Elektrische Leitfähigkeit für zufällige Schrödinger-Operatoren

Größe: px
Ab Seite anzeigen:

Download "Elektrische Leitfähigkeit für zufällige Schrödinger-Operatoren"

Transkript

1 Elektrische Leitfähigkeit für zufällige Schrödinger-Operatoren Peter Müller LMU München

2

3 Inhaltsverzeichnis 1 Zufällige Schrödinger-Operatoren 3 2 Physikalische Heuristik zur elektrischen Leitfähigkeit 9 3 Nicht-kommutative L p -Räume ergodischer Operatoren 13 4 Lineare Antworttheorie in L p (K) 19 1

4 2 INHALTSVERZEICHNIS

5 KAPITEL 1 Zufällige Schrödinger-Operatoren Literatur: W.Kirsch, Random Schrödinger operators: A course in Lecture Notes in Physics, vol. 345, Springer 1989 L.Pastor, A.Figotin, Spectra of random and almost-periodic operators, Springer 1992 R.Carmona, J.Lacroix, Spectral theory of random Schrödinger operators, Birkhäuser 1990 P.Stollmann, Caught by disorder: Bounded states in random media, Birkhäuser 2001 W.Kirsch, An invitation to random Schrödinger operators, arxiv: Ziel: Elektrische Eigenschaften ungeordneter Materialien, z.b. Legierungen, dotierte Halbleiter Abbildung 1.1: irregulärer atomarer Festkörper 3

6 4 1. ZUFÄLLIGE SCHRÖDINGER-OPERATOREN Modellbildung: Keine Wechselwirkung zwischen den Elektronen 1- Elektronen Hamilton-Operator: kinetische Energie + potetielle Energie } {{ } zufälliges Potential Dies ist das einfachste Modell (Anderson, 1958). 1.1 Definition Sei P 0 ein bezüglich des Lebesgue-Maßes absolut stetiges Wahrscheinlichkeitsmaß auf R mit dp 0 L (R) und kompaktem Träger. sei dν Ω := R Zd, d N, P := Z dp 0. Für ω = (ω x ) x Z d Ω und λ > 0 sei H ω := +λv ω auf l 2 (Z d ) ( ψ)(x) := y Zd x y =1 ψ(y) ψ l 2 (Z d ) (V ω ψ)(x) := ω x ψ(x) x Z d. Dies ist der sogenannte Hamilton-Operator des Anderson-Modells. 1.2 Bemerkung (i) (ω x ) x Z d kanonisch realisierte i.i.d. Zufallsvariablen (ii) = ( ) beschränkter selbstadjungierter Operator auf l 2 (Z d ). spec( ) = spec ac ( ) = [ 2d,2d] V ω beschränkter selbstadjungierter Multiplikationsoperatorinl 2 (Z d )für P-fast alle ω Ω, da suppp 0 kompakt ist. (iii) Wir haben drei Modellparameter: λ, d und dp 0 dν (a) H : ω H ω ist eine operatorwertige Zufallsvariable 1.3 Definition (und Lemma) H ergodisch (bezüglich Z d -Translationen) Für y Z d sei τ y : Ω Ω, ω τ y ω = (ω x+y ) x und U y : l 2 (Z d ) l 2 (Z d ), ψ u y ψ := ψ( y) (unitärer Verschiebungsoperator). Dann gilt (Beweis: Übung!) H τyω = U y Hω U y y Z d ω Ω. 1.4 Bemerkung (τ y ) y Z d ist Gruppe ergodischer Schifts auf Ω, das heißt gilt für eine Zufallsvariable X auf Ω X τ y = X y Z d, so folgt X = const. P-fast sicher.

7 1. ZUFÄLLIGE SCHRÖDINGER-OPERATOREN Satz (Nicht-Zufälligkeit des Spektrums) Es existiert S x R kompakt, sodass spec x (H ω ) = S für P-fast alle ω Ω. Hierbei ist x {ac,sc,pp}. Nebenbedingung: spec pp (A) := {Eigenwerte von A}. [ Pastor 1980, Kunz/Souillard 1980, Kirsch/Martinelli 1982] Beweis: (Grundidee) Für alle E 1 < E 2 R ist X E1,E 2 τ y = X E1,E 2 für alle y Z d, wobei ω X ω E 1,E 2 := tr χ [E1,E 2 ](H ω ) messbarer Spektralprojektor. 1.6 Satz (Lage des Spektrums) Wir haben S = [ 2d,2d] +λ supp(p } {{ } 0 ) = spec( ) {E 0 +λν : E } {{ } 0 spec( ), ν supp(p 0 )}, wobei supp(p 0 ) = [v,v + ], v < E 0 < v +. Erwartung: λ Isolator = lokal Leiter = delokal 2d 2d E Abbildung 1.2: 1.7 Definition (Bereich (vollständiger/anderson-)lokalisierung) E loc := {E S : δ,c > 0 sodass x,y Z d E( sup δ x,f(h) χ [E δ,e+δ] (H) δ y 2 ) ce x y }, f L (R): f 1 wobei, das kanonische Skalarprodukt und δ einen kanonischen Basisvektor in l 2 (Z d ) bezeichne.

