15.4 Diskrete Zufallsvariablen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "15.4 Diskrete Zufallsvariablen"

Transkript

1 .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet heiße Zufallsvariable ( ZV ). Defiitio 7.) Ei Zufallsexperimet, desse Ergebismege M aus reelle Zahle besteht ud bei dem die Wahrscheilichkeit eies jede Elemetarereigisses größer als 0 ist, heißt diskrete Zufallsvariable..) Bei eier diskrete Zufallsvariable heißt die Fuktio p : M 0 ; mit p ( m ) =, die jedem Elemetarereigis m seie Wahrscheilichkeit zuordet, Wahrscheilichkeitsfuktio der diskrete Zufallsvariable. Istitut für Automatisierugstechik Prof. Dr. Ch. Bold Aalysis.4 Folie

2 Beispiel Würfel mit zwei Würfel Betrachtet ma dieses Zufallsexperimet mit der Ergebismege M = ( / ) ; ( / ) ; ( / 3 ) ; ( / 4 ) ; ( / ) ; ( / ) ; ( / ) ; ( / ) ; ( / 3 ) ; ( / 4 ) ; ( / ) ; ( / ) ; ( 3 / ) ; ( 3 / ) ; ( 3 / 3 ) ; ( 3 / 4 ) ; ( 3 / ) ; ( 3 / ) ; ( 4 / ) ; ( 4 / ) ; ( 4 / 3 ) ; ( 4 / 4 ) ; ( 4 / ) ; ( 4 / ) ; ( / ) ; ( / ) ; ( / 3 ) ; ( / 4 ) ; ( / ) ; ( / ) ; ( / ) ; ( / ) ; ( / 3 ) ; ( / 4 ) ; ( / ) ; ( / ), so liegt keie Zufallsvariable vor, da die Ergebisse keie reelle Zahle sid. Betrachtet ma jedoch z.b. die Summe bzw. Differez der beide Augezahle, so erhält ma Zufallsvariable mit de Ergebismege M = ; 3 ; 4 ; ; ; 7 ; 8 ; 9 ; 0 ; ; bzw. M = 0 ; ; ; 3 ; 4 ; Summe Differez Istitut für Automatisierugstechik Prof. Dr. Ch. Bold Aalysis.4 Folie

3 Wertetabelle ud Graphe der zugehörige Wahrscheilichkeitsfuktioe: Summe m Wahrscheilichkeit p ( m ) Differez m Wahrscheilichkeit p ( m ) M = ( / ) ; ( / ) ; ( / 3 ) ; ( / 4 ) ; ( / ) ; ( / ) ; ( / ) ; ( / ) ; ( / 3 ) ; ( / 4 ) ; ( / ) ; ( / ) ; ( 3 / ) ; ( 3 / ) ; ( 3 / 3 ) ; ( 3 / 4 ) ; ( 3 / ) ; ( 3 / ) ; ( 4 / ) ; ( 4 / ) ; ( 4 / 3 ) ; ( 4 / 4 ) ; ( 4 / ) ; ( 4 / ) ; ( / ) ; ( / ) ; ( / 3 ) ; ( / 4 ) ; ( / ) ; ( / ) ; ( / ) ; ( / ) ; ( / 3 ) ; ( / 4 ) ; ( / ) ; ( / ) Istitut für Automatisierugstechik Prof. Dr. Ch. Bold Aalysis.4 Folie 3

4 Wertetabelle ud Graphe der zugehörige Wahrscheilichkeitsfuktioe: Summe m Wahrscheilichkeit p ( m ) Differez m Wahrscheilichkeit p ( m ) p ( m ) p ( m ) 0 Summe 0 Differez m 3 4 m Istitut für Automatisierugstechik Prof. Dr. Ch. Bold Aalysis.4 Folie 4

5 Defiitio 8 ( Erwartugswert, Variaz ud Stadardabweichug eier diskrete ZV ) Für eie diskrete Zufallsvariable mit Ergebismege M ud Wahrscheilichkeitsfuktio p ( m ) defiiert ma de Erwartugswert µ, die Variaz σ sowie die Stadardabweichug σ als Quadratwurzel aus der Variaz wie folgt:.) µ = m. p ( m ) Erwartugswert µ eier diskrete ( µ = mü ) Zufallsvariable Variaz σ ( σ = sigma ).) σ = ( m - µ ). p ( m ) eier diskrete Zufallsvariable 3.) σ = ( m - µ ). p ( m ) Stadardabeichug σ eier diskrete Zufallsvariable Istitut für Automatisierugstechik Prof. Dr. Ch. Bold Aalysis.4 Folie

6 Beispiel : Würfel Die Wahrscheilichkeitsfuktio lautet m 3 4. Der Erwartugswert beträgt p ( m ) µ = m. p ( m ) Die Variaz beträgt = = 3, σ = ( m - µ ). p ( m ) = ( - 3, ). + ( - 3, ). + ( 3-3, ). + ( 4-3, ). + ( - 3, ). + ( - 3, ). =,9 Die Stadardabweichug beträgt daher σ =,9 =,708. Istitut für Automatisierugstechik Prof. Dr. Ch. Bold Aalysis.4 Folie

7 Beispiel : Augedifferez beim Würfel mit Würfel Die Wahrscheilichkeitsfuktio lautet m Der Erwartugswert beträgt p ( m ) µ = m. p ( m ) Die Variaz beträgt = =,94 σ = ( m - µ ). p ( m ) = ( 0 -,94 ). + ( -,94 ). 0 + ( -,94 ). = ( 3 -,94 ). + ( 4 -,94 ). 4 + ( -,94 ). =,0 8 Die Stadardabweichug beträgt daher σ =,0 =,433. Istitut für Automatisierugstechik Prof. Dr. Ch. Bold Aalysis.4 Folie 7

