Analytische Geometrie

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Analytische Geometrie"

Transkript

1 Pives Gymsim Mies J Mhemik Alyishe Geomeie Ueihsfzeihe de Mhemikleisskse / i de Shljhe / d / Noe Mez Am Solz He

2 Ihlsvezeihis LÄNG BTRAG) INS VKTORS INHITSVKTOR SKALARPRODUKT WINKL ZWISCHN ZWI VKTORN NORMALNFORM DR BN. FALL NORMALNFORM AUS DR PARAMTRFORM. FALL NORMALNFORM AUS KOORDINATNFORM. FALL NORMALNFORM AUS GRAD UND PUNKT. FALL NORMALNFORM AUS DRI PUNKTN. FALL NORMLNFORM AUS ZWI PARALLLN GRADN. FALL NORMALNFORM AUS ZWI SICH SCHNIDNDN GRADN PARAMTRFORM AUS KOORDINATNFORM KOORDINATNFORM AUS NORMALNFORM ORTHOGONALITÄT VON GRADN UND BNN. FALL ZWI GRADN. FALL ZWI BNN. FALL IN GRAD UND IN BN ACHSNSCHNITTPUNKT / SPURGRAD LAGBZIHUNG VON GRADN UND BNN LAG GRAD ZU GRAD LAG GRAD ZU BN LAG ZWIR BNN ZUINANDR ÜBRBLICK ABSTÄND. ABSTAND INS PUNKTS VON INR BN. ABSTAND INS PUNKTS P VON INR GRADN G IM R. ABSTAND INS PUNKTS P VON INR GRADN G IM R VKTORPRODUKT ÜBUNGSAUFGABN ZUR ANALYTISCHN GOMTRI

3 Läe Be) eies Vekos Die Läe eies Vekos is die Wzel s de Smme de Qde seie Koodie ) ) ) iheisveko De iheisveko is ei Veko de Läe Sklodk ) ) ) Wikel zwishe zwei Vekoe ) osα ) osα ) os α ) ) ) ) ) ) ) ) ) ) os α α

4 QP ilde Nomlefom de ee Die Nomlefom eie ee le [ ]. Fll Nomlefom s de Pmeefom -Besimm des Nomlevekos -Afsell de Nomlefom s v I) II) v [ ]. Fll Nomlefom s Koodiefom -Nomleveko k elese wede ) -Pk de ee esimme d feslee esimme) -Afsell de Nomlefom s I) II) sei leih. Fll Nomlefom s Gede d Pk -Diffeezveko QP - s esimme PQ -Afsell de Nomlefom. Fll Nomlefom s dei Pke - Zwei Diffeezvekoe ilde - esimme - Afsell de Nomlefom

5 . Fll Nomelefom s zwei llele Gede - Diffeezveko Q P de Süzvekoe esimme - - Afsell de Nomlefom esimme. Fll Nomlefom s zwei sih sheidede Gede - s de eide Rihsvekoe esimme - Afsell de Nomlefom Pmeefom s Koodiefom Die Pmeefom eie ee le v s - Dei Pke she - d v - Afsell de Pmeefom v sid Diffeezvekoe veshiedee Pke Beisiel ) ) ) ) s CB v AB C B A Koodiefom s Nomlefom M ehäl die Koodiefom dh smliliziee de Nomlefom ) )

6 Ohooliä vo Gede d ee. Fll Zwei Gede Zwei Gede sid ohool we ihe Rihsvekoe zeide ohool sid.. Fll Zwei ee Zwei ee sid zeide ohool we ihe Nomlevekoe zeide ohool sid.. Fll ie Gede d eie ee ie Gede d eie ee heiße zeide ohool we ei Rihsveko de Gede z de Svekoe de ee ohool is. Ahseshike / Sede De Shik mi de -Ahse eehe m idem m d leih Nll sez. De Shik mi de -Ahse eehe m idem m d leih Nll sez. De Shik mi de -Ahse eehe m idem m d leih Nll sez. Bs. ) S S S Sede sid die Gede die dh je zwei de Ahseshike ehe. Bs. ; ;

7 Leezieh vo Gede d ee Le Gede z Gede Mölihe Le vo Gede d h v q im Rm Besimme die Lössmee de Gleih v q q v. Fll d h sid ideish we die Gleih v q edlih viele Löse h.. Fll d h sid eh) llel we die Gleih v q keie Lös h d d v lie häi sid.. Fll d h sid zeide widshief we die Gleih v q keie Lös h d d v lie häi sid.. Fll d h sheide sih i eiem Pk) we die Gleih v q e eie Lös h. M ehäl de Osveko des Shikes idem m die Lös i ) v q ) eisez. Fü de Shiwikel α zwishe de Gede d h il osα ) v v Beisiel z h I-III; II-III Dieses Lössleihssysem h edlih viele Löse. Dmi sid d h ideish.

8 Beisiel z h Dieses Gleihssysem h keie Lös lso d h keie emeisme Pke d llel. sid lie häi. Somi sid d h eh Beisiel z Besimme die eeseiie Le de Gede d h!) h Dieses Lössleihssysem h keie Lös lso d h keie emeisme Pke. d sid lie häi. Somi sid d h zeide widshief. Beisiel z Besimme die eeseiie Le de Gede d h f. de Shik d -wikel!) h Ds fol die Vekoleih Dieses Lössleihssysem h ls eizie Lös -;). d h sheide sih.

