Aussagen Interpretation Verknüpfen von Aussagen Tautologie und Widerspruch Äquivalenz

Größe: px
Ab Seite anzeigen:

Download "Aussagen Interpretation Verknüpfen von Aussagen Tautologie und Widerspruch Äquivalenz"

Transkript

1 Aussagenlogik

2 Aussagen Interpretation Verknüpen von Aussagen Tautologie und Widerspruch Äquivalenz

3 Aussagen

4 Aussagen Eine Aussage ist ein Satz, dem sich ein eindeutiger Wahrheitsert ahr (kurz bz. 1) oder alsch (kurz bz. 0) zuordnen lässt.

5 Aussagen Ein Satz, dem sich ein eindeutiger Wahrheitsert zuordnen lässt.

6 Aussagen Ein Satz, dem sich ein eindeutiger Wahrheitsert zuordnen lässt. Beispiel: Die Katze ist scharz.

7 Aussagen Ein Satz, dem sich ein eindeutiger Wahrheitsert zuordnen lässt. Beispiel: Die Katze ist scharz. 2 und 4 sind Primzahlen.

8 Aussagen Ein Satz, dem sich ein eindeutiger Wahrheitsert zuordnen lässt. Beispiel: Die Katze ist scharz. Gegenbeispiel: Ist die Katze scharz? 2 und 4 sind Primzahlen.

9 Aussagen Ein Satz, dem sich ein eindeutiger Wahrheitsert zuordnen lässt. Beispiel: Die Katze ist scharz. 2 und 4 sind Primzahlen. Gegenbeispiel: Ist die Katze scharz? Schau hin!

10 Aussagen Die Katze ist scharz.

11 Aussagen A := Die Katze ist scharz.

12 Aussagen A := Die Katze ist scharz. Die Katze ist scharz. =: A

13 Aussagen A := Die Katze ist scharz. Die Katze ist scharz. =: A A ird deiniert als Die Katze ist scharz..

14 Interpretation

15 Interpretation Eine Interpretation gibt die Bedeutung und damit den Wahrheitsert einer Aussage an.

16 Interpretation Gibt den Wahrheitsert einer Aussage an. A := Die Katze ist scharz.

17 Interpretation Gibt den Wahrheitsert einer Aussage an. A := Die Katze ist scharz. ahr

18 Interpretation Gibt den Wahrheitsert einer Aussage an. A := Die Katze ist scharz. ahr alsch

19 Verknüpen von Aussagen

20 Verknüpen von Aussagen Junktoren sind selbst keine Aussagen, können aber genutzt erden, um Teilaussagen zu neuen, komplexeren Aussagen zu verknüpen.

21 Negation Nicht

22 Negation Nicht A := Die Katze ist scharz. ( A) = Die Katze ist nicht scharz.

23 Negation Nicht Bei der Negation ist der neue Wahrheitsert das Gegenteil des alten Wahrheitsertes.

24 Negation Nicht A ( A)

25 Konjunktion Und

26 Konjunktion Und A := Die Katze ist scharz. B := Die Katze miaut. (A B) = Die Katze ist scharz und sie miaut.

27 Konjunktion Und Bei der Konjunktion müssen beide der Teilaussagen ahr sein, damit die neue Aussage ahr ist.

28 Konjunktion Und A B (A B)

29 Disjunktion Oder

30 Disjunktion Oder A := Die Katze ist scharz. B := Die Katze miaut. (A B) = Die Katze ist scharz oder sie miaut.

31 Disjunktion Oder Beim Inklusiven Oder muss mindestens eine der Teilaussagen ahr sein.

32 Disjunktion Oder A B (A B)

33 Kontravalenz Enteder oder

34 Kontravalenz Enteder oder A := Die Katze ist scharz. B := Die Katze miaut. (A B) = Enteder die Katze ist scharz oder sie miaut.

35 Kontravalenz Enteder oder Beim Exklusiven Oder muss genau eine der Teilaussagen ahr sein.

36 Kontravalenz Enteder oder A B (A B)

37 Implikation Wenn, dann

38 Implikation Wenn, dann A := Die Katze hat Hunger. B := Die Katze miaut. (A B) = Wenn die Katze Hunger hat, dann miaut sie.

39 Implikation Wenn, dann Die Implikation ist nur alsch, enn aus Wahrem etas Falsches olgt.

40 Implikation Wenn, dann A B (A B)

41 Äquivalenz Genau dann, enn

42 Äquivalenz Genau dann, enn A := Die Katze hat Hunger. B := Die Katze miaut. (A B) = Genau dann, enn die Katze Hunger hat, miaut sie.

43 Äquivalenz Genau dann, enn Die Äquivalenz ist ahr, enn beide Teilaussagen den gleichen Wahrheitsert haben.

44 Äquivalenz Genau dann, enn Die Äquivalenz ist ahr, enn beide Teilaussagen den gleichen Wahrheitsert haben. (A B) ist immer dann ahr, enn soohl (A B) als auch (B A) ahr sind.

45 Äquivalenz Genau dann, enn A B (A B)

46 Klammerung Die Katze ist nicht scharz und miaut.

47 Klammerung Die Katze ist nicht scharz und miaut. A := Die Katze ist scharz. B := Die Katze miaut.

48 Klammerung Die Katze ist nicht scharz und miaut. A := Die Katze ist scharz. B := Die Katze miaut. ( A) = Die Katze ist nicht scharz.

49 Klammerung Die Katze ist nicht scharz und miaut. A := Die Katze ist scharz. B := Die Katze miaut. ( A) = Die Katze ist nicht scharz. (( A) B) = Die Katze (ist nicht scharz) und miaut.