8 6 1. ZUFÄLLIGE SCHRÖDINGER-OPERATOREN 1.8 Bemerkung (i) Sei E E loc, I := [E δ,e+δ], f = e it, t 0, im Supremum erlaubt, ψ t := e ith χ I (H)δ 0 } {{ } ψ 0 E[sup δ x,ψ t 2 ] ce x t 0 } {{ } ψ t(x) ψ t (x) 2 q.m.w., dass dass ein Teilchen mit Anfangszustand ψ 0 (Energie I, ψ 0 (x) 2 ce x aus f 1) zur Zeit t bei x gefunden wird (dynamische Lokalisierung). (ii) Die Betonung in Definition 1.7 liegt auf f nicht glatt! Denn für alle f C (R) gilt: Für alle k N existiert c k > 0, sodass für alle x,y Z d δ x,f(h ω δ y ) c k 1+ x y k gleichmäßig in ω. [Deterministisches Ergebnis via Combes-Thomas- Abschätzung und Helffer-Sjøstrand-Formel; siehe Germinet/Klein, Proc. Amer. Math. Soc. 131, (2002)] (iii) Für µ R, T 0, E R sei χ ],µ] (E),falls T = 0 E fµ T (E) = (e (E µ)/t +1) 1,falls T 0 die Fermi-Funktion. T = µ T > 0 Abbildung 1.3: Sei T > 0 oder µ E loc. Dann folgt nach (ii): Für alle k N existiert ein c k > 0, sodass für alle x,y Z d E[ δ x,f T µ (H)δ y 2 ] c k 1+ x y k

9 1. ZUFÄLLIGE SCHRÖDINGER-OPERATOREN 7 gilt. T > 0 klar; T = 0 und µ E loc ist eine Übung! Es gilt sogar exponentieller Abfall in x y für T = 0 und µ E loc [Aizenmann/Graf, J.Phys. A 32, (1998)]. 1.9 Satz (Dynamische Lokalisierung Spektrale Lokalisierung) S ac E loc = = S sc E loc ( S E loc = S pp E loc ) und für jede Eigenfunktion ψ ω E l2 (Z d ) von H ω mit Eigenwert E ω E loc gilt: lim sup x ln ψ ω E (x) x < 0 (exponentieller Abfall der Eigenfunktionen). Beweis: Verallgemeinerte Eigenfunktionen + RAGE-Theorem [siehe Kirsch 2007] 1.10 Satz (Anderson-Lokalisierung) d = 1: Für alle λ > 0 ist E loc = S d 1: (i) starke Unordnung: Es existiert ein λ 0 > 0, sodass für alle λ λ 0 : E loc = S. (ii) extreme Energien: (= nahe Bandkanten) Für alle λ > 0 existiert ein ε λ > 0 : E loc [inf(s),inf(s)+ε λ [ ]sup(s) ε λ,sup(s)]. [ Fröhlich/Spencer 1983, Aizenmann/Molchanov 1993, Germinet/Klein 2001, 2004] 1.11 Bemerkung für f.a.ω (i) E loc offen in S (nach Definition) = es existieren unendlich viele dicht liegende Eigenwerte {Ej ω } j N in E loc (beachte: {Ej ω } j N variieren in ω, während E loc unabhängig von ω). (ii) Vermutung für d 3: spektrale Delokalisierung: λ ]0,λ 0 [ und Intervall I S, sodass λ [0, λ] : S pp I = = S cc I ( S I = S ac I). (Bewiesen auf Bethe-Gitter statt Z d : Klein, 1996, Aizenmann/Warzel, Froese/Hasler/Spitze).

10 8 1. ZUFÄLLIGE SCHRÖDINGER-OPERATOREN dynamische Delokalisierung auch nicht bekannt: Zum Beispiel Diffusion: ψ 0 l 2 (Z d ) und D > 0, sodass E[ x Z d x 2 (e ith ψ 0 )(x) 2 ] t Dt. Im Folgenden: Direkte physikalische Observable zur Charakterisierung als Leiter/Isolator.

11 KAPITEL 2 Physikalische Heuristik zur elektrischen Leitfähigkeit Elektrische Leitfähigkeit: Quantifizierung der Fähigkeit eines Materials auf ein angelegtes elektrisches Feld mit einem elektrischen Strom zu reagieren. Räumlich konstantes, zeitabhängiges Feld: Abbildung 2.1: Energie: H E (t) := H +E(t) X, H hier gemäß Anderson, Operator: (X α ψ)(x) := x α ψ(x), α = 1,...,d. elektrische Stromdichte für nicht wechselwirkende, identische Elektronen: Q.m. Erwartungswert des Geschwindigkeitsoperators eines elektrons mit Fermi-Funktion J(tE) α := τ(w E (t)ẋα) (2.1) mit - Spur pro Volumen τ := E[ δ 0,( )δ 0 ] 9

12 10 2. PHYSIKALISCHE HEURISTIK ZUR ELEKTRISCHEN LEITFÄHIGKEIT - Geschwindigkeitsoperator Ẋ (nicht zufällig!) Ẋ α := i[h(t),x α ] = i[,x α ]. (Übung: (Ẋαψ)(x) = iψ(x+e α ) iψ(x e α )) - Zeitentwickelter Zustand im E-Feld aus thermodynamischem Gleichgewicht (Temperatur T 0, chemische Potential µ R) zur Zeit t = : w E (t) (zufällig!) löst das Anfangswertproblem der Liouville-von Neumann-Gleichung d dt wω E (t) = i[hω E (t),wω E ] lim t w ω E (t) = ft µ (Hω ) - in geeignetem nicht-kommutativen L p -Raum von Operatoren: Siehe nächstes Kapitel. - chemisches Potential µ codiert die Elektronendichte (Jargon für T = 0: µ = Fermi-Energie) Da (2.1) nicht berechenbar für beliebige E(t) ist (viel zu kompliziert!), beschäftigen wir uns mit der Linearen Antworttheorie: falls J(t, E) Taylorentwickelbar in E bis zur Ordnung 2 ist, so ist die erwartete Form: J(t,E) α = d β=1 t keine E 0 -Terme, da E = 0 J = 0 dt ˇσ αβ (t t )E β (t ) +O(E 2 ). } {{ } J lin (t,e) α Lineare Antwortfunktionen t ˇσ αβ (t) R - Maß wiestarkeine-felde β (t )indervergangenheit (t t Kausalität!) Stromdichte J(t,E) α in der Gegenwart beeinflusst. - wird ausschließlich durch H (hier: Anderson) bestimmt Falls E(t) = R dν eiνt σ αβ (ν)êβ(ν) [E reel Ê(ν) = Ê( ν)] J lin(t,e) α = d β=1 R dν eiνt σ αβ (ν)êβ(ν) Stromdichte in linearer Antwort. Komplexe frequenzabhängige Leitfähigkeit (Matrix mit Einträgen) ν σ αβ (ν) := 0 dt e iνt ˇσ αβ (t), ν R. } {{ } R