8 Bemerkuge.) Der Erwartugswert eier Zufallsvariable ist der Wert, der im Durchschitt uter Berücksichtigug der jeweilige Wahrscheilichkeite zu erwarte ist. Bei Laplace - Experimete ( we also alle Elemetarereigisse die gleiche Wahrscheilichkeit habe ) etspricht der Erwartugswert dem arithmetische Mittel aller Elemetarereigisse..) Die Stadardabweichug eier Zufallsvariable ist ei Maß für die Streuug der Elemetarereigisse um de Erwartugswert, also dafür, wie stark sich die Elemetarereigisse im Durchschitt uter Berücksichtigug der jeweilige Wahrscheilichkeite vom Erwartugswert uterscheide. Die Stadardabweichug ist aber icht das arithmetische Mittel der auftretede Abweichuge ( auch icht bei Laplace - Experimete ), soder wege der besodere Art der Durchschittsberechug stets midestes so groß wie die- ses arithmetische Mittel ( jeweils uter Berücksichtigug der jeweilige Wahr- scheilichkeite ). Beispielsweise beträgt die Stadardabweichug beim Würfel σ =,708 ( siehe Beispiel ), währed die durchschittliche Abweichug ur de Wert, hat. Istitut für Automatisierugstechik Prof. Dr. Ch. Bold Aalysis.4 Folie 8

9 Beispiel 3: Roulette Das Roulette - Spiel ist ei Laplace - Experimet mit M = 0 ; ; ;... ; 3 ; als Ergebismege, bei dem jedes Elemetarereigis die Wahrscheilichkeit hat. Der Erwartugswert beträgt daher i = µ = m. p ( m ) i =. ( + ) = m. i = i =. = = 8 m = 0 Die Variaz beträgt 8 σ = ( m - µ ). p ( m ) = ( m - 8 ). =.. i m = 0 i = = = 4 Die Stadardabweichug beträgt damit σ = 4 = 0,77. Istitut für Automatisierugstechik Prof. Dr. Ch. Bold Aalysis.4 Folie 9

10 Bemerkuge.) Der Erwartugswert ud damit auch Variaz ud Stadardabweichuge sid icht für alle Zufallsexperimete defiiert, soder ur für Zufallsvariable, da mit de Elemetarereigisse gerechet wird ud diese daher reelle Zahle sei müsse. Es gibt also z.b. keie Erwartugswert beim Würfel mit eiem Farbewürfel..) Adererseits ist es icht bei jeder Zufallsvariable sivoll, de Erwartugswert sowie Variaz ud Stadardabweichug zu bestimme. So ist es z.b. für eie Roulettespieler völlig utzlos zu wisse, dass der Erwartugswert 8 ist ( siehe Beispiel 3 ), ud es wäre absolut silos, deswege vermehrt auf die Zahl 8 zu setze. Dies liegt dara, dass die Elemetarereigisse beim Roulette ur formal reelle Zahle sid; diese reelle Zahle werde aber icht zur Agabe der Größe der jeweilige Elemetarereigisse, soder ur zu ihrer Uterscheidug beutzt. Istitut für Automatisierugstechik Prof. Dr. Ch. Bold Aalysis.4 Folie 0

11 Beispiel 4: Roulette Mit wie viel Gewi ka ma durchschittlich reche, we ma beim Roulette auf Rot setzt? Dies ka ma als Zufallsvariable auffasse mit der Ergebismege M = 0 ; ud de Wahrscheilichkeite p ( 0 ) = ud p ( 74 ) =. Der Erwartugswert beträgt daher µ = =. Setzt ma higege auf die Zahl 0 ( oder eie beliebige adere Zahl ), so ka ma auch dies als Zufallsvariable auffasse mit der Ergebismege M = 0 ; 33 ud de Wahrscheilichkeite p ( 0 ) = ud p ( 33 ) =. =. Der Erwartugswert beträgt da µ = =. Der Erwartugswert beim Roulette ist also bei beide Spielarte ( ud auch alle adere ) gleich. Uterschiedlich sid aber die Stadardabweichuge: Istitut für Automatisierugstechik Prof. Dr. Ch. Bold Aalysis.4 Folie

12 Beispiel 4: Roulette Beim Setze vo auf Rot beträgt die Variaz σ = ( m - µ ). p ( m ) = 9 8 ( 0 - ). + ( 74 - ). = 8 ud damit die Stadardabweichug σ = 8 =,98. Beim Setze vo auf die Zahl 0 beträgt die Variaz σ = ( m - µ ). p ( m ) = ( 0 - ). + ( 33 - ). = 4 ud damit die Stadardabweichug σ = 4 =. Istitut für Automatisierugstechik Prof. Dr. Ch. Bold Aalysis.4 Folie

13 Beispiel : Würfel, bis eie gewürfelt wird Wie oft muss ma erwartugsgemäß würfel, we ma so lage würfelt, bis ma eie gewürfelt hat? Dies ist eie diskrete Zufallsvariable mit der Ergebismege M = N +. Die Wahrscheilichkeitsfuktio lautet p ( m ) = m -. m =.. Azahl Würfe m Wahrscheilichkeit m -. Wahrscheilichkeit, im zweite Wurf eie zu würfel Wahrscheilichkeit, im erste Wurf keie zu würfel Istitut für Automatisierugstechik Prof. Dr. Ch. Bold Aalysis.4 Folie 3