9 Sez m i fü die Zhl - ode i fü die Zhl ei so ehäl m de Veko s. Dmi sheide sih d h i S. os os os Le Gede z ee.fll d sheide sih Sodefll.Fll d llel zeide Sodefll G lie i Beisiele z.fll esh Leezieh z Voehesweise. Bilde Sklodk d sheide sih. d lie häi

10 . Shik esimme i eiseze ) ) ) s. Shiwikel ϕ zwishe d si * si * * si * * si ϕ ϕ ϕ ϕ ϕ z.fll Voehesweise

11 d i. * *. eiseze f) d liee llel Le zweie ee zeide I. m m m lie häi d sheide sih. Besimm de Shiede. Gleihseze Wähle > P ) is Pk de Shiede weiee Pk wähle Q )

12 . Shiwikel esimme os m m ϕ Wikel zwishe de Nomlevekoe) ϕ II. d lie häi m ode Gleihseze de ee ) ) ) f III. i Koodiefom d i Pmeefom

13 ) ) ) ) eiseze.s i - s - s - ei.seze s s s Shiede

14 Üelik Asäde. Asd eies Pkes vo eie ee De Asd eies Pkes vo eie ee emiel m mi Hilfe de Hesseshe Nomlefom Beisiel ² ² ² ) d d ; R ) Fü wede die Koodie des Pkes eiesez. ² )² ² d. Asd eies Pkes P vo eie Gede im R - Besimme eie Gede h die sekeh f seh d dh de Pk P eh. - Besimme de Shik S vo d h. - Besimme die Läe des Vekos SP. Bs. ) ; P s h ) ) ) d S s h. Asd eies Pkes P vo eie Gede im R - Besimme eie ee die sekeh z Gede is d dh de Pk P eh. - Besimme de Shik S vo d dh koodieweises iseze vo i die Koodieleih vo. - Besimme de Be des Vekos SP. Bs. ) ) ) ) ) ) ) ) ; d S P

15 Vekoodk Ds Podk vo d heiß Vekoodk. Defiiio Vekoodk Fü zwei Vekoe d il ) ) ieshfe ) Fü lle Vekoe d il is de Nomleveko z d ) d sid e d lie häi we ) ilde ei Rehssysem d.h. sie sid so eode wie die Koodiehse ) Die Mßzhle de Läe vo is leih dem Fläheihl des Pllelomms welhes vo d fes wid. α si Sodk ) ) ) ) ) is osiiv eiv)we ei Rehs-liks-)Sysem ilde. ) is leih dem Volme des vo fese Ss.

16 Üsfe z Alyishe Geomeie Them Gdkeisse weie Afe N. Seie* Afe N. Seie* Läe Wikel vo Vekoe Ohooliä Nomlfom de ee / Afselle de NF Leezieh vo Le v.. ee Shiede/ - wikel zweie ee Leezieh Shiwikel Gede / Gede Leezieh G/ Shiwikel Asdseehe Pk ee HNF Pk Gede Asd widsh. Gede *) Alle Ae eziehe sih f LS Alyishe Geomeie mi li. Ale KLTT Vel. ISBN

Analytische Geometrie

Analytische Geometrie Alyihe Geomeie Leiko z Kl- d Aioeeig Eo Pojek de Mhe LK /: Fi Fedde Koie Kleiheiz Simo Ldeg Le Mo J Oeek Khi Shellh Fiedeike Th Chiohe Wehl Alyihe Geomeie Ihl Seie Seie Them ---/--- Ihl Gdegiffe Gdegiffe

Mehr

( ) a ) ( ) n ( ) ( ) ( ) a. n n

( ) a ) ( ) n ( ) ( ) ( ) a. n n Pre-Study 7 orste Shreier 77 Wiederholu Diese Fre sollte Sie ohe Skript etworte köe: W ist der Sius zw. der Cosius immer NULL? Ws versteht m uter eier Phsevershieu? Ws wird im Eiheitskreis sekreht /wereht

Mehr

Formelsammlung. 2 c 3. Wenn die Ebene durch die Gerade g und den Punkt g gehen soll, gilt: 3 und h : 2

Formelsammlung. 2 c 3. Wenn die Ebene durch die Gerade g und den Punkt g gehen soll, gilt: 3 und h : 2 Formelsmmlug Gere urh zwei Pukte A( 3 ) u B( 3 ) g AB : 3 Eee urh rei Pukte A( 3 ), B( 3 ) u C( 3 ) [Eee i Prmeterform] E ABC : 3 s 3 Eee urh Gere u Pukt. Sei P( p p p 3 ) u g : We ie Eee urh ie Gere g

Mehr

Cristian Rosca & Timm Kruse: Ungleichungen II (Proseminar Mathematisches Problemlösen SS 2006: Dozent - Natalia Grinberg) UNGLEICHUNGEN II

Cristian Rosca & Timm Kruse: Ungleichungen II (Proseminar Mathematisches Problemlösen SS 2006: Dozent - Natalia Grinberg) UNGLEICHUNGEN II Cisti Ros & Timm Kuse: Ugleihuge II (Posemi Mthemtishes Polemlöse SS 006: Dozet - tli Gieg) Posemi Mthemtishes Polemlöse Uivesität Klsuhe SS 006 UGLEICHUGE II Youg-Ugleihug... Hölde-Ugleihug...6 Miowsi-Ugleihug...0

Mehr

Mittelwerte und Zahlenfolgen Beat Jaggi, beat.jaggi@phbern.ch

Mittelwerte und Zahlenfolgen Beat Jaggi, beat.jaggi@phbern.ch vsmp sspmp ssimf Mittelwete ud Zhlefolge Bet Jggi, bet.jggi@phbe.ch Eileitug Ds Bilde vo Mittelwete ist ei zetles Kozept i de Mthemtik: Lgemsse i de Sttistik (Mittelwet, Medi, Modus); Mitte, Mittelliie

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

5.6 Additionsverfahren

5.6 Additionsverfahren 5.6 Additiosverfhre Prizip Die eide Gleihuge werde so umgeformt, dss ei der Additio der eide Gleihuge eie Vrile wegfällt. Es müsse h der Umformug lso i eide Gleihuge gleih viele x oder gleih viele y (er

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr

c B Analytische Geometrie

c B Analytische Geometrie KITL 9 alytische Geometrie Gerade arameterdarstellug eier Gerade ie Gerade g ist bestimmt durch eie Richtug, gegebe durch eie Vektor c, c 0, ud eie ukt, der auf der Gerade liegt Ma et de ufpukt i ukt X

Mehr

STUDIUM. Mathematische Grundlagen für Betriebswirte

STUDIUM. Mathematische Grundlagen für Betriebswirte STUDIUM Mthetische Grudlge für Betrieswirte Mit de folgede Aufge köe Sie i eie Selsttest üerprüfe, o Sie och eiigerße die Grudlge der Alger eherrsche. Diese hdwerkliche Fertigkeite sid wesetlich, we es

Mehr

Mittelwerte. Sarah Kirchner & Thea Göllner

Mittelwerte. Sarah Kirchner & Thea Göllner Mittelwerte Srh Kirher The Göller Mittelwerte sid vershiedee mthemtish defiierte Kegröße. Uter dem Mittelwert zweier oder mehrerer Zhle versteht m meistes de Durhshitt, owohl viele dere Mittelilduge vorkomme.