13 2. PHYSIKALISCHE HEURISTIK ZUR ELEKTRISCHEN LEITFÄHIGKEIT 11 In-/außerphasiger Anteil ν Re(σ αβ (ν)),gerade in ν i Im(σ αβ (ν)),ungerade in ν Zerlegung J lin (t,e) α = J in lin (t,e) α } {{ } Anteil von Re + Jlin ant (t,e) α. } {{ } Anteil von i Im in- beziehungsweise außerphasiger Anteil des linearen Antwortstroms. Interpretation: E(t) = E 0 cos(ν 0 t) (bzw. sin(ν 0 t)). Ziele: J in lin cos(ν 0 t) (bzw. sin(ν 0 t)) J ant lin sin(ν 0t) (bzw. cos(ν 0 t)) Mathematische Rechtfertigung des obigen Vorgehens Dichte σ αβ durch Spektraleigenschaften von H aus Kubo-Formel Für T = 0 und µ E loc : σ αβ (0) } {{ } = 0 α,β = 1,...,d Gleichstromleitfähigkeit

14 12 2. PHYSIKALISCHE HEURISTIK ZUR ELEKTRISCHEN LEITFÄHIGKEIT

15 KAPITEL 3 Nicht-kommutative L p -Räume ergodischer Operatoren Wir betrachten den Hilbert-Raum H = l 2 (Z d ) und die messbare Abbildung A : Ω BL(H), ω A ω, wobei BL(H) die Menge der beschränkten linearen Operatoren auf H bezeichne. Darüberhinaus ist ω ϕ,a ω ψ messbar für alle ϕ,ψ H.Essei(τ x ) x Z d einegruppeergodischer TransformationenaufΩ.Wir benötigen eine Referenz-Algebra und eine halbendliche, normale, treue Spur. 3.1 Definition (Referenz-Algebra) K := {A : Ω BL(H) messbar, ergodisch, A < }, mit A := P-essup ω Ω A Op. Analog zu 1.3 ist A τxω = U xa ω U x mit U x unitäre (projektive) Darstellung von Z d auf H. 3.2 Lemma K ist von Neumann-Algebra, das heißt -invariante, schwach abgeschlossene Unteralgebra von BL(H Ω ), wobei H Ω := Ω P (dω) H := {Ψ = (ψ ω ) ω Ω : ψ ω H für P-fast alle ω Ω, ω ψ ω messbar, Ψ,Ψ Ω < }. Φ,Ψ Ω := Ω P(dω) ϕω,ψ ω sei das zugehörige Skalarprodukt. Beweis: (Skizze) Ziel: Benutze von Neumanns Bikommutantensatz: K von Neumann-Algebra in BL(H) K = K. Hierbei bezeichnet K := {A BL(H Ω ) : [A,A] = 0 a K} die Kommutante und K := (K ) K die Bikommutante. Wir müssen zeigen, dass K K gültig ist. klar: K BL(H Ω ) [ω (AΨ) ω := A ω ψ ω messbar (zerlegbarer Operator: Diagonal in ω)] Charaktersisierung: 13

16 14 3. NICHT-KOMMUTATIVE L P -RÄUME ERGODISCHER OPERATOREN 3.3 Satz A BL(H Ω ) zerlegbar A M, wobei M := {M f BL(H Ω ) : f L (Ω,P)} und (M f Ψ) ω := f(ω)ψ ω [Beweis: Dixmier, Cor., p.188] A ergodisch U x A ω = A τ xω U x x Z d. Definiere Ûx BL(H Ω ) via (ÛxΨ) ω := U x ψ τ xω, also A ergodisch S U, wobei U := {Ûx : x Z d } K = M U K M U M U K K M M und K K U U, d.h K M U = K 3.4 Definition (und Lemma; Spur auf K) Sei τ : K C, A dp(ω) δ 0,A ω δ 0 =: τ(a). Dann gilt (i) τ(a) A A K, also τ K (ii) τ(a A) = τ(aa ) A K (iii) Treu: 0 A 0 τ(a) > 0 Ω (iv) Normal: Für alle beschränkten, wachsenden Netzte (A i ) i I τ(sup i I A i ) = sup i I τ(a i ). Es sei erwähnt, dass aus (i) und (ii) die Endlichkeit folgt. gilt Beweis: (i) klar! (ii) τ(a A) Parseval = τ x maßerh. = x Z d x Z d Ω Ω = τ(aa ) dp(ω) δ 0,A ω δ x δ x,a ω δ 0 dp(ω) δ 0,A ω δ x δ x,a ω δ 0