14 Die Wahrscheilichkeitsfuktio lautet p ( m ) = m -. m =.. Der Erwartugswert beträgt daher µ = m. p ( m ) 8 = m.. m = 8 = m = x - 3. ( x - 3 ) = für x ε ; 4 (., Beispiel ) ( 4 - x ) 8 Mit x = 3 gilt daher m. = Bemerkug m = = 30 Ist die Ergebismege uedlich, so muss bei der Bestimmug des Erwartugswerts der Grezwert eier uedliche Reihe berechet werde. Istitut für Automatisierugstechik Prof. Dr. Ch. Bold Aalysis.4 Folie 4 m Falls dies icht möglich ist, ka der Erwartugswert icht bestimmt werde. Falls die Reihe diverget ist, hat die Zufallsvariable keie Erwartugswert. Gleiches gilt auch für die Variaz ud damit auch für die Stadardabweichug. Dabei ist zu beachte:

15 Beispiel : Lebeserwartug I der Budesrepublik Deutschlad beträgt die durchschittliche Lebeserwartug für eugeboree Juge 7, Jahre ud für eugeboree Mädche 8, Jahre. Ei Jahr zuvor ware es 7, beziehugsweise 8,8 Jahre. ( Statistisches Budesamt, Februar 008 ) Auch die Lebeserwartug ist der Erwartugswert eier diskrete Zufallsvariable. Das zugrudeliegede Zufallsexperimet besteht i der Geburt eies Kides: die Elemetarereigisse sid z.b. die atürliche Zahle bis ( etwa ) ; sie bedeute das Sterbealter i Jahre ( evtl. geauere Dateerhebug ) die Wahrscheilichkeit für die Elemetarereigisse wird statistisch ermittelt Die Bestimmug dieser Wahrscheilichkeite ist aber offebar erst möglich, we alle im Jahr 008 geboree Kider gestorbe sid! Was bedeutet die obige Statistik für eie 8-jährige Ma? a) Er ist seit 9 Jahre tot b) Er sollte kei großes Bier mehr bestelle c) Er sollte auch kei kleies Bier mehr bestelle d) Er sollte keierlei besodere Maßahme ergreife ( evtl. Statistik studiere ) Richtig ist d), da seie weitere Lebeserwartug als bedigte Wahrscheilichkeit berechet werde muss ud ihm wahrscheilich och eiige Lebesjahre bleibe. Istitut für Automatisierugstechik Prof. Dr. Ch. Bold Aalysis.4 Folie

16 Biomialverteilug Ei beliebiges Zufallsexperimet wird - mal durchgeführt. Bei jeder dieser Durchführuge achtet ma darauf, ob ei Ereigis A eitritt oder icht. Da erhält ma eie Zufallsvariable mit Ergebismege M = 0 ; ; ;... ;, bei der jedes Elemetarereigis für die Azahl steht, mit der das Ereigis A bei de Durchführuge des obige Zufallsexperimets eigetrete ist. Ist p = p ( A ) die Wahrscheilichkeit des Ereigisses A, so heißt diese eue Zufallsvariable biomialverteilt mit Parameter ud p oder kurz B ( ; p ) - verteilt. Zur Bestimmug der Wahrscheilichkeitsfuktio eier Biomialverteilug betrachte das folgede Beispiel: Wie groß ist die Wahrscheilichkeit, dass bei 4 - maliger Durchführug des Zufallexperimets das Ereigis A geau 3 - mal eitritt? Istitut für Automatisierugstechik Prof. Dr. Ch. Bold Aalysis.4 Folie

17 p Zufallsexperimet 4 - mal durchführe - p A A p - p p - p A A A A p - p p - p A A A A p - p p - p A A A A A A A A p - p p - p p - p p - p p - p p - p p - p p - p Nach. gibt es geau ( 4 ) 3 = 4 Möglichkeite, aus de 4 Durchführuge des Zu- fallsexperimets die 3 Durchführuge auszuwähle, i dee das Ereigis A eitritt. Jede dieser 3 Durchführuge hat die Wahrscheilichkeit p. p. p. ( - p ) = p 3. ( - p ). Das Ereigis A tritt also mit Wahrscheilichkeit ( 4 ) 3. p 3. ( - p ) geau 3 - mal auf. Istitut für Automatisierugstechik Prof. Dr. Ch. Bold Aalysis.4 Folie 7

18 Wie groß ist die Wahrscheilichkeit, dass bei 4 - maliger Durchführug des Zufallex- perimets das Ereigis A geau 3 - mal eitritt? Das Ereigis A tritt also mit Wahrscheilichkeit ( 4 ) 3. p 3. ( - p ) geau 3 - mal auf. Allgemei gilt: Die Wahrscheilichkeit, dass bei - maliger Durchführug eies Zufallexperimets ei Ereigis A ( mit Wahrscheilichkeit p = p ( A ) ) für eie beliebige Azahl k ( ) zwische 0 ud geau k - mal eitritt, beträgt p ( k ) =. p k. ( - p ) - k. k Beispiel Die Wahrscheilichkeit, dass bei 0 - maligem Würfel geau 0 - mal die Zahl ge- würfelt wird, beträgt ( 0 ) p ( 0 ) = = 0, = 3,7 % Istitut für Automatisierugstechik Prof. Dr. Ch. Bold Aalysis.4 Folie 8

19 Bemerkuge zur Biomialverteilug.) Wie bei jedem Zufallsexperimet ( vgl. Satz a aus. ) hat die Summe der Wahrscheilichkeite aller Elemetarereigisse auch bei der Biomialvertei- lug de Wert : p ( m ) =. p k. ( - p ) - k = (p + ( - p )) = = k = 0 ( ) k biomischer Satz.) Eie B ( ; p ) - verteilte Zufallsvariable hat de Erwartugswert. p, de: µ = m. p ( m ) ( ) = k.. p k. ( - p ) - k k k = 0 = k.!. p k. ( - p ) - k k!. ( - k )! k = Istitut für Automatisierugstechik Prof. Dr. Ch. Bold Aalysis.4 Folie 9