50 Klammerung ((( A ( B) ) C) (D E))

51 Klammerung ((( A ( B) ) C) (D E)) Aneinander gereihte Konjunktion düren in beliebiger Reihenolge ausgeührt erden.

52 Klammerung ( ) (( A ( B) C) (D E)) Aneinander gereihte Konjunktion düren in beliebiger Reihenolge ausgeührt erden.

53 Klammerung (( A ( B) C) (D E)) Aneinander gereihte Konjunktion düren in beliebiger Reihenolge ausgeührt erden.

54 Klammerung (( A ( B) C) (D E)) Aneinander gereihte Konjunktion düren in beliebiger Reihenolge ausgeührt erden. Das gleiche gilt auch ür Disjunktionen.

55 Klammerung (( A ( B ) C ) (D E) )

56 Klammerung (( A ( B ) C ) (D E) ) Am stärksten bindende Junktoren:,,,,

57 Klammerung ( ) (( A B C ) (D E) ) Am stärksten bindende Junktoren:,,,,

58 Klammerung (( A B C ) (D E) ) Am stärksten bindende Junktoren:,,,,

59 Klammerung ( ) ( A B C (D E) ) Am stärksten bindende Junktoren:,,,,

60 Klammerung ( A B C (D E) ) Am stärksten bindende Junktoren:,,,,

61 Klammerung ( A B C (D E) ) Am stärksten bindende Junktoren:,,,,

62 Klammerung ( A B C (D E) ) Am stärksten bindende Junktoren:,,,,

63 Klammerung ( A B C (D E) ) Am stärksten bindende Junktoren:,,,,

64 Klammerung A B C (D E) Am stärksten bindende Junktoren:,,,,

65 Klammerung A B C (D E)

66 Tautologie

67 Tautologie A := Die Katze ist scharz.

68 Tautologie A := Die Katze ist scharz. A A

69 Tautologie A := Die Katze ist scharz. A A Die Katze ist scharz oder sie ist nicht scharz.

70 Tautologie A A A A A A

71 Tautologie Eine Aussage, die unabhängig von der Interpretation stets ahr ist, nennen ir Tautologie.

72 Widerspruch Eine Aussage, die unabhängig von der Interpretation stets alsch ist, nennen ir Widerspruch.

73 Äquivalenz

74 Äquivalenz Zei Aussagen A und B, die ür jede gegebene Interpretation stets den selben Wahrheitsert besitzen, nennen ir äquivalent.

75 Äquivalenz Zei Aussagen A und B, die ür jede gegebene Interpretation stets den selben Wahrheitsert besitzen, nennen ir äquivalent. Es gilt A B genau dann, enn A B eine Tautologie ist.

76 Äquivalenz Genau dann, enn Die Äquivalenz ist ahr, enn beide Teilaussagen den gleichen Wahrheitsert haben. (A B) ist immer dann ahr, enn soohl (A B) als auch (B A) ahr sind.

77 Äquivalenz A B A B B A (A B) (B A) A B

78 Äquivalenz A B A B B A (A B) (B A) A B

79 B A B B A (A B) (B A) A B A Äquivalenz (A B) (B A) A B

80 Äquivalenzumormung (A B) (B A) A B

81 Äquivalenzumormung (A B) (B A) A B (A B) (B A) (C B) (B C)

82 Äquivalenzumormung (A B) (B A) A B (A B) (B A) (C B) (B C) (A B)

83 Äquivalenzumormung (A B) (B A) A B (A B) (B A) (C B) (B C) (A B) (C B)

84 Äquivalenzumormung

85 Äquivalenzumormung Kommutativgesetz: A B B A A B B A

86 Äquivalenzumormung Kommutativgesetz: A B B A A B B A Assoziativgesetz: (A B) C A (B C) (A B) C A (B C)

87 Äquivalenzumormung Kommutativgesetz: A B B A A B B A Distributivgesetz: (A B) C (A C) (B C) (A B) C (A C) (B C) Assoziativgesetz: (A B) C A (B C) (A B) C A (B C)

88 Äquivalenzumormung Kommutativgesetz: A B B A A B B A Distributivgesetz: (A B) C (A C) (B C) (A B) C (A C) (B C) Assoziativgesetz: (A B) C A (B C) (A B) C A (B C) Regel von de Morgan: (A B) A B (A B) A B

89 Äquivalenzumormung Implikationselimination: (A B) A B

90 Äquivalenzumormung Implikationselimination: (A B) A B Äquivalenzelimination: (A B) (A B) (B A)

91 Äquivalenzumormung Implikationselimination: (A B) A B Äquivalenzelimination: (A B) (A B) (B A) Kontraposition: (A B) ( B A)

92 Äquivalenzumormung Implikationselimination: (A B) A B Absorbtionsregel: A (A B) A Äquivalenzelimination: A (A B) A (A B) (A B) (B A) Kontraposition: (A B) ( B A)

93 Äquivalenzumormung Implikationselimination: (A B) A B Absorbtionsregel: A (A B) A Äquivalenzelimination: A (A B) A (A B) (A B) (B A) Doppelnegation: Kontraposition: A A (A B) ( B A)

94

95 Aussagen sind Sätze, denen man einen eindeutigen Wahrheitsert zuordnen kann.

96 Aussagen sind Sätze, denen man einen eindeutigen Wahrheitsert zuordnen kann. Interpretationen bestimmen diesen Wahrheitsert.

97 Aussagen sind Sätze, denen man einen eindeutigen Wahrheitsert zuordnen kann. Interpretationen bestimmen diesen Wahrheitsert. Junktoren verknüpen Aussagen zu neuen Aussagen.

98 Aussagen sind Sätze, denen man einen eindeutigen Wahrheitsert zuordnen kann. Interpretationen bestimmen diesen Wahrheitsert. Junktoren verknüpen Aussagen zu neuen Aussagen. Der Wahrheitsert mancher Aussagen ist konstant.