17 3. NICHT-KOMMUTATIVE L P -RÄUME ERGODISCHER OPERATOREN 15 (iii) Sei A 0 und 0 = τ(a) = Ω dp(ω) δ 0,A ω δ 0 } {{ } 0 0 = δ 0,A ω δ 0 für P-fast alle ω Ω x Z d δ x,a ω δ x = δ 0,Ux Aω U } {{ x δ } 0 A τxω x,y Z d δ x,a ω δ y A 0 = Cauchy-Schwarz (A ω ) δx } {{ } δ x,a ω δ y =0 = 0 ω Ω x, P(Ω x ) = 1 (A ω ) 1 2 δx,(a ω ) 1 2 δy (A ω ) δy Sei Ω := x Z d Ω x, so folgt P( Ω) = 1 und für alle ω Ω δ x,a ω δ y = 0 x,y Z d A ω = 0. (iv) Folgt aus sup i I ϕ 0,A ω i ϕ 0 = ϕ 0,sup i I A ω i ϕ 0 für P-fast alle ω. 3.5 Definition ( Nicht-kommutative L p -Räume) Für p [1, [ ist A p := τ( A p ) 1 p Norm auf K (τ treu, A := (A A) 1 2). Setze für p [1, ] 3.6 Bemerkung L p (K) := K. (i) Definition 3.5 benutzt die Endlichkeit von τ. Falls τ nur halbendlich ist, führe eine Vervollständigung bezüglich der τ-maß-topologie ein (generelles Vorgehen!). (ii) L p (K) enthält unbeschränkte Operatoren für p <. 3.7 Satz (i) L p (K)isteinBanach-Raumfürallep [1, ],insbesondereistl (K) = K. (ii) L 2 (K) ist ein Hilbert-Raum bezüglich A,B := τ(a B). (iii) Für alle p [1, ]; 1 p + 1 q = 1 und A Lp (K), B L q (K) gilt: AB,BA L 1 (K), τ(ab) = τ(ba)und τ(ab) A p B q (Hölder)

18 16 3. NICHT-KOMMUTATIVE L P -RÄUME ERGODISCHER OPERATOREN (iv) L (K) L p (K) L p (K) L 1 (K) für alle p > p ]1, [. Moral: Wie komm. L p -Räume mit endlichem Maß! 3.8 Definition Sei K B := {A K : R > 0, sodass δ x,aδ y = 0, falls x y > R} -Unteralbegra der endlichen Bandoperatoren. Für α {1,...,d} ist α : A i[x α,a] =: α A wohldefiniert als Abbildung von K B in sich selbst (Übung). Setze := ( 1,..., d ) 3.9 Bemerkung X α ist nicht ergodisch!!! δ x, α Aδ y = (x y) δ x,aδ y 3.10 Lemma ( Nicht-Kommutativer Sobolev-Raum) Für alle p [1, ] gilt: (i) W 1,p (K) := {A L p (K) : α A L p (K), α = 1,...,d} liegt dicht in L p (K) und ist -Derivation auf W 1,p (K). (ii) τ( A) = 0 für alle A W 1,1 (K) Beweis: (Grundidee) (i) K B liegt dicht in K bezüglich (siehe Dombrowski), K p = L p (K) K p B = L p (K) und K B W 1,p (K). -Derivation: α A = ( α A), α linear und α (AB) Rechnen = ( α A)B +A( α B) für alle A,B W 1,p (K) mit AB,( α A)B,A( α B) L p (K) (ii) klar, da X αδ0 = Bemerkung Gemäß Bemerkung 1.8(iii) ist f T µ (H) W1,p (K) p [1, [, falls T > 0 und µ E loc Definition Sei H L (K) und p [1, ]. Wir definieren den Liouville-Operator L : L p (K) L p (K), A i[h,a].

19 3. NICHT-KOMMUTATIVE L P -RÄUME ERGODISCHER OPERATOREN Bemerkung (i) cl BL(L p (K)) mit L 2 H (ii) Für p = 2 ist L = L auf L 2 (K) (Übung) (iii) Für alle A L p (K) und für alle B L q (K) mit = 1 gilt p q τ((la)b) = τ(a(lb)) (Übung)

20 18 3. NICHT-KOMMUTATIVE L P -RÄUME ERGODISCHER OPERATOREN

21 KAPITEL 4 Lineare Antworttheorie in L p (K) Grundvoraussetzungen: H wie in Definition 1.1 Ê (C c(r)) d, Ê( ν) = Ê(ν), E(t) := R dν eiνt Ê(ν) Für η > 0 sei F η (t) := t ds eηs E(s) adiabatische Einschalten } {{ } E η(s) Ungleichung: Da H Eη (t) = H +E η (t)x nicht beschränkt, verwende H η (t), ( H ω η(t)ψ)(x) := y Zd x y =1 für alle ψ l 2 (Z d ) und für alle x Z d. physikalisch gleichwertig: e ifη(t)(y x) ψ(y)+ω x ψ(x) i t ψ t = H ω E η (t)ψ t i t ψ t = H ω E η (t) psi t ( ) mit psi t := e ifη(t)x ψ t. H η (t) L (K) für alle t. 4.1 Satz (Yosida; Propagator für Schrödinger-Gleichung) Für P-fast alle ω Ω und für alle t,s R existiert ein U ω (t,s) BL(l 2 (Z d )) unitär, sodass U ω (t,r)u ω (r,s) = U Ω (t,s,),u ω (t,t) = 1,U ω (t,s) = (U ω (s,t)) i t Uω (t,s)ϕ = H ω η (t)uω (t,s)ϕ (also:( )) i s Uω (t,s)ϕ = U ω (t,s) H ω η (s)ϕ (t,s) U ω (t,s) stark stetig Beweis: Satz XIV.3.1 in Yosida, Func. Analysis, Bemerkung Spezialfall E(T) = 0 (also H η (t) = H): mit U (ω) 0 (t) := e ithω. U (ω) (t,s) = U (ω) 0 (t s) 19

