎÖÖÒ ĐÙÖ ÒØ«ÖÒÞÖÖ ÓÒÚÜ ÇÔØÑÖÙÒ ÙÒ ÔÐÓÑÖØ ÚÓÖÐØ ÚÓÒ Ò ÊĐÙÖ Ù ËÐÞØØÖ ÒÖØØ Ñ ÁÒ ØØÙØ ĐÙÖ ÆÙÑÖ ÙÒ ÒÛÒØ ÅØÑØ Ö ÓÖ¹Ù٠عÍÒÚÖ ØĐØ ÞÙ ĐÓØØÒÒ ¾¼¼¾ ÁÒÐØ ÚÖÞÒ ÒÐØÙÒ ¾ ÃÓÒÚÜ ÙÒØÓÒÒ ¾º Ò ØÒ º º º º º º º

Mehr

Ø ÑÑÙÒ Ö Ä Ò Ö ØØ ÙÒ Ò Ö Ù ÙÒ ÚÓÒ Ð Ð ÑÓ ÙÐ Ò Ñ Ð ØÖÓÑ Ò Ø Ò Ã ÐÓÖ Ñ Ø Ö Ñ ÇÅÈ Ë˹ ÜÔ Ö Ñ ÒØ ÔÐÓÑ Ö Ø ÚÓÒ ÓÑ Ó ¹Å Ö Ó ÓØ ÁÒ Ø ØÙØ Ö Ã ÖÒÔ Ý ÂÓ ÒÒ ÙØ Ò Ö ¹ÍÒ Ú Ö ØØ Å ÒÞ ¼º ÔÖ Ð ¾¼¼ ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ

Mehr

ÁÈÄÇÅ Ê ÁÌ Î Ö Ð Ú Ö Ò Ö ÊÓØÓÖ ØÖÙ ØÙÖ Ò Ò Ô Þ Ø Ú Ò Ö ÑÓÑ ÒØ Ò ÓÖ Ù ĐÙ ÖØ Ñ ÁÒ Ø ØÙØ ĐÙÖ Ò Û Ò Ø Ð ØÖÓÒ ÙÒ ÉÙ ÒØ Ò Ð ØÖÓÒ Ö Ì Ò Ò ÍÒ Ú Ö ØĐ Ø Ï Ò ÙÒØ Ö ÒÐ ØÙÒ ÚÓÒ ÍÒ ÚºÈÖÓ º Ôк¹ÁÒ º ÖºØ Òº ÓÖ Ö ÙÖ Ôк¹ÁÒ

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ½º½ ØÝÓ Ø Ð ÙÑ Ó ÙÑ Ð ÅÓ ÐÐÓÖ Ò ÑÙ º º º º º º º º º º º º º º º ½º¾ ÝØÓ Ð ØØ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º Ø Ò Ò Ò ÈÖÓØ Ò Ò ØÝÓ Ø Ð ÙÑ Ó ÙÑ

Mehr

ÔÐÓÑ Ö Ø ÍÒ Ú Ö ØØ À Ñ ÙÖ Ö ÁÒ ÓÖÑ Ø Ö Ø Ö Æ ÒÛ Ò ÙÒ Ò Ö ÁÒ ÓÖÑ Ø Ò Ø ¹ ÙÒ Æ ØÙÖÛ Ò Ø Òµ Ò ÁÌ¹Ë Ö Ø ÓÒÞ ÔØ Ö Ò Û Ò ØÐ ÒÖ ØÙÒ Ñ Ô Ð Ö ÁÒ ÓÖÑ Ø Ö ÍÒ Ú Ö ØØ À Ñ ÙÖ Ì Ð ÁÁÁ ÖÐÙØ ÖÙÒ Ò Â Ò Æ ÓÒ Ö ØÖ ¾ ¾¾ ½

Mehr