Mehr

(zur deiterleitimg an das RIGA)

(zur deiterleitimg an das RIGA) Atg de Beuf sshulispektoekofeez die DK (zu deiteleitig ds GA) i. dei? geeblihidustielle Beufsshule besteht de Ffi Lhtuteiht fü lle Lehlige US Teile: d2heiid. de beuf skudlihe Jteiht luf ed i t de ElFs

Mehr

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c 03.05.0 Elemetre Termumformuge Kommuttivgesetz. + + Etsprehede Umformuge gelte... für Sutrktio ud Divisio iht. Assozitivgesetz 3. ( + + + ( + + + 4. (... (... 5. ( + - + ( - + - 6. (. :. ( :. : Etsprehede

Mehr

A2 Potenzen, Wurzeln, Logarithmen: Beispiele und Aufgaben

A2 Potenzen, Wurzeln, Logarithmen: Beispiele und Aufgaben A Poeze, Wzel, Logihme: Beipiele d Afge Gdäzlihe Im Ahi. de Bhe Mhemik fü BWL-Bhelo [] id Seie die gdlegede Age z Poeze, Wzel d Logihme zmmegeell. Die ihee Awedg vo Poez- d Logihmegeeze i owedig, m ei

Mehr

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik)

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik) Physik EI1 Mechnik - Einfühung Seie I MECHNIK 1. EINÜHRUNG Gundlgen, Kinemik, Dynmik (Wiedeholung de Schulphysik) _Mechnik_Einfuehung1_Bneu.doc - 1/9 Die einfühenden Kpiel weden wi zunächs uf dem Niveu

Mehr

Thema: Bilanzen, Heizwert, Standardbildungsenthalpie

Thema: Bilanzen, Heizwert, Standardbildungsenthalpie Thema: Bilaze, eizwert, Stadardbildgsethalpie fgabe: Bestimme Sie de obere, molare eizwert o eies Kohlewasserstoffgases as de a eiem Drhflss-Kalorimeter (Bild 1) gemessee Date. T 1, m w Gas Lft V g T G

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS 07 Torste Schreier e Wert eier etermite köe wir is zu eiem Formt vo mittels dem Verfhre vo Srrusestimme. Für Mtrize, die ei höheres Formt he, köe wir die etermite mit dem estimme. zu sollte Sie im erste

Mehr

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen Diskrete Mthemtik Teilrkeit Christoph Dohme 7. Mi 2006 Diskrete Mthemtik Teilrkeit Ihltsverzeichis. Eileitug 2. Der größte gemeisme Teiler 3. Divisio mit Rest 4. Der Eukli sche Algorithmus 5. Ds kleiste,

Mehr

Lineare Algebra. Formelsammlung. Vektoren und Matrizen. Christian Moser. 13. September a - b. Warps. w 2. w 1. v v 1. w 3

Lineare Algebra. Formelsammlung. Vektoren und Matrizen. Christian Moser. 13. September a - b. Warps. w 2. w 1. v v 1. w 3 Wps J k i ik k ii h i -Fko shi Folsl Li l W is i Fko i ä ik i is, i sih i Sll s spülih ks i ik - ko Mi hisi Mos Sp o: hisi Mos : Sp Fhl i Ml i os@hsh Folsl Li l ko Folsl Li l Mi Äqil äqil Zi ko si Äqil,

Mehr

Parametrische Koordinatenposition (r, θ, φ) auf der Kugeloberfläche mit einem Radius r ... θ π. φ π/2. Based on material by Werner Purgathofer

Parametrische Koordinatenposition (r, θ, φ) auf der Kugeloberfläche mit einem Radius r ... θ π. φ π/2. Based on material by Werner Purgathofer Bse o mteril y Werer rgthofer er/ber 8.4-8.5 8.8-8. 8.-8. Möglihe D-Ojetreräsettio Grhishe Szee eihlte solie geometrishe Ojete Bäme Blme Wole Felse Wsser Reräsettioe Oerflähe Iemoelle rozerle Moelle hysilish

Mehr

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN MONTAG

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN MONTAG Lösuge Motg -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN MONTAG Blok. Beekuge: Kle vo ie h usse uflöse; Pukt vo Stih 0. / /. π lr lr Q lr d 00 ln Beekug zu d Geht uh ohe TR! Küze Nee: ud Zähle:

Mehr

7 Ungleichungen und Intervalle

7 Ungleichungen und Intervalle Mthemtik. Klsse 7 Ugleichuge ud Itervlle Aufgbe 0 Löse Sie folgede Ugleichuge > + 8 < 5 + + 7. Itervlle Um gze Bereiche vo reelle Zhle zugebe, wird die Schreibweise mit Itervlle verwedet. Beispiele [,

Mehr

7.7. Abstände und Winkel

7.7. Abstände und Winkel uu uu uu uu uu uu uu uu 77 Astäde ud Wikel 77 Wikel Geade - Geade Schittwikel zweie Geade: Am Schittpukt zweie Geade g ud g lasse sich die eide Wikel (g, g ) ud (g, g ) messe Als Schittwikel ezeichet ma

Mehr

BBS Nürnberg Grundwissen Mathematik 8. Jahrgangsstufe

BBS Nürnberg Grundwissen Mathematik 8. Jahrgangsstufe S Nürerg Grudwisse Mthetik 8. Jhrggsstufe Wisse ud Köe. Fuktioe eeihuge: D Defiitiosege f( Fuktiosvorshrift f( Fuktioster f( Fuktiosgleihug Fuktioswert vo ufge ud eispiele Eie Fuktio ist eie Zuordug, die

Mehr

eröffnung Leiner Krems SENSAtioNELLE Küchen Zum Das kann sonst keiner: Angebote jetzt überall bei kika und Leiner.

eröffnung Leiner Krems SENSAtioNELLE Küchen Zum Das kann sonst keiner: Angebote jetzt überall bei kika und Leiner. Aee jez üeall ei kika ud Leie. Das ka ss keie: eöu Zuesell duch die Ps.a Guppe. Leie Kems ch i e e s Ö z A! i m eie SNSAiNLL eöus-aki Küche Zum 1/ peis Vm Heselle-Lisepeis. Beim Kau eie kmplee iauküche.