22 20 4. LINEARE ANTWORTTHEORIE IN L P (K) 4.3 Definition (und Lemma) Für alle p [1, ], für alle A L p (K) und für alle t,s R sei Es gilt: U(t,s) BL(L p (K)) (Messbarkeit). U(t,s)A : ω U ω (t,s)a ω U ω (s,t). U(t,s) ist eine Isometrie, für p = 2 unitär. (t,s) U(t,s) stark stetig. i t U(t,s)A = [ H η (t),u(t,s)a]. i s U(t,s)A = U(t,s)([ H η (t),a]). Aus den letzten beiden Punkten folgt U(t,s) und U(t,s) liegen in t s BL(L p (K)). Analoges gilt für U 0 (t) := e itα 4.4 Satz Sei p [1, [, T > 0 oder µ E loc. Das Anfangswertproblem i t w E η (t) = [ H η (t),w Eη (t)] lim t w Eη (t) = f T µ(h) hat eine eindeutige Lösung t w(t) L p (K), wobei w Eη (t) = lim U(t,s)w 0 s = f T µ( H η (t)) t ds e ηs U(t,s)(E(s) f T µ( H η (s))). Beweis: Satz 4.1, Definition und Lemma 4.3. Explizizte form der Lösung durch Differenzieren bestätigen. Benutze H ω η (t) = eifη(t) X H ω e ifη(t) X f T µ ( H ω η (t)) = eifη(t) X f T µ (Hω )e ifη(t) X in l 2 (Z d ) f T µ ( H η (t)) = e Fη(t) (f T µ (H)) in Lp (K). 4.5 Satz Sei T > 0 oder µ E loc. Dann ist R γ J(t,γE η ) := τ(w γeη (t) H η (t))

23 4. LINEARE ANTWORTTHEORIE IN L P (K) 21 differenzierbar in γ = 0 und für alle α {1,...,d} J lin (t,e η ) α := γ γ=0 J(t,γE η ) α d ( t = τ ds e ηs E β (s) ( ) e i(t s)l β fµ T (H)) α H β=1 d = e ηt dν e iνt Ê β (ν)σ αβ (ν,η) β=1 R mit σ µ,t αβ (ν,η) := τ ( t ds ( e i(t s)(l+ν iη) β fµ(h) ) ) T α H = iτ((l+ν iη) 1 β f T µ (H)) αh adiabatisch regularisierte Leitfähigkeit. 4.6 Definition Sei T > 0 oder µ E loc, sei B R Borel. Σ µ,t αβ (B) := π α H,χ B (L) β f T µ (H) Leitfähigkeitsmaß (gerades, positives Maß!). Damit σ µ,t αβ (ν,η) = i Σ µ,t αβ π (dλ) 1 λ+ν iη. R 4.7 Satz J in lin (t,e) α := lim ηց0 = d β=1 d β=1 R R ( ) dν e iνt Ê(ν) Re σ µ,t αβ (ν,η) Σ µ,t αβ (dν) eiνt Ê(ν). Beweis: ( ) Re σ µ,t αβ (ν,η) = Σ µ,t αβ (dλ) η/π R (λ+ν) 2 +η Bemerkung (i) Ob Σ µ,t αβ absolut stetig bezüglich des Lebesgue-Maßes ist, ist ein offenes ( ) σ µ,t αβ (ν) = Σµ,T αβ (dν). dν Problem. Sollte dies gelten, so wäre Re

24 22 4. LINEARE ANTWORTTHEORIE IN L P (K) (ii) Definition 4.6 ist die Kubo-Formel für das Leitfähigkeitsmaß. 4.9 Satz(Gleichstromleitfähigkeit) Es sei µ E loc, so gilt lim ηց0 σµ,0 αβ (0,η) = iτ { fµ(h) [ 0 α fµ(h), 0 β fµ(h) ]} 0 = 0.

Stochastische Analysis. Zufallsmatrizen. Roland Speicher Queen s University Kingston, Kanada

Stochastische Analysis. Zufallsmatrizen. Roland Speicher Queen s University Kingston, Kanada Stochastische Analysis für Zufallsmatrizen Roland Speicher Queen s University Kingston, Kanada Was ist eine Zufallsmatrix? Zufallsmatrix = Matrix mit zufälligen Einträgen A : Ω M N (C) Was ist eine Zufallsmatrix?