99 Aussagen sind Sätze, denen man einen eindeutigen Wahrheitsert zuordnen kann. Interpretationen bestimmen diesen Wahrheitsert. Junktoren verknüpen Aussagen zu neuen Aussagen. Der Wahrheitsert mancher Aussagen ist konstant. Äquivalente Aussagen können einander ersetzen.

Aufgabe 1. n b i i i i i 1 i 1. log( a ) b log a, a 0. n b b b b. log( a ) log a a... a. i 1 2 n. i 1 2 n. log( a ) log a log a...

Aufgabe 1. n b i i i i i 1 i 1. log( a ) b log a, a 0. n b b b b. log( a ) log a a... a. i 1 2 n. i 1 2 n. log( a ) log a log a... Augabe 1 n n b i i i i i 1 i 1 i log( a ) b log a, a 0 n i 1 b b b b i 1 n log( a ) log a a... a n i 1 n b b b b i 1 n log( a ) log a log a... log a i 1 n i 1 n i log( a ) b log a b log a... b log a i

Mehr

Informationsgewinnung

Informationsgewinnung Agenda ür heute, 9. Januar 27 ETH-Bibliothek Logische Verknüpungen als Grundlage ür die Inormationsgeinnung Vortrag von rau E. Benninger Grösste Bibliothek der Scheiz Scherpunkte im Bereich des elektronischen

Mehr

4 Logik 4.1 Aussagenlogik

4 Logik 4.1 Aussagenlogik 4 Logik 4.1 Aussagenlogik Mod - 4.1 Kalkül zum logischen Schließen. Grundlagen: Aristoteles 384-322 v. Chr. Aussagen: Sätze, die prinzipiell als ahr oder alsch angesehen erden können. z. B.: Es regnet.,

Mehr

Grundbegriffe aus Logik und Mengenlehre

Grundbegriffe aus Logik und Mengenlehre Prof. Dr. B. Niethammer Dr. C. Seis, R. Schubert Institut fr Angewandte Mathematik Universitt Bonn Grundbegriffe aus Logik und Mengenlehre Wir wollen im Folgenden eine kurze Einführung in die Grundbegriffe

Mehr

Aussagenlogik. 1 Einführung. Inhaltsverzeichnis. Zusammenfassung

Aussagenlogik. 1 Einführung. Inhaltsverzeichnis. Zusammenfassung Tobias Krähling email: Homepage: 13.10.2012 Version 1.2 Zusammenfassung Die Aussagenlogik ist sicherlich ein grundlegendes mathematisches Gerüst für weitere

Mehr

4 Logik 4.1 Aussagenlogik

4 Logik 4.1 Aussagenlogik 4 Logik 4.1 Aussagenlogik Mod - 4.1 Kalkül zum logischen Schließen. Grundlagen: Aristoteles 384-322 v. Chr. Aussagen: Sätze, die prinzipiell als ahr oder alsch angesehen erden können. z. B.: Es regnet.,

Mehr

Aussagenlogik. Aussagen und Aussagenverknüpfungen

Aussagenlogik. Aussagen und Aussagenverknüpfungen Aussagenlogik Aussagen und Aussagenverknüpfungen Aussagen sind Sätze, von denen sich sinnvollerweise sagen läßt, sie seien wahr oder falsch. Jede Aussage besitzt also einen von zwei möglichen Wahrheitswerten,

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik FH Wedel Pro. Dr. Sebastian Ianoski GTI21 Folie 1 Grundlagen der Theoretischen Inormatik Sebastian Ianoski FH Wedel Kap. 2: Logik, Teil 2.1: Aussagenlogik FH Wedel Pro. Dr. Sebastian Ianoski GTI21 Folie

Mehr

Diskrete Mathematik Referenzen zum Nacharbeiten:

Diskrete Mathematik Referenzen zum Nacharbeiten: DM1 Slide 1 Diskrete Mathematik Sebastian Ianoski FH Wedel Kapitel 1: Grundlagen der Mathematik Reerenzen zum Nacharbeiten: Lang 1, 2.1 Meinel 1 DM1 Slide 2 Inhaltlicher Umang dieser Vorlesung Inhaltliche

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 1: Grundlagen der Mathematik. Referenzen zum Nacharbeiten:

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 1: Grundlagen der Mathematik. Referenzen zum Nacharbeiten: FH Wedel Pro. Dr. Sebastian Ianoski DM1 Folie 1 Diskrete Mathematik Sebastian Ianoski FH Wedel Kapitel 1: Grundlagen der Mathematik Reerenzen zum Nacharbeiten: Lang 1, 2.1 Meinel 1 Dean 3, 4 Hachenberger

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken

Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken Susanna Pohl Vorkurs Mathematik TU Dortmund 09.03.2015 Aussagen, Logik und Beweistechniken Aussagen und Logik Motivation

Mehr

Mathematische Grundlagen I Logik und Algebra

Mathematische Grundlagen I Logik und Algebra Logik und Algebra Dr. Tim Haga 21. Oktober 2016 1 Aussagenlogik Erste Begriffe Logische Operatoren Disjunktive und Konjunktive Normalformen Logisches Schließen Dr. Tim Haga 1 / 21 Präliminarien Letzte

Mehr

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14 Logik Logik Vorkurs Informatik Theoretischer Teil WS 2013/14 30. September 2013 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine

Mehr

Logik (Prof. Dr. Wagner FB AI)

Logik (Prof. Dr. Wagner FB AI) Logik (Prof. Dr. Wagner FB AI) LERNZIELE: Über die Kenntnis und das Verständnis der gegebenen Definitionen hinaus verfolgt dieser Teil der Lehrveranstaltung die folgenden Lernziele: Bei gegebenen sprachlichen