Mehr

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß Ivesiiosud Fiazierugsplaug miels Kapialwermehode, Ierer Zisfuß Bearbeie vo Fraka Frid, Chrisi Klegel WI. Aufgabe: Eie geplae Ivesiio mi Aschaffugsausgabe vo.,- läss jeweils zum Jahresede die folgede Eiahme

Mehr

Lineare Algebra Formelsammlung

Lineare Algebra Formelsammlung ee Algeb Fomelsmmlug vo Gábo Zogg Fomelsmmlug ee Algeb Gábo Zogg. ee Glechugsssteme. Ds Guss'sche Elmtosvefhe Defto: Σ Sstem vo m Glechuge ud Ubekte Opetoe: - Vetusche vo Glechuge - Addee/Subthee ees Velfche

Mehr

Komplexe Zahlen Ac '16

Komplexe Zahlen Ac '16 Komplexe Zhle Ac '16 I der Mege der reelle Zhle ist die Gleichug x² = -1 icht lösr. Ahilfe schfft eie Zhlereichserweiterug vo der Mege uf die Mege der sogete komplexe Zhle. Die Mege der komplexe Zhle esteht

Mehr

Komplexe Zahlen Ac '16

Komplexe Zahlen Ac '16 Komplexe Zhle Ac '16 I der Mege der reelle Zhle ist die Gleichug x² = -1 icht lösr. Ahilfe schfft eie Zhlereichserweiterug vo der Mege uf die Mege der sogete komplexe Zhle. Die Mege der komplexe Zhle esteht

Mehr

D e r T i t e l ""'" "" ""' n = c: :> c: :> ( A b b.

D e r T i t e l '  ' n = c: :> c: :> ( A b b. Ä G Y P T O L O G I S C H E A B H A N D L U N G E N H E R A U S G E G E B E N V O N W O L F G A N G H E L C K B A N D 3 1 R O S E M A R I E D R E N K H A H N D I E H A N D W E R K E R U N D I H R E T Ä

Mehr

Wie funktioniert ein GPS System?

Wie funktioniert ein GPS System? GPS Sem Wie funkionie ein GPS Sem? Im Pinip gn einfh. Mehee Sellien, die ih in eine w. meheen geoionäen Umlufhnen üe de Ede efinden, hlen egelmäßig ihen deei kuellen Snd de Aomei u. D GPS Geä uf de Edoeflähe

Mehr

Wir wollen nun die gegenseitige Lage von Punkten, Geraden und Ebenen untersuchen.

Wir wollen nun die gegenseitige Lage von Punkten, Geraden und Ebenen untersuchen. Lebezieunen Lebezieunen Wir wollen nun die eenseiie Le von Punken, Gerden und benen unersucen.. Le eines Punkes bezülic einer Gerden Ds is eine scon beknne Übun. Nics deso roz ier noc einml ein Beispiel.

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

Einführungsmöglichkeiten des Skalarprodukts. r r

Einführungsmöglichkeiten des Skalarprodukts. r r Einfühungsmöglihkeiten des Sklpodukts Jügen Zumdik I. Geometishe Zugänge im Euklidishen Vektoum Euklidishe Länge eines Vektos ist eeits eingefüht Polem Winkel zwishen Vektoen R² α β ϕ α-β osϕ osα-β osαosβ

Mehr

Integralrechnung = 4. = n

Integralrechnung = 4. = n Computer ud Medie im Mthemtikuterriht WS 00/ Itegrlrehug. Allgemei Die Berehug vo Bogeläge, Shwerpukte ud Trägheitsmomete, der Areit ud des Effektivwertes eies elektrishe Wehselstromes, der Bhkurve vo

Mehr

Klasse: Platzziffer: Punkte: / Graph zu f

Klasse: Platzziffer: Punkte: / Graph zu f Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25

Mehr

Musterlösung zur Probeklausur zur Geometrie

Musterlösung zur Probeklausur zur Geometrie UNIVERSITÄT ULM Institut für Zhlentheorie un Whrsheinlihkeitstheorie Musterlösung zur Proeklusur zur Geometrie Prof. Dr. Helmut Mier, Hns- Peter Rek Gesmtpunktzhl: 3 Punkte, Punkte= % keine Age. Gi Definitionen

Mehr

Formelsammlung. Mathematik I - III

Formelsammlung. Mathematik I - III Formelsmmlug zu de Vorlesuge Mhemik I - III i de Sudiegäge Techische Iformik ud Nchricheechik der FHTE Vorwor zur. Auflge Diese Formel- ud Verfhressmmlug is esde us de Vorlesuge vo Prof. Dr.-Ig. Berhrd

Mehr

, B liegen. 4. Untersuche die Lage von g und h und bestimme gegebenenfalls den Schnittpunkt:

, B liegen. 4. Untersuche die Lage von g und h und bestimme gegebenenfalls den Schnittpunkt: Lebeziehunen - Lösunen. Prüfen sie ob die Punke A5, B und C : x lieen. A ; B ; C. Prüfen sie ob die Punke A 4, B 4 und C 7 : x lieen. A ; B ; C. Prüfen sie ob die Punke A 4 und B : x x x lieen. A ; B in

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Techikerschule Aufge für Klusure ud Aschlussprüfuge Epoetilgleichuge, Logrithmusgleichuge Grudlgewisse: Recheregel zur Epoetil- ud Logrithmusrechug. Hiweise ud Formelsmmlug siehe Seite - 5. Bereche Sie.