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Mengensysteme, Wahrscheinlichkeitsmaße

Mengensysteme, Wahrscheinlichkeitsmaße Kapitel 1 Mengensysteme, Wahrscheinlichkeitsmaße Der Großteil der folgenden fundamentalen Begriffe sind schon aus der Vorlesung Stochastische Modellbildung bekannt: Definition 1.1 Eine Familie A von Teilmengen

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

GNS-Konstruktion und normale Zustände. 1 Rückblick. 2 Beispiel für einen Typ-II 1 -Faktor

GNS-Konstruktion und normale Zustände. 1 Rückblick. 2 Beispiel für einen Typ-II 1 -Faktor GNS-Konstruktion und normale Zustände 1 Rückblick Wir betrachten von-neumann-algebren M B(H), d.h. Unteralgebren mit 1 H M, die in der schwachen Operatortopologie (und damit in jeder der anderen) abgeschlossen

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 7 Lineare Programmierung II 1 Lineare Programme Lineares Programm: Lineare Zielfunktion Lineare Nebenbedingungen (Gleichungen oder Ungleichungen) Spezialfall der konvexen Optimierung

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Extremwertverteilungen

Extremwertverteilungen Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 1 8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 2 8.6.3 Beispiel: Orts- und Impuls-Erwartungswerte für

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Spezielle Eigenfunktionen des Transfer-Operators für Hecke Kongruenz Untergruppen

Spezielle Eigenfunktionen des Transfer-Operators für Hecke Kongruenz Untergruppen Spezielle Eigenfunktionen des Transfer-Operators für Hecke Kongruenz Untergruppen Diplomarbeit 2005 Markus Fraczek Institut für Theoretische Physik Technische Universität Clausthal Abteilung Statistische

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Dr. C.J. Luchsinger 2 Zufallsgrössen Literatur Kapitel 2 * Statistik in Cartoons: Kapitel 4 * Krengel: 3.1 und 3.2 in 3 und (Honours Program) 10 sowie 11.1, 11.2 und 11.3 in

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

1 Stochastische Prozesse in stetiger Zeit

1 Stochastische Prozesse in stetiger Zeit 1 Stochastische Prozesse in stetiger Zeit 1.1 Grundlagen Wir betrachten zufällige Prozesse, definiert auf einem Wahrscheinlichkeitsraum (Ω, F, P), welche Werte in einen fest gewählten Zustandsraum annehmen.

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

Exkurs: Polnische Räume

Exkurs: Polnische Räume Ein normaler Hausdorff-Raum mit abzählbarer Basis kann auf viele Weisen metrisiert werden; man kann insbesondere eine einmal gewonnene Metrik in vielerlei Weise abändern, ohne die von ihr erzeugte Topologie

Mehr

Wortproblem für kontextfreie Grammatiken

Wortproblem für kontextfreie Grammatiken Wortproblem für kontextfreie Grammatiken G kontextfreie Grammatik. w Σ w L(G)? Wortproblem ist primitiv rekursiv entscheidbar. (schlechte obere Schranke!) Kellerautomat der L(G) akzeptiert Ist dieser effizient?

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Stabilität mittels Ljapunov Funktion

Stabilität mittels Ljapunov Funktion Stabilität mittels Ljapunov Funktion Definition Eine C 1 Funktion V : D R, D R, heißt eine Ljapunov Funktion auf K r (0) D für f(y), falls gilt: 1) V(0) = 0, V(y) > 0 für y 0 2) V,f(y) 0 ( y, y r) Gilt

Mehr

Schwach ergodische Prozesse

Schwach ergodische Prozesse Schwach ergodische Prozesse Von der Fakultät für Naturwissenschaften der Universität Duisburg-Essen (Standort Duisburg) zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte

Mehr

Grundzustandsberechnung von Gross-Pitaevskii Gleichungen

Grundzustandsberechnung von Gross-Pitaevskii Gleichungen Grundzustandsberechnung von Gross-Pitaevskii Gleichungen Christoph Bischko, Lukas Einkemmer, Dominik Steinhauser Fakultät für Mathematik, Informatik und Physik Universität Innsbruck 2. Juli, 2010 Christoph,

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

Physik 4, Übung 8, Prof. Förster

Physik 4, Übung 8, Prof. Förster Physik 4, Übung 8, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft:

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft: Seminar Summen von Quadraten und K-Theorie Projektive Moduln Im Folgenden sei R ein assoziativer Ring mit Eins, nicht notwendigerweise kommutativ. R-Modul ist im Folgenden stets ein Rechts-R-Modul. Ein

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Galerkin-Diskretisierung von Eigenwertproblemen für partielle Differentialgleichungen

Galerkin-Diskretisierung von Eigenwertproblemen für partielle Differentialgleichungen Galerkin-Diskretisierung von Eigenwertproblemen für partielle Differentialgleichungen Bachelorarbeit zur Erlangung des akademischen Grades Bachelor of Science an der Technischen Universität Berlin Verfasser:

Mehr

Amerikanischen Optionen

Amerikanischen Optionen Die Bewertung von Amerikanischen Optionen im Mehrperiodenmodell Universität-Gesamthochschule Paderborn Fachbereich 17 Seminar Finanzmathematik SS 2001 Referentin: Christiane Becker-Funke Dozent: Prof.

Mehr

Hilbertraum-Methoden

Hilbertraum-Methoden Skript zur Vorlesung Hilbertraum-Methoden SS 2013 Peter Junghanns Hinweis: Das vorliegende Skript stellt nur ein Gerüst zu den Inhalten der Vorlesung dar. Die Vorlesung selbst bietet weiterführende Erläuterungen,

Mehr

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin Mathematik des Hybriden Monte-Carlo Marcus Weber Zuse Institute Berlin Statistische Thermodynamik Ziel: Am Computer ein Ensemble samplen. Messung im Gleichgewicht (zeitunabhängige Verteilung π der Systemzustände

Mehr

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/ Finanzmathematik - Wintersemester 2007/08 http://code.google.com/p/mitgetexed/ Stand: 4. November 2007 Inhaltsverzeichnis 1 Motivation und erste Begriffe 2 2 Endliche Finanzmärkte 4 3 Das Cox-Ross-Rubinstein-Modell

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat.