Mehr

Vorkurs Mathematik für Informatiker 5 Logik, Teil 1

Vorkurs Mathematik für Informatiker 5 Logik, Teil 1 5 Logik, Teil 1 Michael Bader, Thomas Huckle, Stefan Zimmer 1. 9. Oktober 2008 Kap. 5: Logik, Teil 1 1 Aussagenlogik Rechnen mit Wahrheitswerten: true und false Kap. 5: Logik, Teil 1 2 Aussagenlogik Rechnen

Mehr

5. AUSSAGENLOGIK: SEMANTIK

5. AUSSAGENLOGIK: SEMANTIK 5. AUSSAGENLOGIK: SEMANTIK 5.1 Charakteristische Wahrheitstaeln 5.2 Wahrheitsertzuordnung I 5.3 Die Konstruktion von Wahrheitstaeln 5.4 Wahrheit und Falschheit unter einer Wahrheitsertzuordnung 5.5 Wahrheitsbedingungen

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung GdP2 Slide 1 Grundlagen der Programmierung Vorlesung 2 Sebastian Ianoski FH Wedel GdP2 Slide 2 Beispiel ür eine Programmveriikation Gegeben sei olgender Algorithmus: i (x>0) ((y+x) 0) then z := x y else

Mehr

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Kapitel 1.0 Aussagenlogik: Einführung Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Ziele der Aussagenlogik In der Aussagenlogik analysiert man die Wahrheitswerte zusammengesetzter

Mehr

Diskrete Strukturen WS 2018/19. Gerhard Hiß RWTH Aachen

Diskrete Strukturen WS 2018/19. Gerhard Hiß RWTH Aachen Diskrete Strukturen WS 2018/19 Gerhard Hiß RWTH Aachen Erster Teil: Grundlagen Kapitel 1, Mathematische Grundbegriffe 1.1 Aussagen Begriff (Aussage) Sprachlicher Ausdruck, welcher entweder wahr oder falsch

Mehr

Junktoren der Aussagenlogik zur Verknüpfung zweier Aussagen A, B

Junktoren der Aussagenlogik zur Verknüpfung zweier Aussagen A, B Junktoren der Aussagenlogik zur Verknüpfung zweier Aussagen A, B Name Zeichen Bedeutung Wahrheitstafel Bemerkung mit zugehöriger Dualzahl ---------------------------------------------------------------------------------------------------------------

Mehr

Aussagenlogik-Boolesche Algebra

Aussagenlogik-Boolesche Algebra Aussagenlogik-Boolesche Algebra 1 Aussagen In der Mathematik und in der Logik werden Sätze der Umgangssprache nur unter bestimmten Bedingungen Aussagen genannt. Sätze nennt man Aussagen, wenn sie etwas

Mehr

3. Logik 3.1 Aussagenlogik

3. Logik 3.1 Aussagenlogik 3. Logik 3.1 Aussagenlogik WS 06/07 mod 301 Kalkül zum logischen Schließen. Grundlagen: Aristoteles 384-322 v. Chr. Aussagen: Sätze, die prinzipiell als ahr oder falsch angesehen erden können. z. B.: Es

Mehr

Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 =

Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 = Was bisher geschah (Klassische) Aussagenlogik: Aussage Wahrheitswerte 0 (falsch) und 1 (wahr) Junktoren Syntax Semantik Stelligkeit Symbol Wahrheitswertfunktion wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min

Mehr

Logik. III Logik. Propädeutikum Holger Wuschke. 19. September 2018

Logik. III Logik. Propädeutikum Holger Wuschke. 19. September 2018 III Propädeutikum 2018 19. September 2018 III λoγóς="das Wort" (math.) befasst sich mit Denition Aussage Eine Aussage p ist ein sinnvolles sprachliche Gebilde mit der Eigenschaft, entweder wahr oder falsch

Mehr

Kapitel 1. Aussagenlogik

Kapitel 1. Aussagenlogik Kapitel 1 Aussagenlogik Einführung Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 1/17 Übersicht Teil I: Syntax und Semantik der Aussagenlogik (1.0) Junktoren und Wahrheitsfunktionen (1.1) Syntax

Mehr

2.2.4 Logische Äquivalenz

2.2.4 Logische Äquivalenz 2.2.4 Logische Äquivalenz (I) Penélope raucht nicht und sie trinkt nicht. (II) Es ist nicht der Fall, dass Penélope raucht oder trinkt. Offenbar behaupten beide Aussagen denselben Sachverhalt, sie unterscheiden

Mehr

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen

Mehr

Logische Grundlagen. Junktoren. Dörthe Brachwitz

Logische Grundlagen. Junktoren. Dörthe Brachwitz Logische Grundlagen Junktoren Dörthe Brachitz Was erartet Euch heute? Fachliches Wissen Deinitionen der Begrie Aussage, Aussageormen, Junktoren (Negation, Konjunktion, Disjunktion, Alternative, Subjunktion

Mehr

1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet.

1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet. Grundlagen der Mathematik für Informatiker 1 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage)

Mehr

1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet.

1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet. Grundlagen der Mathematik für Informatiker 1 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage)

Mehr

Jeder Aussage p kann ein Wahrheitswert W(p) {0, 1} zugeordnet werden. Beispiele: W(Es regnet.) =? (je nach Lage der Dinge) W(Die Straße ist naß.) =?

Jeder Aussage p kann ein Wahrheitswert W(p) {0, 1} zugeordnet werden. Beispiele: W(Es regnet.) =? (je nach Lage der Dinge) W(Die Straße ist naß.) =? Grundlagen der Mathematik für Informatiker 1 Grundlagen der Mathematik für Informatiker 2 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl.