20 = k.!. p k. ( - p ) - k k!. ( - k )! k =. ( - )! =. p. p k -. ( - p ) ( k - )!. (( - ) - ( k - ))! k = ( - ) =. p.. k p -. ) ( - p ) k - k = ( - ) - (k - - k - ( - ) =. p.. p j. ( ( - p ) - ) - j j =. p. (p + ( - p )) - =. p j = k - j = 0 biomischer Satz Istitut für Automatisierugstechik Prof. Dr. Ch. Bold Aalysis.4 Folie 0

21 Bemerkuge zur Biomialverteilug 3.) Mit ähliche Umformuge wie i Bemerkug ka ma auch die Variaz eier B ( ; p ) - verteilte Zufallsvariable bereche; sie beträgt. p. ( - p ). Es gilt damit allgemei für jede B ( ; p ) - verteilte Zufallsvariable : Wahrscheilichkeitsfuktio: p ( k ) =. p k. ( - p ) - k ( ) k Erwartugswert: µ =. p Variaz: σ =. p. ( - p ) Stadardabeichug: σ =. p. ( - p ) Istitut für Automatisierugstechik Prof. Dr. Ch. Bold Aalysis.4 Folie

22 Graph der Wahrscheilichkeitsfuktio eier Biomialverteilug Beispiel: = 4, p = 0,3 (, also p ( k ) = 4 ). 0,3 k. 0,7 - k k k p ( k ) 0,007 0,04 0,3 0,94 0,9 0,9 0, 0,0 0,03 0,007 0,00 0,000 p ( k ) k 3 4 p ( k ) 0,0000 0, , , k Istitut für Automatisierugstechik Prof. Dr. Ch. Bold Aalysis.4 Folie

23 p ( k ) 0, Erwartugswert: µ =. p µ = 4. 0,3 = 4, 3 4 4, µ k max k Ist k max das Elemetarereigis mit der größte Wahrscheilichkeit, so liegt der Erwartugswert µ stets zwische k max - p ( A ) ud k max + p ( A ) : k max - p < µ < k max + - p bzw. µ + p - < k max < µ + p 4-0,3 < µ < 4 + 0,7 bzw. 4, - 0,7 < k max < 4, + 0,3 Istitut für Automatisierugstechik Prof. Dr. Ch. Bold Aalysis.4 Folie 3

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. Vo der relative Häufigkeit zur Wahrscheilichkeit Es werde 20 Schüler befragt, ob sie ei Hady besitze. Das Ergebis der Umfrage lautet: Vo 20 Schüler besitze 99 ei Hady. Ereigis E: Schüler besitzt ei Hady

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Wahrscheinlichkeit & Statistik

Wahrscheinlichkeit & Statistik Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch ifo@matheachhilfe.ch 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

AngStat1(Ue13-21).doc 23

AngStat1(Ue13-21).doc 23 3. Ereigisse Versuchsausgäge ud Wahrscheilicheite: a) Wie wird die Wahrscheilicheit des Auftretes eies Elemetarereigisses A geschätzt? A Ω heißt Elemetarereigis we es ur eie Versuchsausgag ethält also

Mehr

7.2 Grundlagen der Wahrscheinlichkeitsrechnung

7.2 Grundlagen der Wahrscheinlichkeitsrechnung 7.2 Grudlage der Wahrscheilichkeitsrechug Ei Ereigis heißt i Bezug auf eie Satz vo Bediguge zufällig, we es bei der Realisierug dieses Satzes eitrete ka, aber icht ubedigt eitrete muss. Def. 7.2.: Ei Experimet

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Diskrete Zufallsvariablen

Diskrete Zufallsvariablen Erste Beispiele diskreter Verteiluge Diskrete Zufallsvariable Beroulli-Verteilug Eie diskrete Zufallsvariable heißt beroulliverteilt mit arameter p, falls sie die Wahrscheilichkeitsfuktio p,, f ( ) ( )

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsammlug Mathematik 1 Fiazmathematik 1.1 Reterechug Sei der Zissatz p%, der Zisfaktor q = 1 + p 100. Seie R die regelmäßig zu zahlede Rate, die Laufzeit. Edwert: Barwert: achschüssig R = R q 1 q 1

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis 6. Grudlage der Wahrscheilichkeitsrechug 6.. Defiitioe ud Beispiele Spiele aus dem Alltagslebe: Würfel, Müze, Karte,... u.s.w. sid gut geeiget die Grudlage der Wahrscheilichkeitsrechug darzustelle. Wir

Mehr

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert. Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Domiik Faas Stochastik Witersemester 00/0 Klausur vom 7.0.0 Aufgabe 3+.5+.5=6 Pukte Bei eier Umfrage wurde 60 Hotelbesucher ach ihrer Zufriedeheit

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Fassug vom 13. Februar 2006 Mathematik für Humabiologe ud Biologe 129 9.1 Stichprobe-Raum 9.1 Stichprobe-Raum Die bisher behadelte Beispiele vo Naturvorgäge oder Experimete

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

Statistik und Wahrscheinlichkeitslehre

Statistik und Wahrscheinlichkeitslehre Statistik ud Wahrscheilichkeitslehre Zufall ud Mittelwerte Für alle techische Studiegäge Prof. Dr.-Ig. habil. Thomas Adamek Grudlage der Wahrscheilichkeitsrechug. Eiführug Grudlage vo Statistik ud Wahrscheilichkeitsrechug