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat. Die k/2 - Formel von Renate Vistorin Zentrales Thema dieses Vortrages ist die k/2 - Formel für meromorphe Modulformen als eine Konsequenz des Residuensatzes. Als Folgerungen werden danach einige Eigenschaften

Mehr

1.3 Ein paar Standardaufgaben

1.3 Ein paar Standardaufgaben 1.3 Ein paar Standardaufgaben 15 1.3 Ein paar Standardaufgaben Einerseits betrachten wir eine formale und weitgehend abgeschlossene mathematische Theorie. Sie bildet einen Rahmen, in dem man angewandte

Mehr

4 Das Riemann-Integral im R n

4 Das Riemann-Integral im R n $Id: nintegral.tex,v 1.11 2012/11/27 14:07:09 hk Exp hk $ 4 Das Riemann-Integral im R n 4.3 Jordan-meßbare engen In der letzten Sitzung hatten wir schließlich das n-dimensionale Riemann-Integral auch auf

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Gaußsche Prozesse - ein funktionalanalytischer Zugang

Gaußsche Prozesse - ein funktionalanalytischer Zugang Universität Ulm Fakultät für Mathematik und Wirtschaftswissenschaften Gaußsche Prozesse - ein funktionalanalytischer Zugang Bachelorarbeit in Wirtschaftsmathematik vorgelegt von Clemens Kraus am 31. Mai

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Caputo fraktionale Differentialgleichungen. 1 Riemann Liouville fraktionale Differentialgleichungen

Caputo fraktionale Differentialgleichungen. 1 Riemann Liouville fraktionale Differentialgleichungen Seminar Fraktionale Differentialgleichungen Prof. Dr. P.E. Kloeden, WS1000/2001 Caputo fraktionale Differentialgleichungen Lars Grüne, 25.1.2001 Basierend auf Fractional Differential Equations, Theory

Mehr

Supersymmetrische Quantenmechanik

Supersymmetrische Quantenmechanik Supersymmetrische Quantenmechanik Vorlesung mit Übungen Sommersemester 2014 Universität Erlangen-Nürnberg Georg Junker European Southern Observatory 15. April 2014 Vorbemerkungen 1. Montags 9-12 Vorlesung;

Mehr

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6 ALLGEMEINE THEORIE DES ELEKTROMAGNETISCHEN FELDES IM VAKUUM 25 Vorlesung 060503 6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6.1 Grundaufgabe der Elektrodynamik Gegeben: Ladungsdichte

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

3. Grundlagen der Linearen Programmierung

3. Grundlagen der Linearen Programmierung 3. Grundlagen der linearen Programmierung Inhalt 3. Grundlagen der Linearen Programmierung Lineares Programm Grafische Lösung linearer Programme Normalform Geometrie linearer Programme Basislösungen Operations

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Michael Schaeer 3.04.03 Abstract This seminar is about convex functions and several imortant ineualities. At the beginning the term

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper 32 Andreas Gathmann 3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

4.2 Gleichstromkreise

4.2 Gleichstromkreise 4.2 Gleichstromkreise Werden Ladungen transportiert, so fließt ein elektrischer Strom I dq C It () [] I A s dt Einfachster Fall: Gleichstrom; Strom fließt in gleicher ichtung mit konstanter Stärke. I()

Mehr

Physikalische Chemie IV Statistische Thermodynamik, SS2013

Physikalische Chemie IV Statistische Thermodynamik, SS2013 Physikalische Chemie IV Statistische Thermodynamik, SS013 Inhaltsverzeichnis mit Referenzen 1. Einführung 1.1 Vergleich makroskopische und mikroskopische Systeme: Beispiel: ideales Gas, Herleitung eines

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

11 Stochastisches Integral und Itô-Formel

11 Stochastisches Integral und Itô-Formel 11 Stochastisches Integral und Itô-Formel Im diskreten Finanzmodell bei selbstfinanzierender Strategie ϑ = {ϑ n n=,...,n mit Anfangswert V gilt : Ṽ n ϑ = V + n ϑ T j S j. j=1 Dieser diskontierte Wertprozess

Mehr

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v )

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v ) Im Limes e α lautet das großkanonische Potential XII.29) Ωβ,,α)= ln ± e α βεa β β eα a a e βεa = β eα Z β, ), XII.62) mit Z β, ) der kanonischen Zustandssumme für ein Teilchen. Der ergleich mit der allgemeinen

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0.

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0. 1 Ordnung uß sein 1.1 Angeordnete Körper Wir nehen einal an, daß es in eine Körper Eleente gibt, die wir positiv nennen. Welche Eigenschaften sollen diese haben? O1) Wenn x und y positiv sind, dann auch

Mehr

Informatik IC2. Balazs Simon 2005.03.26.

Informatik IC2. Balazs Simon 2005.03.26. Informatik IC2 Balazs Simon 2005.03.26. Inhaltsverzeichnis 1 Reguläre Sprachen 3 1.1 Reguläre Sprachen und endliche Automaten...................... 3 1.2 Determinisieren.....................................