Mehr

Integralrechnung kurzgefasst

Integralrechnung kurzgefasst Itegrlrehug kurzgefsst. Flähe uter eiem Grphe Die Eistiegsfrge lutet: Wie k m de Fläheihlt A eies Flähestüks erehe, ds egrezt wird - vom Grphe G f eier (stetige) Fuktio - vo der -Ahse - vo zwei Prllele

Mehr

( 3) k ) = 3) k 2 3 für k gerade

( 3) k ) = 3) k 2 3 für k gerade Aufgbe : ( Pute Zeige Sie mithilfe des Biomische Lehrstzes: ( 3 ( 3 ist für lle N eie türliche Zhl Lösug : Nch dem biomische Lehrstz gilt: ( 3 Somit ergibt sich ( 3 ( 3 ( ( 3 bzw ( 3 ( ( 3 ( ( 3 ( ( 3

Mehr

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen 9. M setze = ud bereche mit Hilfe der Folge (9.5) die dritte Wurzel us uf vier zählede Stelle geu. = + + =,, =,, =.75, 4 =,48889, =,449, =,4478 Jetzt ädert sich die dritte Stelle ch dem Komm icht mehr,

Mehr

Prof. V. Prediger: Aufgaben zur Lehrveranstaltung Kinematik und Kinetik 1. 4. Kinetik des Massenpunktes. 4.1 Prinzip von D`Àlambert

Prof. V. Prediger: Aufgaben zur Lehrveranstaltung Kinematik und Kinetik 1. 4. Kinetik des Massenpunktes. 4.1 Prinzip von D`Àlambert Pof. V. Pedie: ufaen zu Lehveanstaltun Kineatik und Kinetik 4. Kinetik des Massenpunktes 4. Pinzip von D`Àlaet ufae 4.: Ein PKW fäht auf ein staes Hindenis zu. Es elint de Fahe vo de ufpall, seine Geshwindikeit

Mehr

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11 Mrek Kubic, kubic@i.tum.de Diskrete Strukture Übugsbltt Gruppe Pukteverteilug: Σ Aufgbe () 8 () 7 Der Grph B ht de Prüfer-Code,,,,, der zustde kommt, we m de kleiste Kote vom Grd streicht ud de dere, übrig

Mehr

Das Riemann-Integral und seine Eigenschaften

Das Riemann-Integral und seine Eigenschaften Ds Riem-Itegrl u seie Eigeshfte Defiitio. Sei ie Fuktio f beshräkt uf [, b]. Stimme ie beie Drboux-Itegrle überei, heißt f Riem-itegrierbr uf [, b] (oer R-itegierbr). Der gemeisme Wert heißt Riem- Itegrl

Mehr

Der Satz von Cavalieri: Zwei Körper gleicher Höhe sind volumengleich, wenn sie in jeweils gleicher Höhe flächengleiche Querschnitte haben.

Der Satz von Cavalieri: Zwei Körper gleicher Höhe sind volumengleich, wenn sie in jeweils gleicher Höhe flächengleiche Querschnitte haben. Pof. D. Jüge Rot Didati de eometie alte Pizip d Satz vo Cavaliei dlage des olmebegiffs (eiscließlic Satz vo De) olme de d des stmpfs Kgelvolme d Kgelobefläce Pizip vo Cavaliei Boaveta Cavaliei (598 47;

Mehr

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis.

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis. . Wurzel Ds Wurzelziehe (Rdiziere) ist die Umkehrug des Potezieres. Durch Berechug der etsprechede Wurzel etsteht wieder der Wert der Bsis. poteziere Wurzel ziehe. Die Qudrtwurzel Ds Ziehe der Qudrtwurzel

Mehr

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck 10 1 Grundlgen der Shulgeometrie 13 Ds Dreiek In diesem shnitt findet lles in der ffinen Stndrdeene 2 = R 2 sttt Drei Punkte, und, die niht uf einer Gerden liegen, ilden ein Dreiek Die Punkte,, nennt mn

Mehr

GIBS. Übungsaufgaben zur Vertiefung. V1. Beschriften Sie die Konstruktionen! n n n n ' ' ' ' Modul 1.5. Geometrische Optik 1 58.

GIBS. Übungsaufgaben zur Vertiefung. V1. Beschriften Sie die Konstruktionen! n n n n ' ' ' ' Modul 1.5. Geometrische Optik 1 58. eometrische Optik 1 58 Übugsaufgabe zur Vertiefug V1. Beschrifte Sie die Kostruktioe! ' ' ' ' ' ' ' ' Lehrerversio eometrische Optik 1 59 V2. Bei eiem Brillekroglas tritt Licht a der Rückfläche des lases

Mehr

Formelsammlung WS 2005/06

Formelsammlung WS 2005/06 Forelslug WS 005/06 FH Düsseldorf Fhereih Mshieu ud Verfhrestehik Mthetik für Igeieure Prof. Dr. W. Sheideler Ausreitug: Sevd Mer Ihltsverzeihis. Zeihe für esodere Zhleege 3. Poteze 3 Reheregel für Poteze

Mehr

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG ( ) a) (4a 3b)(a + 2b)(5a + 6b) b) 1 x (1 x (1 x (1 x (1 x (1 x) ) ) ) ) b) ( m + 10) 5

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG ( ) a) (4a 3b)(a + 2b)(5a + 6b) b) 1 x (1 x (1 x (1 x (1 x (1 x) ) ) ) ) b) ( m + 10) 5 Üuge Motg -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG Blok Die Musterlösuge werde Aed uf der Vorkurs-Hoepge ufgeshltet!. Berehe Sie vo Hd: : 9 9. Berehe Sie vo Hd: / /. Zu welhe Zhleege ln,

Mehr

Lösen einer Gleichung 3. Grades

Lösen einer Gleichung 3. Grades Lösen eine Gleichung Gdes We sich uf dieses Abenteue einlssen will, bucht einige Kenntnisse übe komlee Zhlen Es eicht be, wenn mn folgende Schvehlte kennt und kochezettig (mn nehme) nwenden knn: Es gibt

Mehr

A 2 Die Cramersche Regel

A 2 Die Cramersche Regel Die Crmersche egel Mtrixschreibweise eies liere Gleichugssystems Die Crmersche egel 5 Wir gehe vo der llgemei Gestlt eies liere Gleichugssystems us : Gegebe seie m (reelle oder komplexe) Zhle ik (i,,,

Mehr

Wird der Potenzbegriff auf negative Exponenten erweitert, dann können auch sehr kleine Zahlen gut dargestellt werden.