Mehr

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf # 0 Atwort Diese Lerkarte sid sorgfältig erstellt worde, erhebe aber weder Aspruch auf Richtigkeit och auf Vollstädigkeit. Das Lere mit Lerkarte fuktioiert ur

Mehr

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung Seite vo 7 5 Beroulli-Kette Jakob Beroulli 654-705 Schweizer Mathematiker ud Physiker 5. Beroulli-Exerimet 5.. Eileitug Oft iteressiert ma sich bei Zufallsexerimete icht für die eizele Ergebisse, soder

Mehr

Der Additionssatz und der Multiplikationssatz für Wahrscheinlichkeiten

Der Additionssatz und der Multiplikationssatz für Wahrscheinlichkeiten Der Additiossatz ud der Multiplikatiossatz für Wahrscheilichkeite Die Wahrscheilichkeitsrechug befasst sich mit Ereigisse, die eitrete köe, aber icht eitrete müsse. Die Wahrscheilichkeit eies Ereigisses

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Empirische Methoden I

Empirische Methoden I Hochschule für Wirtschaft ud 2012 Umwelt Nürtige-Geislige Fakultät Betriebswirtschaft ud Iteratioale Fiaze Prof. Dr. Max C. Wewel Prof. Dr. Corelia Niederdrek-Felger Aufgabe zum Tutorium Empirische Methode

Mehr

Klassifizierung der Verteilungen. Streuung der diskreten Verteilung

Klassifizierung der Verteilungen. Streuung der diskreten Verteilung Wichtigste Verteiluge der Biostatisti Disrete Zur Erierug Klassifizierug der Verteiluge Kotiuierliche Disrete Gleichverteilug Kotiuierliche Gleichverteilug Biomialverteilug Normalverteilug Poisso Verteilug

Mehr

Statistik. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.html

Statistik. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.html Statistik Prof. Dr. K. Melzer kari.melzer@hs-esslige.de http://www.hs-esslige.de/de/mitarbeiter/kari-melzer.html Ihaltsverzeichis 1 Eileitug ud Übersicht 3 2 Dategewiug (kurzer Überblick) 3 2.1 Plaugsphase

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

A Ω, Element des Ereignisraumes

A Ω, Element des Ereignisraumes ue biostatisti: grudlegedes zur wahrscheilicheit ud ombiatori 1/6 WAHRSCHEINLICHKEIT / EINIGE BEGRIFFE Ereigisraum Ω Elemetarereigis A: Ω ist die Mege aller mögliche Elemetarereigisse A Ω, Elemet des Ereigisraumes

Mehr

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte.

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte. Statistik Vorlesug,. ärz, Statistische aßzahle Iformatio zu verdichte, Besoderheite hervorzuhebe ittelwerte Aufgabe: die Lage der Verteilug auf der Abszisse zu zeige. Der odus: derjeige Wert, der im Häufigste

Mehr

Daten und Zufall in der Jahrgangsstufe 9 Seite 1

Daten und Zufall in der Jahrgangsstufe 9 Seite 1 Date ud uall i der Jahrgagsstue Seite usammegesetzte uallsexperimete, Padregel Aubaued au de Erahruge aus de vorhergehede Jahrgagsstue beschätige sich die Schüler systematisch mit zusammegesetzte uallsexperimete

Mehr

Statistische Formelsammlung Begleitende Materialien zur Statistik - Vorlesung des Grundstudiums im Fachbereich IK

Statistische Formelsammlung Begleitende Materialien zur Statistik - Vorlesung des Grundstudiums im Fachbereich IK Statistische Formelsammlug Begleitede Materialie zur Statistik - Vorlesug des Grudstudiums im Fachbereich IK Erstellt im Rahme des studierede Projektes PROST Studiejahr 00/00 uter Aleitug vo Frau Prof.

Mehr

( ) Formelsammlung. Kombinatorik. Permutation: ohne Wiederholung. n! = n (n - 1) (n - 2)... 3 2 1 n= alle Elemente. Permutation: mit Wiederholung

( ) Formelsammlung. Kombinatorik. Permutation: ohne Wiederholung. n! = n (n - 1) (n - 2)... 3 2 1 n= alle Elemente. Permutation: mit Wiederholung Formelsammlug Kombiatori Permutatio: ohe Wiederholug! = ( - 1) ( - 2).... 3 2 1 = alle Elemete Permutatio: mit Wiederholug!! P, = = usw. = gleiche Elemete! 1! K 2! Stichprobe (SP) = geordete Auswahl Geordete

Mehr

Elementare Wahrscheinlichkeitsrechnung und Statistik

Elementare Wahrscheinlichkeitsrechnung und Statistik CURANDO UNIVERSITÄT ULM SCIENDO DOCENDO Elemetare Wahrscheilichkeitsrechug ud Statistik Uiversität Ulm Istitut für Stochastik Vorlesugsskript Prof. Dr. Volker Schmidt Stad: Witersemester 28/9 Ulm, im Februar

Mehr

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH peter.uruh@src-gmbh.de Eileitug Biometrische Systeme werde durch zwei wichtige

Mehr

Monte Carlo-Simulation

Monte Carlo-Simulation Mote Carlo-Simulatio Mote Carlo-Methode Der Begriff Mote Carlo-Methode etstad i de 1940er Jahre, als ma im Zusammehag mit dem Bau der Atombombe die Simulatio vo Zufallsprozesse erstmals i größerem Stil

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung

Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK Physikalische Prozesse, die eier statistische Gesetzmäßigkeit uterworfe sid, lasse sich mit eier Verteilugsfuktio beschreibe. Die Gauß-Verteilug

Mehr

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln 6 Kovergete Folge Lerziele: Kozepte: Grezwertbegriff bei Folge, Wachstumsgeschwidigkeit vo Folge Resultat: Mootoe beschräkte Folge sid koverget. Methode: Hero-Verfahre, Erweiterug vo Differeze vo Quadratwurzel