Mehr

Anwendung Informatik Daten verwalten (2) Ursprüngliche Information Logische Verknüpfungen als Grundlage für die Informationsgewinnung

Anwendung Informatik Daten verwalten (2) Ursprüngliche Information Logische Verknüpfungen als Grundlage für die Informationsgewinnung Agenda für heute, 20. November 2009 Daten verwalten (2): Drei Stufen der Datenverwaltung Logische Verknüpfungen als Grundlage für die Informationsgewinnung Werte von Aussagen: Wahrheitstabellen Anwendung

Mehr

Aussagenverknüpfungen in der Sprache (1)

Aussagenverknüpfungen in der Sprache (1) Aussagenverknüpfungen in der Sprache (1) Betrachten Sie die Aussage S := «Thomas und Sara gehen in den Park.» Wir definieren die beiden Aussagen P := «Thomas geht in den Park.» und Q := «Sara geht in den

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 19. Oktober 2017 1/27 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage

Mehr

2.1 Beschreibung von Mengen 2.2 Formale Logik 2.3 Beziehungen zwischen Mengen 2.4 Mengenoperationen

2.1 Beschreibung von Mengen 2.2 Formale Logik 2.3 Beziehungen zwischen Mengen 2.4 Mengenoperationen 2. Mengen 2.1 Beschreibung von Mengen 2.2 Formale Logik 2.3 Beziehungen zischen Mengen 2.4 Mengenoperationen 2. Mengen GM 2-1 Wozu Mengen? In der Mathematik Au dem Mengenbegri kann man die gesamte Mathematik

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.

Mehr

Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Mathematische Logik

Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Mathematische Logik Diskrete Strukturen Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Mathematische Logik Aussagen Begriff Aussage: Ausdruck, welcher entweder wahr oder falsch ist e Die RWTH Aachen hat

Mehr

Boolesche Algebra. Hans Joachim Oberle. Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2

Boolesche Algebra. Hans Joachim Oberle. Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2 Universität Hamburg Department Mathematik Boolesche Algebra Hans Joachim Oberle Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2 http://www.math.uni-hamburg.de/home/oberle/vorlesungen.html

Mehr

Formale Grundlagen (Nachträge)

Formale Grundlagen (Nachträge) Inhaltsverzeichnis 1 Aussagenlogik: Funktionale Vollständigkeit................... 1 Bit-Arithmetik mit logischen Operationen.................... 3 Prädikatenlogik: Eine ganz kurze Einführung..................

Mehr

Algorithmen & Programmierung. Logik

Algorithmen & Programmierung. Logik Algorithmen & Programmierung Logik Aussagenlogik Gegenstand der Untersuchung Es werden Verknüpfungen zwischen Aussagen untersucht. Aussagen Was eine Aussage ist, wird nicht betrachtet, aber jede Aussage

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Prof. Dr. Armin Iske Department Mathematik, Universität Hamburg Technische Universität Hamburg-Harburg Wintersemester 2006/2007 Analysis I TUHH, Winter

Mehr

Wirtschaftsinformatik 04: Zahlensysteme IV. Dozent: R. Witte

Wirtschaftsinformatik 04: Zahlensysteme IV. Dozent: R. Witte Wirtschaftsinformatik 04: Zahlensysteme IV Dozent: R. Witte Computertechnik Computertechnik A: B /\ C C B: A /\ C -(B /\ C A ) C: A \/ B - B Drei Männer sind zum Tode verurteilt - aber der Richter gibt

Mehr

Algebraische Grundlagen

Algebraische Grundlagen Proessor Dr. Reinhold Peier / Dr. Heidemarie Borgadt Algebraische Grundlagen Springer Fachmedien Wiesbaden 1993 Ursprünglich erschienen bei Betriebsirtschatlicher Verlag Dr. Tb. Gabler GmbH, Wiesbaden

Mehr

11. Beschreiben Sie die disjunktive und die konjunktive Normalform eines logischen Ausdrucks!

11. Beschreiben Sie die disjunktive und die konjunktive Normalform eines logischen Ausdrucks! Kapitel 3 Logik Verständnisfragen Sachfragen 1. Was ist eine logische Aussage? 2. Wie ist die Konjunktion und die Disjunktion definiert? 3. Beschreiben Sie das Exklusive Oder, die Implikation und die Äquivalenz!

Mehr

Logik. Logik. Quick Start Informatik Theoretischer Teil WS2011/ Oktober QSI - Theorie - WS2011/12

Logik. Logik. Quick Start Informatik Theoretischer Teil WS2011/ Oktober QSI - Theorie - WS2011/12 Logik Logik Quick Start Informatik Theoretischer Teil WS2/2 7. Oktober 2 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine wichtige

Mehr

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben.

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben. 2 Aussagenlogik () 2.3 Semantik von [ Gamut 4-58, Partee 7-4 ] Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s und s 2 unterschiedliche Wahrheitswerte haben. Beispiel: Es regnet.

Mehr

ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise

ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise MAA.01011UB MAA.01011PH Vorlesung mit Übung im WS 2016/17 Christoph GRUBER Günter LETTL Institut für Mathematik und wissenschaftliches

Mehr

In der Mathematik. In der Informatik. 2. Mengen. Wozu Mengen?

In der Mathematik. In der Informatik. 2. Mengen. Wozu Mengen? 2. Mengen Wozu Mengen? 2.3 Beziehungen zischen Mengen In der Mathematik u dem Mengenbegri kann man die gesamte Mathematik aubauen: Mengen, Relationen, bbildungen, In der Inormatik Deinition: Ein lphabet

Mehr

1 Einführung Aussagenlogik

1 Einführung Aussagenlogik 1 Einführung Aussagenlogik Denition 1. Eine Aussage ist ein Aussagesatz, der entweder wahr oder falsch ist. Welche der folgenden Sätze ist eine Aussage? 3+4=7 2*3=9 Angela Merkel ist Kanzlerin Stillgestanden!

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Brückenkurs Mathematik. Dienstag Freitag

Brückenkurs Mathematik. Dienstag Freitag Brückenkurs Mathematik Dienstag 2.10. - Freitag 12.10. Vorlesung 1 Logik, Mengen, Zahlen Kai Rothe Technische Universität Hamburg Dienstag 2.10. Tagesablauf 9:00-10:30 Vorlesung Audimax I 10:30-11:00 Pause

Mehr

Logische Aussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden.