Wird der Potenzbegriff auf negative Exponenten erweitert, dann können auch sehr kleine Zahlen gut dargestellt werden. . Poteze mit gze Epoete Wird der Potezegriff f egtive Epoete erweitert, d köe ch sehr kleie Zhle gt drgestellt werde. Ws edetet 0? Die Defiitio wird so festgelegt, dss die isherige Potezgesetze gültig

Mehr

Vektorrechnung. Ronny Harbich, 2003

Vektorrechnung. Ronny Harbich, 2003 Vektorrechug Ro Hrich, 2003 Eiführug Ihlt Defiitio Betrg Sklrmultipliktio Nullvektor Gegevektor Eiheitsvektor Additio Sutrktio Gesetze Defiitio Ei Vektor ist eie Mege vo Pfeile, die gleichlg (kogruet),

Mehr

4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst

4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst 15 Wichtige Sätze ud Defiitioe zu 4: Ds qudrtische Rezirozitätsgesetz us der Vorlesug: LV-NR 150 39 Verstltug Diskrete Mthemtik II, 4.0 std Dozet Holtkm, R. 4.1 G sei Grue (mit multiliktiv geschriebeer

Mehr

Der Käufer einer Option (Optionsinhaber) erwirbt das Recht, nicht aber die Verpflichtung, innerhalb einer bestimmten Frist (Optionsfrist)

Der Käufer einer Option (Optionsinhaber) erwirbt das Recht, nicht aber die Verpflichtung, innerhalb einer bestimmten Frist (Optionsfrist) . Opioe Der Käfer eier Opio (Opiosihaber erwirb as Rech, ich aber ie Verpflichg, ierhalb eier besimme Fris (Opiosfris eie besimme Mege eies besimme Basisweres z eiem vereibare Preis (Basispreis / Asübgspreis

Mehr

Banken und Börsen, Kurs 41520 (Inhaltlicher Bezug: KE 4)

Banken und Börsen, Kurs 41520 (Inhaltlicher Bezug: KE 4) Lösugshiweise zu Eiseeabeit 2 zum Kus 452, ake u öse, WS 2/2 Lösugshiweise zu Eiseeabeit 2: WS 2/2 ake u öse, Kus 452 (Ihaltliche ezug: KE 4) alyse festvezisliche Wetpapiee 5 Pukte Vo Ihe ak wee Ihe ie

Mehr

Hausaufgabe 2 (Induktionsbeweis):

Hausaufgabe 2 (Induktionsbeweis): Prof. Dr. J. Giesl Formle Sprhen, Automten, Prozesse SS 2010 Üung 3 (Age is 12.05.2010) M. Brokshmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB 2004 Ihltsverzeichis Ihltsverzeichis... Folge ud Grezwerte... 2 Aäherug eie Grezwert... 2 Die Fläche des 5 Ecks... 3 Nährugsweise Berechug vo Pi... 4 Die Folge... 5 Defiitio der Folge... 5 Beispiele

Mehr

Hilfsrelais HR 116. Bilfinger Mauell GmbH

Hilfsrelais HR 116. Bilfinger Mauell GmbH Bilfinger Muell GmH Hilfsrelis HR 11 Die Hilfsrelis ienen zur glvnishen Trennung, Kontktvervielfhung un Trennung zwishen Hilfs- un Steuerstromkreisen. Bilfinger Muell GmH Inhltsverzeihnis Inhlt Seite Anwenung

Mehr

Symmetrien und Winkel

Symmetrien und Winkel 5-04 1 10 mthuh 1 LU reitsheft + weitere ufgen «Grundnforderungen» Symmetrien 301 Zeihne Grossuhsten des lphets, sortiert nh vier Typen: hsensymmetrish punktsymmetrish hsen- und punktsymmetrish weder hsen-

Mehr

1. Übungsblatt zur Analysis II

1. Übungsblatt zur Analysis II Fchereich Mthemtik Prof Dr Steffe Roch Nd Sissouo WS 9/ 69 Üugsltt zur Alysis II Gruppeüug Aufge G Bestimme Sie für jede der folgede Fuktioe f : [, ] R ds utere ud oere Itegrl ud etscheide Sie, o die Fuktio

Mehr

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a.

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a. HUNKLOIHDWKHPDWLN Dies ist keie Fomelsmmlug im klssische Si - die vewedete Bezeichuge wede icht eklät ud Voussetzuge fü die ültigkeit de Fomel wede i de Regel icht gegee. 7HLO,6WRIIJHELHWHHULWWHOVWXIH

Mehr

Funktion: Grundbegriffe A 8_01

Funktion: Grundbegriffe A 8_01 Fuktio: Grudegriffe A 8_ Eie Fuktio ist eie eideutige Zuordug: Jede Wert us der Defiitiosege wird geu ei Wert us der Werteege zugeordet. Ist f eie Fuktio ud sid ud y eider zugeordete Werte, d schreit kurz:

Mehr

Ergebnis: Abhängigkeit y(x) in der impliziten Form G(y) = F(x) + C. y =

Ergebnis: Abhängigkeit y(x) in der impliziten Form G(y) = F(x) + C. y = Lösugsmethode Differetilgleihuge erster Ordug Für gewisse Tpe vo Differetilgleihuge läßt sih ei Weg gee, uf dem m, die Lösug der Differetilgleihug uf Qudrture d.h. uf ds Ausrehe vo Itegrle, urükführe k..

Mehr

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung?