Mehr

Die zu den Zufallswerten x gehörigen Wahrscheinlichkeiten fasst man in einer Tabelle zusammen:

Die zu den Zufallswerten x gehörigen Wahrscheinlichkeiten fasst man in einer Tabelle zusammen: 0 Statistik 0. Wahrscheilichkeitsfuktio ud optische Darstellug Bei der Auswertug vo Zufallsexperimete ist oft gar icht das eizele Ergebis vo Iteresse, soder vielmehr eie Zahlegröße (Zufallsgröße X), die

Mehr

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert Deskriptive Statistik dimesioale Date Date ud Häufigkeite Seite Nomial Ordial Metrisch (Kardial Metrisch klassiert Beschreibug: Date habe keie atürliche Reihefolge. Bsp: Farbe, Religio, Geschlecht, Natioalität...

Mehr

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung MaMaEuSch Maagemet Mathematics for Europea Schools http://www.mathematik.uikl.de/ mamaeusch Grudgesamtheitsaaylse ud Stichprobe. Betrachtuge zur Stichprobefidug Paula Lagares Justo Puerto 1 MaMaEuSch 2

Mehr

Kapitel 5: Schließende Statistik

Kapitel 5: Schließende Statistik Kapitel 5: Schließede Statistik Statistik, Prof. Dr. Kari Melzer 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte

Mehr

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern Modrago Formel Herleitug, Azahl Quadrate ud Differeze 01.doc 1 FormelfürdieAzahlmöglicherQuadrateauf*Spielfelder Mit Erläuteruge zur Ableitug der Formel vo Dr. Volker Bagert Berli, 11.03.010 Ihaltsverzeichis

Mehr

Model CreditRisk + : The Economic Perspective of Portfolio Credit Risk Part I

Model CreditRisk + : The Economic Perspective of Portfolio Credit Risk Part I Model CreditRisk + : The Ecoomic Perspective of Portfolio Credit Risk Part I Semiar: Portfolio Credit Risk Istructor: Rafael Weißbach Speaker: Pablo Kimmig Ageda 1. Asatz ud Ziele Was ist CreditRisk +

Mehr

1. Zahlenfolgen und Reihen

1. Zahlenfolgen und Reihen . Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,

Mehr

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen.

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen. 3. Variazaalyse Die Variazaalyse mit eier quatitative abhägige Variable ud eier oder mehrerer qualitativer uabhägiger Variable wird auch als ANOVA (Aalysis of Variace) bezeichet. Mit eier Variazaalyse

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger INDUKTIVE STATISTIK Wahrscheilichkeitstheorie, Schätz- ud Testverfahre ÜBUNG. - LÖSUNGEN. ypothesetest für die Dicke vo Plättche Die Dicke X vo Plättche, die auf eier bestimmte Maschie

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Datenauswertung. Prof. Dr. Josef Brüderl Universität Mannheim. Frühjahrssemester 2007

Datenauswertung. Prof. Dr. Josef Brüderl Universität Mannheim. Frühjahrssemester 2007 Dateauswertug Prof. Dr. Josef Brüderl Uiversität Maheim Frühjahrssemester 007 Methode-Curriculum B.A. Soziologie Basismodul: Methode ud Statistik: VL Dateerhebug (): 5 ÜK (): 3 ----------------------------------------------------------

Mehr

Stochastik für WiWi - Klausurvorbereitung

Stochastik für WiWi - Klausurvorbereitung Dr. Markus Kuze WS 2013/14 Dipl.-Math. Stefa Roth 11.02.2014 Stochastik für WiWi - Klausurvorbereitug Gesetz der totale Wahrscheilichkeit ud Satz vo Bayes (Ω, F, P) Wahrscheilichkeitsraum, E 1,..., E F

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung .3. Prozetuale Häufigkeitsverteilug (HV) Die prozetuale Häufigkeitsverteilug erlaubt de Vergleich vo Auswertuge, dee uterschiedliche Stichprobegröße zugrude liege. Es köe auch uterschiedliche Stichprobegröße

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

Einführung in die Stochastik

Einführung in die Stochastik Prof. Dr. Has-Wolfgag He UNIVERSITÄT DORTMUND Fachbereich Mathematik Istitut für Etwicklug ud Erforschug des Mathematikuterrichts Eiführug i die Stochastik Skriptum zur Vorlesug im WS 00/003 Ihaltsverzeichis.

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

Erwartungswert und Varianz bei Verteilungen und Glücksspielen

Erwartungswert und Varianz bei Verteilungen und Glücksspielen HL Saalfelde Erwartugswert / Variaz Seite vo 7 Wilfried Rohm Erwartugswert ud Variaz bei Verteiluge ud Glücksspiele Mathematische / Fachliche Ihalte i Stichworte: Erwartugswerte ud Variaz (Stadardabweichug)

Mehr

Übungsaufgaben II. Übungsaufgaben II. f) Wie groß ist die Wahrscheinlichkeit, dass er mindestens 1 richtige Antworten. ankreuzt?