Logische Aussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden. Logische Operationen Logische ussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden. ezeichnung Schreibweise (Sprechweise) wahr, genau dann wenn Negation (nicht ) falsch

Mehr

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2. Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.

Mehr

mathe plus Aussagenlogik Seite 1

mathe plus Aussagenlogik Seite 1 mathe plus Aussagenlogik Seite 1 1 Aussagenlogik 1.1 Grundbegriffe Def 1 Aussage Eine Aussage ist ein beschriebener Sachverhalt, dem eindeutig einer der Wahrheitswerte entweder wahr oder falsch zugeordnet

Mehr

falsch zugelassen. Als typische Bezeichnungen für Aussagen verwenden wir Buchstaben A, B, C,..., für die Wahrheitswerte wahr und f für falsch.

falsch zugelassen. Als typische Bezeichnungen für Aussagen verwenden wir Buchstaben A, B, C,..., für die Wahrheitswerte wahr und f für falsch. 1 Elementare Logik 1. Aussagenlogik Unter einer Aussage verstehen ir einen grammatikalisch korrekten Satz, dem ein Wahrheitsert zugeiesen erden kann. Als Wahrheitserte sind dabei ausschließlich ahr und

Mehr

Aussagenlogik. (MAF2) MAF(I, t) = t und MAF(I, f ) = f. Die Semantik aussagenlogischer Formeln ist durch die Funktion

Aussagenlogik. (MAF2) MAF(I, t) = t und MAF(I, f ) = f. Die Semantik aussagenlogischer Formeln ist durch die Funktion 43 Vergleiche mit MBA! (MAF4) MAF(I, (F G)) = MAF(I, F) MAF(I, G), wobei die zum Symbol gehörende Funktion ist. (MAF3) MAF(I, F) = MAF(I, F) (MAF2) MAF(I, t) = t und MAF(I, f ) = f (MAF1) MAF(I, A) = I(A),

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 15. Oktober 2015 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage veröffentlicht

Mehr

Brückenkurs Mathematik. Dienstag Freitag

Brückenkurs Mathematik. Dienstag Freitag Brückenkurs Mathematik Dienstag 29.09. - Freitag 9.10.2015 Vorlesung 2 Mengen, Zahlen, Logik Kai Rothe Technische Universität Hamburg-Harburg Mittwoch 30.09.2015 Mengen.................................

Mehr

Logische Äquivalenz. Definition Beispiel 2.23

Logische Äquivalenz. Definition Beispiel 2.23 Logische Äquivalenz Definition 2.22 Zwei aussagenlogische Formeln α, β A heißen logisch äquivalent, falls für jede Belegung I von α und β gilt: Schreibweise: α β. Beispiel 2.23 Aus Folgerung 2.6 ergibt

Mehr

Thema: Logik: 2. Teil. Übersicht logische Operationen Name in der Logik. Negation (Verneinung) Nicht

Thema: Logik: 2. Teil. Übersicht logische Operationen Name in der Logik. Negation (Verneinung) Nicht Thema: Logik: 2. Teil Übersicht logische Operationen Name in der Logik Symbol Umgangssprachlicher Name Negation (Verneinung) Nicht Konjunktion ^ Und Disjunktion v Oder Subjunktion (Implikation) Bijunktion

Mehr

Kapitel 1: Grundbegriffe

Kapitel 1: Grundbegriffe Kapitel 1: Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) 1 / 20 Gliederung 1 Logik Ein ganz kurzer Ausflug in die Kombinatorik Stefan Ruzika (KO) 2

Mehr

Definition (Modus Ponens) Wenn A, dann B. A gilt Also, gilt B

Definition (Modus Ponens) Wenn A, dann B. A gilt Also, gilt B Zusammenfassung der letzten LVA Wenn das Kind schreit, hat es Hunger Das Kind schreit Also, hat das Kind Hunger Fakt Korrektheit dieser Schlussfigur ist unabhängig von den konkreten Aussagen Einführung

Mehr

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf

Mehr

Formale Logik. 4. Sitzung. Die Logik der Sprache AL. Die Logik der Sprache AL. Die Logik der Sprache AL

Formale Logik. 4. Sitzung. Die Logik der Sprache AL. Die Logik der Sprache AL. Die Logik der Sprache AL ormale Logik 4. Sitzung Prof. Dr. Ansgar Beckermann Sommersemester 2005 Erinnerung Ein Satz ist genau dann logisch wahr, wenn er unabhängig davon, was die in ihm vorkommenden deskriptiven Zeichen bedeuten

Mehr

Rudolf Brinkmann Seite

Rudolf Brinkmann Seite Rudolf Brinkmann Seite 1 30.04.2008 Aussagen und Mengentheoretische Begriffe Aussagen und Aussageformen In der Mathematik spricht man von Aussagen, wenn für einen Sachverhalt entschieden werden kann, ob

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Wenn das Kind schreit, hat es Hunger Das Kind schreit Also, hat das Kind Hunger Christina Kohl Alexander Maringele

Mehr

Summen- und Produktzeichen

Summen- und Produktzeichen Summen- und Produktzeichen Ein großer Vorteil der sehr formalen mathematischen Sprache ist es, komplizierte Zusammenhänge einfach und klar ausdrücken zu können. Gerade auch diese Eigenschaft der Mathematik

Mehr

Was ist Logik? Was ist Logik? Logische Konnektoren. Aussagenlogik. Logik stellt Sprachen zur Darstellung von Wissen zur Verfügung

Was ist Logik? Was ist Logik? Logische Konnektoren. Aussagenlogik. Logik stellt Sprachen zur Darstellung von Wissen zur Verfügung Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen

Mehr

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen

Mehr

Mathematische und logische Grundlagen der Linguistik. Kapitel 3: Grundbegriffe der Aussagenlogik

Mathematische und logische Grundlagen der Linguistik. Kapitel 3: Grundbegriffe der Aussagenlogik Mathematische und logische Grundlagen der Linguistik Kapitel 3: Grundbegriffe der Aussagenlogik Grundbegriffe der Aussagenlogik 1 Die Aussagenlogik ist ein Zweig der formalen Logik, der die Beziehungen

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Christina Kohl Alexander Maringele Georg Moser Michael Schaper Manuel Schneckenreither Institut für Informatik

Mehr

Mathematische und logische Grundlagen der Linguistik. Mathematische und logische Grundlagen der Linguistik. Karl Heinz Wagner. Hier Titel eingeben 1

Mathematische und logische Grundlagen der Linguistik. Mathematische und logische Grundlagen der Linguistik. Karl Heinz Wagner. Hier Titel eingeben 1 Grundbegriffe der Aussagenlogik 1 Mathematische und logische Grundlagen der Linguistik Kapitel 3: Grundbegriffe der Aussagenlogik Die Aussagenlogik ist ein Zweig der formalen Logik, der die Beziehungen

Mehr

Vertiefungskurs Mathematik

Vertiefungskurs Mathematik Vertiefungskurs Mathematik Anforderungen für das Universitäts-Zertifikat im Schuljahr 01/13 Grundvoraussetzung: Teilnahme am Vertiefungskurs Mathematik in Klasse 11. Inhaltliche Voraussetzungen: Aussagenlogik

Mehr

Logik für Informatiker Logic for computer scientists

Logik für Informatiker Logic for computer scientists Logik für Informatiker Logic for computer scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 24 Die Booleschen Junktoren Till Mossakowski Logik 2/ 24 Die Negation Wahrheitstafel

Mehr

Eine Aussage ist ein Satz der Umgangssprache, der wahr oder falsch sein kann. Man geht von dem Folgenden aus:

Eine Aussage ist ein Satz der Umgangssprache, der wahr oder falsch sein kann. Man geht von dem Folgenden aus: Karlhorst Meyer Formallogik Die Umgangssprache ist für mathematische Bedürfnisse nicht exakt genug. Zwei Beispiele: In Folge können u. U. Beweise, die in Umgangssprache geschrieben werden, nicht vollständig,

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 4 7.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de SS 2017 Vorlesung 1 MINT Mathekurs SS 2017 1 / 19 Organisation Vorlesung (2 SWS): Do., 16:15 Uhr -18:00

Mehr

Aussagenlogik: Lexikon, Syntax und Semantik

Aussagenlogik: Lexikon, Syntax und Semantik Einführung in die Logik - 2 Aussagenlogik: Lexikon, Syntax und Semantik Wiederholung: Was ist Logik? Logik : Die Lehre» vom formal korrekten Schließen» von den Wahrheitsbedingungen von Sätzen Unter welchen

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 3 Was Hänschen nicht lernt, lernt Hans nimmermehr Volksmund Was Hänschen nicht lernt, lernt Hans nimmermehr hat heute keine

Mehr

b. Lehre des vernünftigen Schlussfolgerns (1. System von Regeln von Aristoteles ( v. Chr.); sprachliche Argumente

b. Lehre des vernünftigen Schlussfolgerns (1. System von Regeln von Aristoteles ( v. Chr.); sprachliche Argumente II. Zur Logik 1. Bemerkungen zur Logik a. Logisches Gebäude der Mathematik: wenige Axiome (sich nicht widersprechende Aussagen) bilden die Grundlage; darauf aufbauend Lehrsätze unter Berücksichtigung der

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau 2. Vorlesung Roland Gunesch Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 1 / 21 Themen heute 1

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite 1 / 170 Logarithmus- und Exponentialfunktion Kapitel 9 Logarithmus- und Exponentialfunktion Mathematischer Vorkurs TU Dortmund

Mehr

Einführung in die Semantik, 5. Sitzung Aussagenlogik

Einführung in die Semantik, 5. Sitzung Aussagenlogik Einführung in die, 5. Sitzung Aussagenlogik Göttingen 9. November 2006 Aussagenlogik Warum die formalen Sprachen der Logik? formale Sprachen haben wie jede Sprache ein Vokabular, eine und eine. Die Relation

Mehr

Was bisher geschah: klassische Aussagenlogik

Was bisher geschah: klassische Aussagenlogik Was bisher geschah: klassische Aussagenlogik Syntax Symbole und Struktur, Junktoren: t, f,,,,, Prinzip der strukturellen Induktion über Baumstruktur von Formeln, arithmetischen Ausdrücken usw. induktive

Mehr

Vertiefungskurs Mathematik. Anforderungen für das Universitäts-Zertifikat zum Schuljahr 2016/17 (unverändert seit 2012/13)

Vertiefungskurs Mathematik. Anforderungen für das Universitäts-Zertifikat zum Schuljahr 2016/17 (unverändert seit 2012/13) Vertiefungskurs Mathematik Anforderungen für das Universitäts-Zertifikat zum Schuljahr 016/17 (unverändert seit 01/13) Grundvoraussetzung: Teilnahme am Vertiefungskurs Mathematik im Schuljahr 016/17. Inhaltliche

Mehr

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10 Fakultät für Mathematik Fachgebiet Mathematische Informatik Anhang Lineare Algebra I Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA Wintersemester 2009/10 A Relationen Definition A.1. Seien X, Y beliebige

Mehr

Vorkurs Mathematik. Ein kompakter Leitfaden. Bearbeitet von Joachim Erven, Matthias Erven, Josef Hörwick

Vorkurs Mathematik. Ein kompakter Leitfaden. Bearbeitet von Joachim Erven, Matthias Erven, Josef Hörwick Vorkurs Mathematik Ein kompakter Leitaden Bearbeitet von Joachim Erven, Matthias Erven, Jose Hörick 4., korr. u. er. Aul. 2003. Taschenbuch. IX, 260 S. Paperback ISBN 978 3 486 58986 3 Format (B x L):

Mehr

Kleine lateinische Buchstaben wie z. B. p, q, r, s t, usw.