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung? Aufge F 99: Drehstromverruher Ein symmetrisher Verruher ist n ds Drehstromnetz ( 0 V, f 50 Hz) ngeshlossen. Die us dem Netz entnommene Wirkleistung eträgt,5 kw ei einem eistungsfktor os 0,7. ) Berehnen

Mehr

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1 8 7 Potezreihe 7 Potezreihe 7. Fuktioefolge ud -reihe Puktweise ud gleichmäßige Kovergez vo Fuktioefolge Sei f j ) j= eie Folge vo reelle) Fuktioe mit Defiitiosgebiete Df j), j N, ud = Df j ) R. j= D bilde

Mehr

Musteraufgaben mit Lösungen zur Zinseszins- und Rentenrechnung

Musteraufgaben mit Lösungen zur Zinseszins- und Rentenrechnung Musteaufgabe mit Lösuge zu Ziseszis- ud Reteechug Dieses Dokumet ethält duchgeechete Musteaufgabe zu Ziseszis- ud Reteechug mit Lösuge, die ma mit eiem hadelsübliche Schultascheeche (mit LO- ud y x -Taste

Mehr

Mit sind Summe und Differenz der halbierten Werte. Die 3. binomische Formel ist zweimal anwendbar:

Mit sind Summe und Differenz der halbierten Werte. Die 3. binomische Formel ist zweimal anwendbar: . : mme, Prkt ifferez zeier Zle I eier löre qrtie Glei x x i ie mme Prkt er eie Löe.Mit er ifferez e lierte Werte m e ilt :, e m, m ± e, m, e Mit i mme ifferez er lierte Werte. ie. imie Frmel it zeiml

Mehr

Ode an die Freude Text: Friedrich Schiller ( ) Melodie: aus 9. Sinfonie, 4. Satz Ludwig van Beethoven ( ) œ J. fi & œ n. J œ œ. œ œ.

Ode an die Freude Text: Friedrich Schiller ( ) Melodie: aus 9. Sinfonie, 4. Satz Ludwig van Beethoven ( ) œ J. fi & œ n. J œ œ. œ œ. Kl B / K Sopra Alt Teor Bass 1 2 Kleie Besetzug oder Kiderhor Ode a die Freude Text: Friedrih Shiller (1759-1805) Melodie: aus 9 Sifoie, 4 Satz Ludwig va Beethove (1770-1827) Freu - Freu - Freu - Freu

Mehr

Repetitionsaufgaben Potenzen und Potenzgleichungen

Repetitionsaufgaben Potenzen und Potenzgleichungen Ktole Fchschft Mthemtik Repetitiosufge Poteze ud Potezgleichuge Ihltsverzeichis A) Voremerkuge B) Lerziele C) Poteze D) Potezgleichuge E) Aufge Poteze mit Musterlösuge F) Aufge Potezgleichuge mit Musterlösuge

Mehr

1. Grundlagen. 2. Potenzen, Wurzeln, Logarithmen. 3. Vektorrechnung. 4. Trigonometrische Funktionen. 5. Differentialrechnung. 6.

1. Grundlagen. 2. Potenzen, Wurzeln, Logarithmen. 3. Vektorrechnung. 4. Trigonometrische Funktionen. 5. Differentialrechnung. 6. Ihlte Brüceurs Mthemti Fchhochschule Hover SS 0 Dipl.-Mth. Coreli Reiterger. Grudlge. Poteze, Wurzel, Logrithme. Vetorrechug 4. Trigoometrische Futioe. Differetilrechug. Itegrlrechug 7. Mtrize, Liere Gleichugssysteme

Mehr

E B. B r = 0 B E E E B B. E r. Elektromagnetische Wellen. Die vier Maxwell Gleichungen im quellenfreien Raum. mit

E B. B r = 0 B E E E B B. E r. Elektromagnetische Wellen. Die vier Maxwell Gleichungen im quellenfreien Raum. mit lekomagneishe Wellen µ Die vie Mawell Gleihungen im quellenfeien Raum µ a a a mi µ µ mi µ µ µ Wellengleihung eindimensionale Wellengleihung.. 3. 4. Lösung de eindimensionalen Wellengleihung? in Ansa: sin

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) peimenalphsik II Kip SS 7 Zusavolesungen: Z-1 in- und mehdimensionale Inegaion Z- Gadien Divegen und Roaion Z-3 Gaußsche und Sokessche Inegalsa Z-4 Koninuiäsgleichung Z-5 lekomagneische Felde an Genflächen

Mehr

Brückenkurs Mathematik Dr. Karl TH Nürnberg

Brückenkurs Mathematik Dr. Karl TH Nürnberg Brükekurs Mthemtik Dr. Krl TH Nürerg Qudrtishe Gleihuge Ugleihuge Copyright : Huert Krl Alle Rehte vorehlte. Diese Puliktio drf ohe die usdrüklihe shriftlihe Geehmigug des Autors weder gz oh uszugsweise

Mehr

Abschlussprüfung 2014 an den Realschulen in Bayern

Abschlussprüfung 2014 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Name: Abschlussprüfug 014 a de Realschule i ayer Mathematik II Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Nachtermi A 10 Agler verwede sogeate Schwimmer, die a der Agelschur

Mehr

UNTERPUT)EINSÄT)E Schaltbilder

UNTERPUT)EINSÄT)E Schaltbilder UNTERPUT)EINSÄT)E Schaltbilder ANSCHLUSS-BEISPIELE Auss haltu g it U i e sals halte We hsels haltu g K euz-/we hsels haltu g Doppel-We hsel- K euzs haltu g Auss halte, Auss halte, Se ie s halte Ko t ollauss

Mehr

Formelsammlung Mechanik

Formelsammlung Mechanik oellun Mechnik Beufliche Gniu chobechule oellun Phik Mechnik Heinich-Enuel-Meck-Schule Dd Snd: 8..8 oellun Mechnik Beufliche Gniu chobechule Gößen und Einheien de Mechnik oel e de Einheien Beziehun zwichen

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Menge der natürlichen Zahlen. ℕ = ℕ {0} Menge der ganzen Zahlen ℤ = ℤ {0} ℝ. Menge der reellen Zahlen. ℝ = ℝ {0} ℝ+ = { x ℝ x 0}

Menge der natürlichen Zahlen. ℕ = ℕ {0} Menge der ganzen Zahlen ℤ = ℤ {0} ℝ. Menge der reellen Zahlen. ℝ = ℝ {0} ℝ+ = { x ℝ x 0} Mekhilfe Mthemtik fü Bildugsgäge die zu FHSR fühe Zhlemege ℕ = { ; ; ; ;...} Mege de tüliche Zhle ℕ = ℕ {} ℤ = {... ; ; ; ; ; ;...} Mege de gze Zhle ℤ = ℤ {} ℝ Mege de eelle Zhle ℝ = ℝ {} ℝ+ = { ℝ } Mege

Mehr

Dr. Jürgen Senger MATHEMATIK. Grundlagen für Ökonomen

Dr. Jürgen Senger MATHEMATIK. Grundlagen für Ökonomen D. Jüge Sege MTHEMTIK Gudlage fü Ökooe ÜBUNG 8.. - LÖSUNGEN. Gegee ist das lieae Gleichugssyste: 7 a. Es hadelt sich u ei ihoogees lieaes Gleichugssyste it Gleichuge ud Vaiale.. Ei lieaes Gleichugssyste

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen LGÖ Ks VM Schuljhr 07/08 Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen LGÖ Ks VM Schuljhr 06/07 Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo

Mehr

Abiturprüfung Baden-Württemberg: Mathematische Merkhilfe, 1. Auflage (2017) S. 1/8. Dreieck Flächeninhalt: Mindestens zwei Seiten sind gleich lang.