Übungsaufgaben II. Übungsaufgaben II. f) Wie groß ist die Wahrscheinlichkeit, dass er mindestens 1 richtige Antworten. ankreuzt? Berufsolleg Marieschule Lippstadt Schuljahr /7 Kurs: Mathemati AHR. Berufsolleg Marieschule Lippstadt Schuljahr /7 Kurs: Mathemati AHR. Aufgabe Ei Multiple-Choise-Test besteht aus Frage für die jeweils

Mehr

3. Einführung in die Statistik

3. Einführung in die Statistik 3. Eiführug i die Statistik Grudlegedes Modell zu Date: uabhägige Zufallsgröße ; : : : ; mit Verteilugsfuktio F bzw. Eizelwahrscheilichkeite p ; : : : ; p r i de Aweduge: kokrete reale Auspräguge ; : :

Mehr

Statistische Modelle und Parameterschätzung

Statistische Modelle und Parameterschätzung Kapitel 2 Statistische Modelle ud Parameterschätzug 2. Statistisches Modell Die bisher betrachtete Modellierug eies Zufallsexperimetes erforderte isbesodere die Festlegug eier W-Verteilug. Oft besteht

Mehr

Für die Vorlesung von Prof. Schmitz

Für die Vorlesung von Prof. Schmitz Agewadte Mathematik Skript Für die Vorlesug vo Prof. Schmitz Vo Michael Barth www.little-thigs.de Dak a Patrick Bader 1 Table of Cotets 6. Graphe ud Bäume... 3 6.1 Graphe...3 6.1.1 Grudlegede e...3 6.1.2

Mehr

elektr. und magnet. Feld A 7 (1)

elektr. und magnet. Feld A 7 (1) FachHochschule Lausitz Physikalisches Praktikum α- ud β-strahlug im elektr. ud maget. Feld A 7 Name: Matrikel: Datum: Ziel des Versuches Das Verhalte vo α- ud β-strahlug im elektrische ud magetische Feld

Mehr

Demo für www.mathe-cd.de

Demo für www.mathe-cd.de Wahrscheilichkeitsrechug Hypergeometrische Verteilug Themeheft ud Traiigsheft Datei r. 4211 Stad 17. April 2010 Friedrich W. Buckel Demo für ITERETBIBLIOTHEK FÜR SCHULMATHEMATIK 4211 Hypergeometrische

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

Beschreibende Statistik Kenngrößen in der Übersicht (Ac)

Beschreibende Statistik Kenngrößen in der Übersicht (Ac) Beschreibede Statistik Kegröße i der Übersicht (Ac) Im folgede wird die Berechugsweise des TI 83 (sowie vo SPSS, s. ute) verwedet. Diese geht auf eie Festlegug vo Moore ud McCabe (00) zurück. I der Literatur

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung www.s.schule.de/~matheabi 1 Wahrscheilichkeitsrechug Eileitug Dieser Text ist etstade, um Schülerie ud Schüler der Jahrgagsstufe 12 die Wiederholug des Stoffs voragegageer Jahre zu erleichter. Nebe viele

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

Bernoulli-Experiment und Binomialverteilung

Bernoulli-Experiment und Binomialverteilung IV Beroulli-Exerimet ud Biomialverteilug Beroulli-Exerimet ud Beroulliette Defiitio: Zufallsexerimete, bei dee ma sich ur für das Eitrete ( Treffer, Symbol ) oder das Nichteitrete ( Niete, Symbol 0 ) eies

Mehr

Klasse: Platzziffer: Punkte: / Graph zu f

Klasse: Platzziffer: Punkte: / Graph zu f Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25

Mehr

LV "Grundlagen der Informatik" Programmierung in C (Teil 2)

LV Grundlagen der Informatik Programmierung in C (Teil 2) Aufgabekomplex: Programmiere i C (Teil vo ) (Strukturierte Datetype: Felder, Strukture, Zeiger; Fuktioe mit Parameterübergabe; Dateiarbeit) Hiweis: Alle mit * gekezeichete Aufgabe sid zum zusätzliche Übe

Mehr

Grundkompetenz-Aufgaben

Grundkompetenz-Aufgaben Durch starte Mathematik übugsbuch bis Grudkompetez-Aufgabe Aufgrud der eue schriftliche Reifeprüfug i Mathematik ist es otwedig, sich mit de eue Grudkompetez-Aufgabe auseiaderzusetze. Die Olie-Ergäzug

Mehr

Pflichtlektüre: Kapitel 10 Grundlagen der Inferenzstatistik

Pflichtlektüre: Kapitel 10 Grundlagen der Inferenzstatistik Pflichtlektüre: Kapitel 10 Grudlage der Iferezstatistik Überblick der Begriffe Populatio Iferezstatistik Populatiosparameter Stichprobeverteiluge Auch Stichprobekewerteverteiluge Wahrscheilichkeitstheorie

Mehr

1 Einführung in die Fehlerrechnung

1 Einführung in die Fehlerrechnung Physik für Biologie ud Zwei-Fächer-Bachelor Chemie Kap.: Eiführug i die Fehlerrechug Eiführug i die Fehlerrechug Tiefemessschiee Abbildug: Messschieber. Theoretische Grudlage Bei jeder physikalische Messug

Mehr

Fehlerrechnung. 3. Genauigkeit von Meßergebnissen am Beispiel der Längenmessung

Fehlerrechnung. 3. Genauigkeit von Meßergebnissen am Beispiel der Längenmessung 1 Gie 11/000 Fehlerrechug 1. Physikalische Größe: Zahlewert ud Eiheit. Ursache vo Meßfehler 3. Geauigkeit vo Meßergebisse am Beispiel der Lägemessug 4. Messug eier kostate Größe ud Mittelwert 5. Messug

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

Löslichkeitsdiagramm. Grundlagen

Löslichkeitsdiagramm. Grundlagen Grudlage Löslichkeitsdiagramm Grudlage Zur etrachtug des Mischugsverhaltes icht vollstädig mischbarer Flüssigkeite, das heißt Flüssigkeite, die sich icht bei jeder Temperatur i alle Megeverhältisse miteiader

Mehr

Einführung in die Grenzwerte

Einführung in die Grenzwerte Eiführug i die Grezwerte Dieser Text folgt hauptsächlich der Notwedigkeit i sehr kurzer Zeit eie Idee ud Teile ihrer Awedug zu präsetiere, so dass relativ schell mit dieser Idee gerechet werde ka. Der

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien?

