Elektrostatik. Im stationären Fall vereinfachen sich die Maxwell Gauß- und Maxwell Faraday-Gleichungen zu

Größe: px
Ab Seite anzeigen:

Download "Elektrostatik. Im stationären Fall vereinfachen sich die Maxwell Gauß- und Maxwell Faraday-Gleichungen zu"

Transkript

1 KAPITEL II Elektrostatik Im stationären Fall vereinfachen sich die Maxwell Gauß- und Maxwell Faraday-Gleichungen zu E( r) = ρ el.( r) E( r) = 0. (II.1a) (II.1b) Dabei hängt die Rotation der jetzt zeitunabhängigen elektrischen Feldstärke E( r) nicht mehr von der magnetischen Induktion ab. II.1 Elektrisches Potential II.1.1 Skalarpotential Betrachte ein einfach zusammenhängendes Gebiet (4) des Raums. Aus der stationären Maxwell Faraday-Gleichung (II.1b) folgt die Existenz einer differenzierbaren skalaren Funktion Φ( r) derart, dass die Beziehung E( r) = Φ( r) (II.) in jedem Punkt r des Gebiets erfüllt wird. Nach Angabe eines beliebigen Punktes r 0 kann man nämlich Φ durch r Φ( r) = Φ( r 0 ) E( r ) d r (II.3) r 0 definieren, wobei das Wegintegral dank dem Stokes schen Satz unabhängig vom Weg ist, so dass Φ( r) eindeutig festgelegt ist, abgesehen von der beliebigen Wahl des Zahlenwerts für Φ( r 0 ). Φ wird als elektrostatisches Potential oder Skalarpotential bezeichnet. Die zugehörige SI-Einheit ist das olt () mit physikalischer Dimension [Φ = M L T 3 I 1. Bemerkungen: Offensichtlich ist das elektrostatische Potential Φ nur bis auf eine additive Konstante bestimmt, entsprechend der Wahl von Φ( r 0 ) in Gl. (II.3). Wie wir im Kap.?? sehen werden, gilt Gl. (II.) nicht mehr im nicht-stationären Fall. II.1. Poisson-Gleichung Das Ausdrücken des elektrostatischen Feldes in der Maxwell Gauß-Gleichung (II.1a) durch das Skalarpotential gemäß Gl. (II.) führt zur Poisson-Gleichung Φ( r) = ρ el.( r) (II.4)

2 14 Elektrostatik mit dem Laplace-Operator. Insbesondere ergibt sich im akuum, d.h. in Abwesenheit von Ladungen, die Laplace-Gleichung Φ( r) = 0, deren Lösungen die sog. harmonischen Funktionen sind. (II.5) Die Poisson-Gleichung (II.4) ist eine inhomogene (für ρ el. 0!) lineare partielle Differentialgleichung zweiter Ordnung; die Laplace-Gleichung (II.5) ist die assoziierte homogene Differentialgleichung. Die Bestimmung einer speziellen Lösung der Poisson-Gleichung wird in Abschn. II. diskutiert. Gauß sches Gesetz Sei eine geschlossene Fläche, die ein zusammenhängendes Raumvolumen einschließt. Der elektrische Fluss durch die Oberfläche wird durch Φ E E( r) d S (II.6) gegeben. Dabei ist d S = d S e n der vektorielle Oberflächenelement, wobei e n den Normaleinheitsvektor zu d S bezeichnet. Unter erwendung des Integralsatzes von Gauß ist das Oberflächenintegral auf der rechten Seite gleich dem olumenintegral der Divergenz des Integranden, d.h. E( r) d S = E( r) d 3 r. Unter Betrachtung der Maxwell Gauß-Gleichung (II.1a) lässt sich E( r) ersetzen ρ el. ( r) Φ E = d 3 r. Daher ergibt sich das Gauß sche Gesetz Φ E = Q, (II.7) wobei Q die Gesamtladung im olumen bezeichnet. Dieses Resultat stellt die globale Formulierung der lokalen Maxwell Gauß-Gleichung (II.1a) dar. II.1.3 Elektrisches Feld und Potential von Ladungen II.1.3 a Elektrisches Feld und Potential einer Punktladung Eine Punktladung befinde sich im Punkt r 0, während im Rest des Raums akuum herrscht. Dann ist die Situation kugelsymmetrisch um r 0. Insbesondere sollte das elektrische Feld E( r) in konstantem Abstand r r 0 von der Punktladung einen konstanten Betrag E ( r r 0 ) haben. Für die Richtung des elektrischen Feldes, die am meistens symmetrische Möglichkeit ist, das es in jedem Punkt entlang der Radialrichtung mit Einheitsvektor ( r r 0 )/ r r 0 zeigt. Somit ist ein vernünftiger Ansatz E( r) = E ( r r 0 ) r r 0 r r 0. (II.8) Betrachte man jetzt eine in r 0 zentrierte Kugel mit Radius R. In jedem Punkt der Kugelfläche ist das elektrische Feld normal, d.h. parallel zur Radialrichtung r r 0, und nach außen gerichtet, so dass E( r) d S = E( r) d S