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 8 Projektive Invarianz und das kanonische Kamerapaar Kanonisches Kamerapaar aus gegebener Fundamentalmatrix Freiheitsgrade

Mehr

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Walter Sanddorf-Köhle Foliensatz Nr. 3 1 / 46 Ein Einperiodenmodell Beispiel 5 Betrachtet wird nun ein Wertpapiermarkt mit

Mehr

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Yannik Behr Gliederung 1 Stochastische Prozesse Stochastische Prozesse Ein stochastischer Prozess ist ein Phänomen, dessen

Mehr

Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2

Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2 Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Übungen Regelungstechnik 2 Inhalt der Übungen: 1. Grundlagen (Wiederholung RT1) 2. Störgrößenaufschaltung 3. Störgrößennachbildung

Mehr

4. Versicherungsangebot

4. Versicherungsangebot 4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil

Mehr

Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem

Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem Inauguraldissertation zur Erlangung des Doktorgrades der Mathematisch Naturwissenschaftlichen

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

3.2 Black-Scholes Analyse

3.2 Black-Scholes Analyse 3.. BLACK-SCHOLES ANALYSE 39 3. Black-Scholes Analyse Allgemeine Vorüberlegungen Eine Aktie ist eine Anlage ähnlich einem Kredit. Der Anleger bekommt eine Verzinsung, da Kapital ein Arbeitsfaktor ist.

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

17. Penalty- und Barriere-Methoden

17. Penalty- und Barriere-Methoden H.J. Oberle Optimierung SoSe 01 17. Penalty- und Barriere-Methoden Penalty- und Barriere Methoden gehören zu den ältesten Ansätzen zur Lösung allgemeiner restringierter Optimierungsaufgaben. Die grundlegende

Mehr

Die Klein-Gordon Gleichung

Die Klein-Gordon Gleichung Kapitel 5 Die Klein-Gordon Gleichung 5.1 Einleitung Die Gleichung für die Rutherford-Streuung ist ein sehr nützlicher Ansatz, um die Streuung von geladenen Teilchen zu studieren. Viele Aspekte sind aber

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013 Reelle Analysis Vorlesungsskript Enno Lenzmann, Universität Basel 7. November 2013 6 L p -Räume Mit Hilfe der Masstheorie können wir nun die sog. L p -Räume einführen. Diese Räume sind wichtig in vielen

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

6. Funktionen von mehreren Variablen

6. Funktionen von mehreren Variablen 6. Funktionen von mehreren Variablen Prof. Dr. Erich Walter Farkas 24.11.2011 Seite 1 Funktionen von mehreren Variablen n {1, 2, 3,...} =: N. R n := {(x 1,..., x n) x 1,..., x n R} = Menge aller n-tupel

Mehr

Martingale. Kapitel 6. 6.1 Martingale in diskreter Zeit. 6.1.1 Definition und Beispiele

Martingale. Kapitel 6. 6.1 Martingale in diskreter Zeit. 6.1.1 Definition und Beispiele Kapitel 6 Martingale In der Statistik modellieren Martingale z.b. Glücksspiele oder Handelsstrategien in Finanzmärkten und sind ein grundlegendes Hilfsmittel für die statistische Inferenz stochastischer

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

2. Universelle Algebra

2. Universelle Algebra 2. Universelle Algebra Die Theorie der universellen Algebra verallgemeinert die Theorien der klassischen Algebren. Obwohl ursprünglich nur eine Sorte betrachtet wurde, werden wir hier gleich den mehrsortigen

Mehr

Skalare Differentialgleichungen

Skalare Differentialgleichungen Kapitel 2 Skalare Differentialgleichungen 2.1 Skalare lineare Differentialgleichungen 2.2 Bernoulli und Riccati Differentialgleichungen 2.3 Differentialgleichungen mit getrennten Variablen 2.4 Exakte Differentialgleichungen

Mehr

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten: KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand

Mehr

Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider

Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider 1 Inhaltsverzeichnis 1 Hamilton Mechanik 3 1.1 Newton Mechanik.......................... 3 1.2 Lagrange............................... 3 1.3

Mehr

Lösungsvorschlag zu den Hausaufgaben der 8. Übung

Lösungsvorschlag zu den Hausaufgaben der 8. Übung FAKULTÄT FÜR MATHEMATIK Prof Dr Patrizio Ne Frank Osterbrink Johannes Lankeit 9503 Lösungsvorschlag zu den Hausaufgaben der 8 Übung Hausaufgabe : Beweise den Satz über die Parallelogrammgleichung Sei H

Mehr

6.2 Perfekte Sicherheit

6.2 Perfekte Sicherheit 04 6.2 Perfekte Sicherheit Beweis. H(B AC) + H(A C) = H(ABC) H(AC) + H(AC) H(C) Wegen gilt Einsetzen in die Definition gibt = H(AB C). H(A BC) = H(AB C) H(B C). I(A; B C) = H(A C) H(AB C) + H(B C). Da

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008 Thermodynamik Basics Dietmar Pflumm: KSR/MSE Thermodynamik Definition Die Thermodynamik... ist eine allgemeine Energielehre als Teilgebiet der Chemie befasst sie sich mit den Gesetzmässigkeiten der Umwandlungsvorgänge

Mehr

Hamilton-Formalismus

Hamilton-Formalismus KAPITEL IV Hamilton-Formalismus Einleitung! IV.1 Hamilton sche Bewegungsgleichungen IV.1.1 Kanonisch konjugierter Impuls Sei ein mechanisches System mit s Freiheitsgraden. Im Rahmen des in Kap. II eingeführten

Mehr

3 Elektrische Leitung

3 Elektrische Leitung 3.1 Strom und Ladungserhaltung 3 Elektrische Leitung 3.1 Strom und Ladungserhaltung Elektrischer Strom wird durch die Bewegung von Ladungsträgern hervorgerufen. Er ist definiert über die Änderung der Ladung

Mehr

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie Notation Die in dieser Arbeit verwendete Notation ist im Wesentlichen Standard, so wie sie beispielsweise in [As] zu nden ist. Einige Abweichungen hiervon, Klarstellungen und zusätzliche Notationen (sofern

Mehr