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien? Fiazmathematik Aufgabesammlug. Ei Kapital vo 5000 ist zu 6,5% ud ei Kapital vo 4500 zu 7% auf 2 Jahre agelegt. Wie groß ist der Uterschied der Edkapitalie? 2. Wa erreicht ei Kapital eie höhere Edwert,

Mehr

Statistik I Februar 2005

Statistik I Februar 2005 Statistik I Februar 2005 Aufgabe 0 Pukte Ei Merkmal X mit de mögliche Auspräguge 0 ud, das im Folgede wie ei kardialskaliertes Merkmal behadelt werde ka, wird a Merkmalsträger beobachtet. Dabei bezeichet

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen LGÖ Ks VMa Schuljahr 6/7 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Eperte 8 Polyomgleichuge ud -ugleichuge

Mehr

1 Wahrscheinlichkeitslehre

1 Wahrscheinlichkeitslehre Wahrscheilichkeitslehre. Grudlage der Wahrscheilichkeitsrechug Die Wahrscheilichkeitslehre ist ei elemetarer Bestadteil der Statistik. Die mathematische Wahrscheilichkeitslehre umfasst ei kompliziertes

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier Der atürliche Werkstoff Holz - Statistische Betrachtuge zum uiaxiale Zugversuch am Beispiel vo Furier B. Bellair, A. Dietzel, M. Zimmerma, Prof. Dr.-Ig. H. Raßbach Zusammefassug FH Schmalkalde, 98574 Schmalkalde,

Mehr

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand:

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand: M 9.1 Quadratwurzel a ist diejeige ichtegative Zahl (a 0), die quadriert a ergibt: a 2 = a Die Zahl a uter der Wurzel heißt Radikad: a Quadratwurzel sid ur für ichtegative Zahle defiiert: a 0 25 = 5; 81

Mehr

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen Aufgabe 1: WS 2000/2001 Aufgabe 1: (4 P (4 Pukte) Gebe Sie die Formel zur Bestimmug des relative sowie des koforme Zissatzes a ud erläuter Sie die Uterschiede bzw. Gemeisamkeite der beide Zisfüße. Lösug:

Mehr

Behandlung von Messunsicherheiten (Fehlerrechnung)

Behandlung von Messunsicherheiten (Fehlerrechnung) Behadlug vo Messusicherheite (Fehlerrechug). Ermittlug vo Messusicherheite. Messug ud Messusicherheit Die Messug eier physikalische Größe erfolgt durch de Vergleich dieser Größe mit eier Bezugseiheit ach

Mehr

Stochastisches Integral

Stochastisches Integral Kapitel 11 Stochastisches Itegral Josef Leydold c 26 Mathematische Methode XI Stochastisches Itegral 1 / 2 Lerziele Wieer Prozess ud Browsche Bewegug Stochastisches Itegral Stochastische Differetialgleichug

Mehr

Die erste Zeile ("Nummerierung") denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen.

Die erste Zeile (Nummerierung) denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen. Folge ud Reihe (Izwische Stoff der Hochschule. ) Stad: 30.03.205. Folge Was sid Zahlefolge? Z.B. oder Das ist die vereifachte Wertetabelle eier Fuktio geschriebe wie üblich bei Fuktioe i eier Wertetabelle.

Mehr

Integrationsseminar zur BBL und ABWL Wintersemester 2002/2003

Integrationsseminar zur BBL und ABWL Wintersemester 2002/2003 Credit Risk+ Itegratiossemiar zur BBL ud BWL Witersemester 2002/2003 Oksaa Obukhova lia Sirsikova Credit Risk+ 1 Ihalt. Eiführug i die Thematik B. Ökoomische Grudlage I. Ziele II. wedugsmöglichkeite 1.

Mehr

Verteilungsfunktionen

Verteilungsfunktionen Verteilugsfuktioe Wie sid zufällige Fehler verteilt? Wie sid Messwerte verteilt? Fehler Messwerte Verteilugsfuktioe: Maxwell-Boltza Feri-Dirac Bose-Eistei Placksche Verteilug Frage ist stets, wie groß

Mehr

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE Versuch 3/ NEWTONSCHE INTERFERENZRINGE Blatt NEWTONSCHE INTERFERENZRINGE Die Oberfläche vo Lise hat im allgemeie Kugelgestalt. Zur Messug des Krümmugsradius diet das Sphärometer. Bei sehr flacher Krümmug

Mehr

1 Aussagenlogik und vollständige Induktion

1 Aussagenlogik und vollständige Induktion Dr. Siegfried Echterhoff Aalysis 1 Vorlesug WS 08 09 1 Aussagelogi ud vollstädige Idutio Die Mathemati basiert auf eier Reihe vo Axiome, d.h. auf mathematische Aussage, die als (offesichtlich? wahr ageomme

Mehr

Weitere Lagemaße: Quantile/Perzentile II. Weitere Lagemaße: Quantile/Perzentile I. Weitere Lagemaße: Quantile/Perzentile IV

Weitere Lagemaße: Quantile/Perzentile II. Weitere Lagemaße: Quantile/Perzentile I. Weitere Lagemaße: Quantile/Perzentile IV 3 Auswertug vo eidimesioale Date Lagemaße 3.3 Weitere Lagemaße: Quatile/Perzetile I 3 Auswertug vo eidimesioale Date Lagemaße 3.3 Weitere Lagemaße: Quatile/Perzetile II Für jede Media x med gilt: Midestes

Mehr