Abiturprüfung Baden-Württemberg: Mathematische Merkhilfe, 1. Auflage (2017) S. 1/8. Dreieck Flächeninhalt: Mindestens zwei Seiten sind gleich lang. Aiturprüfug Bde-Württemerg: Mthemtishe Merkhilfe,. Auflge (7) S. /8 Eee Figure Dreiek Fläheihlt: A g hg gleihshekliges Dreiek Midestes zwei Seite sid gleih lg. gleihseitiges Dreiek Alle drei Seite sid

Mehr

o e Die Vorteile von Stand Up Paddling: Pierce Brosnan Draufstellen, lospaddeln und Spaß haben, lautet die Devise!

o e Die Vorteile von Stand Up Paddling: Pierce Brosnan Draufstellen, lospaddeln und Spaß haben, lautet die Devise! ! E M O S E W A D N SUP IS EASY A STAND UP PADDLING de eue Tedspot Piece Bosa Piece Bosa paddelt, Jeife Aisto macht s ud viele weitee Hollywood-Stas sid davo begeistet: Stad Up Paddlig, die eue Tedspotat

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am TU Gaz, Istitut fü Regelugstechik Schiftliche Püfug aus Regelugstechik a 6.0.00 Nae / Voae(): Ke-Mat.N.: Gebutsdatu: BONUSPUNKTE aus Coputeecheübug SS00: 3 4 eeichbae Pukte 5 4 5 5 eeichte Pukte TU Gaz,

Mehr

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien:

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien: Regressoslse De Regressoslse st ee Slug vo sttstshe Alseverfhre. Zel e de häufgste egesetzte Alseverfhre st es Bezehuge zwshe eer hägge ud eer oder ehrere uhägge rle festzustelle. Se wrd sesodere verwedet

Mehr

Lineare Gleichungssysteme mit 3 und mehr Variablen

Lineare Gleichungssysteme mit 3 und mehr Variablen Linere Gleihungssysteme mit un mehr rilen Beispiel 1 mit rilen: 11 Zunähst estimmt mn ie rile, ie mn ls Erste eliminieren will. In iesem Fll soll von hinten nh vorn vorgegngen weren,.h. zuerst soll rile

Mehr

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 :

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 : Hns Wlser, [20080409] Eine Visulisierung des Kosinusstzes 1 Worum es geht Es wird eine zum Pythgors-Piktogrmm nloge Figur für niht rehtwinklige Dreieke esprohen. Dei werden ähnlihe gleihshenklige Dreieke

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

x mit Hilfe eines linearen, zeitinvarianten

x mit Hilfe eines linearen, zeitinvarianten Übug &Prktiku zu Digitle Sigle ud Systee The: Fltug Diskrete Fltug Wird ei zeitdiskretes Sigl ( T ) x it Hile eies liere, zeitivrite Siglverrbeitugssystes verrbeitet, so lässt sich ds Verhlte des verrbeitede

Mehr

Carmichaelzahlen und andere Pseudoprimzahlen

Carmichaelzahlen und andere Pseudoprimzahlen Crmichelzhle ud dere Pseudoprimzhle Christi Glus 26.05.2008 1 Der fermtsche Primzhltest Erierug 1 (Kleier Stz vo Fermt). Für p prim, Z, ggt(, p) 1 gilt: p 1 1 (mod p) Algorithmus 2 (Fermtscher Primzhltest).

Mehr

Ohm Gymnasium Grundwissen Mathematik 8. Jahrgangsstufe

Ohm Gymnasium Grundwissen Mathematik 8. Jahrgangsstufe Oh Gsiu Grudwisse Mthetik 8. Jhrggsstufe Wisse ud Köe. Fuktioe ezeihuge: Fuktiosvorshrift: Fuktioster kurz f( ist hier: Fuktiosgleihug = Grph eier Fuktio: ufge ud eispiele Eie Fuktio ist eie eideutige

Mehr

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen:

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen: Die Schwingungs-Differenilgleichung Freie ungedämpfe Schwingung eines Mssenpunes Federschwinger Bei Auslenung des Mssenpunes: Hooesches Gesez F - Federonsne Die Bewegungsgleichung lue dher: d m oder m

Mehr

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt 7.. Aufgbe zu Sklrprodukt ud Vektorprodukt Aufgbe : Sklrprodukt Bereche die folgede Produkte: ) Aufgbe : Läge eies Vektors Bestimme die Läge ud de etsprechede Eiheitsvektor der folgede Vektore. =, b =,

Mehr

Mathematik Geometrie. Inhalt. Berner Fachhochschule. Hochschule für Technik und Informatik Burgdorf. Autor: Niklaus Burren Datum: 7.

Mathematik Geometrie. Inhalt. Berner Fachhochschule. Hochschule für Technik und Informatik Burgdorf. Autor: Niklaus Burren Datum: 7. Bee Fchhochschule Hochschule fü Techik ud Ifomtik Bugdof Mthemtik Geometie Auto: Niklus Bue Dtum: 7. Septeme 4 Ihlt. Mtize ud Detemite..... Defiitio..... Detemite..... Ivese eie Mti....4. Cmeegel... 4.5.

Mehr

3.2. Flächenberechnungen

3.2. Flächenberechnungen Anlysis Inegrlrechnung.. Flächenerechnungen... Die Flächenfunkion ) Flächenfunkionen ufzeichnen Skizziere zur gegeenen Funkion diejenige Funkion, welche die Fläche unerhl der Funkionskurve miss. Die Flächenfunkion

Mehr