Kleine lateinische Buchstaben wie z. B. p, q, r, s t, usw. 1.1 Aussagenlogik Grundlagen der Mathematik 1 1.1 Aussagenlogik Definition: Aussage Eine Aussage im Sinne der Logik ist ein formulierter Tatbestand, der sich bei objektiver Prüfung immer eindeutig als

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Komplexe Zahlen 5 Lineare Algebra 6 Lineare Programme 3 Aussagenlogik

Mehr

Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln

Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Frank Heitmann heitmann@informatik.uni-hamburg.de 30. Mai 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/42 Zusammenfassung Syntax

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Große Übung #2 Phillip Keldenich, Arne Schmidt 10.11.2016 Organisatorisches Fragen? Checkliste: Anmeldung kleine Übungen Anmeldung Mailingliste Dies ersetzt nicht die Prüfungsanmeldung!

Mehr

Q.E.D. Algorithmen und Datenstrukturen Wintersemester 2018/2019 Übung#2, Christian Rieck, Arne Schmidt

Q.E.D. Algorithmen und Datenstrukturen Wintersemester 2018/2019 Übung#2, Christian Rieck, Arne Schmidt Institute of Operating Systems and Computer Networks Algorithms Group Q.E.D. Algorithmen und Datenstrukturen Wintersemester 2018/2019 Übung#2, 01.11.2018 Christian Rieck, Arne Schmidt Einführendes Beispiel

Mehr

Aussagenlogik. Formale Methoden der Informatik WiSe 2012/2013 teil 6, folie 1

Aussagenlogik. Formale Methoden der Informatik WiSe 2012/2013 teil 6, folie 1 Aussagenlogik Formale Methoden der Informatik WiSe 22/23 teil 6, folie Teil VI: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning, Fakultät

Mehr

Logik. A.3 Logik und Mengenlehre A.32 A.32. Logik und Mengenlehre. Logik. 2001 Prof. Dr. Rainer Manthey Informatik I 21

Logik. A.3 Logik und Mengenlehre A.32 A.32. Logik und Mengenlehre. Logik. 2001 Prof. Dr. Rainer Manthey Informatik I 21 Logik und Mengenlehre.3 Logik und Mengenlehre 2001 Prof. Dr. Rainer Manthey Informatik I 21 Logik Logik 2001 Prof. Dr. Rainer Manthey Informatik I 22 Logik: egriff, edeutung und Entwicklung Logik ist die

Mehr

die Menge S = {(x,y) : x 2 = y 2 +1,x R} wohl aussehen könnte. Die Antwort ist hier: Interessant ist auch y 2 = x 3 x:

die Menge S = {(x,y) : x 2 = y 2 +1,x R} wohl aussehen könnte. Die Antwort ist hier: Interessant ist auch y 2 = x 3 x: die Menge S = {(x,y) : x 2 = y 2 +1,x R} wohl aussehen könnte. Die Antwort ist hier: Interessant ist auch y 2 = x 3 x: 40 Ganz wichtig für die Wirtschaftswissenschaft ist es, sich Ungleichungen klar zu

Mehr

Kapitel 06. Klassische Logik. Grundlage: Inhetveen, Kap. 5; Schöning, Kap.1, 2. Friedrich-Alexander-Universität Erlangen-Nürnberg

Kapitel 06. Klassische Logik. Grundlage: Inhetveen, Kap. 5; Schöning, Kap.1, 2. Friedrich-Alexander-Universität Erlangen-Nürnberg : Klassische Logik Grundlage: Inhetveen, Kap. 5; Schöning, Kap.1, 2 Friedrich-lexander-Universität Erlangen-Nürnberg Department Inormatik 1 G. Görz, Inormatik 8 Überblick "Logikbaum" Dialogische Begründung

Mehr

Boolesche Terme und Boolesche Funktionen

Boolesche Terme und Boolesche Funktionen Boolesche Terme und Boolesche Funktionen Aussagen Mit dem Begriff der Aussage und der logischen Verknüpfung von Aussagen beschäftigte man sich schon im alten Griechenland. Die Charakterisierung einer Aussage

Mehr

Vorlesung 3: Logik und Mengenlehre

Vorlesung 3: Logik und Mengenlehre 28102013 Erinnerung: Zeilen-Stufen-Form (ZSF) eines LGS 0 0 1 c 1 0 0 0 1 0 0 1 c r 0 0 0 c r+1 0 0 0 0 0 0 0 0 0 c m Erinnerung: Information der Zeilen-Stufen-Form Aus der ZSF liest man ab: Folgerung

Mehr

Vorlesung. Logik und Diskrete Mathematik

Vorlesung. Logik und Diskrete Mathematik Vorlesung Logik und Diskrete Mathematik (Mathematik für Informatiker I) Wintersemester 2008/09 FU Berlin Institut für Informatik Klaus Kriegel 1 Literatur zur Vorlesung: C. Meinel, M. Mundhenk, Mathematische

Mehr

Indexmengen. Definition. n n n. i=1 A i := A 1... A n

Indexmengen. Definition. n n n. i=1 A i := A 1... A n Indexmengen Definition Es sei n N. Für Zahlen a 1,..., a n, Mengen M 1,..., M n und Aussagen A 1,..., A n definieren wir: n i=1 a i := a 1 +... + a n n i=1 a i := a 1... a n n i=1 M i := M 1... M n n i=1

Mehr