3 II.1 Elektrisches Potential 15 gilt. Dabei ist definitionsgemäß die Menge der Punkte mit r r 0 = R, so dass E( r) im Integral durch E(R) ersetzt werden kann. Da dieser Betrag konstant über bleibt, kann er aus dem Integral herausgezogen werden: E( r) d S = E(R) d S = 4πR E(R). Dabei wurde benutzt, dass das Oberflächenintegral im mittleren Glied genau der Flächeninhalt der Kugel mit Radius R darstellt. Dank dem Gauß schen Gesetz (II.7) ist die linke Seite auch mit der Gesamtladung innerhalb des durch abgeschlossenen olumens verknüpft. Hier ist diese Gesamtladung einfach gleich der Ladung, die im Zentrum der Kugel liegt: E( r) d S =. Somit ergibt sich insgesamt = 4πR E(R) bzw. E(R) = 4π R. Nach Einsetzen dieses Betrags in den Ansatz (II.8) ergibt sich schließlich für das elektrische Feld einer Punktladung im Punkt r 0 E( r) = Man prüft problemlos nach, dass das zugehörige Skalarpotential 4π r r 0 r r 0 3 für r r 0. (II.9a) Φ( r) = 4π r r 0 für r r 0 (II.9b) lautet, wobei hier Φ( r) = 0 im Unendlichen gewählt wurde. II.1.3 b Elektrisches Feld und Potential mehrerer Punktladungen Betrachte man jetzt N Punktladungen 1,..., N, die sich jeweils in r 1,..., r N befinden, in Abwesenheit weiterer Ladungen im ganzen Raum. Zur Bestimmung des entsprechenden elektrischen Feldes bzw. Skalarpotentials soll man nur darauf beachten, dass die Grundgleichungen der Elektrostatik sowohl die stationären Maxwell- Gleichungen (II.1) als äuivalent die Beziehung (II.) und die Poisson-Gleichung (II.4) linear ( sind. Demzufolge gilt ein Superpositionsprinzip für die Lösungen der Gleichungen: wenn ρel.,1 ( r), Φ 1 ( r) ) und ( ρ el., ( r), Φ ( r) ) die Poisson-Gleichung (II.4) auf R 3 erfüllen, dann genügen die Funktionen ( ρ el.,1 ( r) + ρ el., ( r), Φ 1 ( r) + Φ ( r) ) ebenfalls der Poisson-Gleichung auf R 3. Dementsprechend lautet das Skalarpotential für die N Punktladungen Φ( r) = a=1 a 4π r r a für r { r 1,..., r N }, (II.10a) wieder mit der Wahl Φ( r) = 0 für r. Das zugehörige elektrische Feld ist E( r) = a=1 a 4π r r a r r a 3 für r { r 1,..., r N }, (II.10b) wie sich entweder aus der Gradientbildung des Skalarpotentials (II.10a) oder aus der Superposition der elektrischen Felder (II.9b) der individuellen Punktladungen folgern lässt.

4 16 Elektrostatik II.1.3 c Elektrisches Feld und Potential einer Ladungsverteilung Ähnlich dem Übergang (I.15) von einer diskreten Massenverteilung {m a }, entsprechend einer endlichen Anzahl von Massenpunkten, zu einer durch eine Massendichte ρ( r) beschriebenen kontinuierlichen erteilung, kann man von einer endlichen Anzahl von Punktladungen { a } zu einer kontinuierlichen Ladungsverteilung ρ el. übergehen, indem man das Rezept a f( r a ) f( r)ρ el. ( r) d 3 r (II.11) a für jede Funktion f der Positionen der Punktladungen anwendet, wobei das durch die Ladungsverteilung besetzte Raumvolumen bezeichnet. Dementsprechend lautet das elektrostatische Potential bzw. Feld für eine beliebige elektrische Ladungsverteilung ρ el. ( r) Φ( r) = ρ el. ( r ) 4π r r d3 r, (II.1a) bzw. E( r) = ρ el. ( r ) 4π r r r r 3 d3 r. (II.1b) Bemerkungen: Der orsicht halber sollte der Punkt r außerhalb des olumens sein, um unangenehme Divisionen durch 0 zu vermeiden. Hiernach wird das Potential (II.1a) auf eine alternative Weise hergeleitet ( II..). Setzt man in die Gl. (II.1a) (II.1b) die Ladungsverteilung (I.6a) für eine Menge von Punktladungen ein, so findet man natürlich Gl. (II.10a) und (II.10b) wieder. II.1.4 Elektrostatische potentielle Energie II.1.4 a Coulomb-Kraft Betrachte wieder N Punktladungen 1,..., N, die sich jeweils in r 1,..., r N befinden. Da die Punktladung a ruht, lautet die darauf wirkende Lorentz-Kraft F a ( r a ) = a Ea ( r a ) (II.13a) wobei E a ( r a ) das elektrische Feld bezeichnet, das die anderen Ladungen b mit b a im Punkt r a erzeugen. Unter erwendung der Gl. (II.10b) für dieses Feld folgt F a ( r a ) = b=1 b a a 4π r a r b r a r b 3. (II.13b) Falls es nur zwei Punktladungen 1, in den Punkten r 1, r gibt, lautet die Kraft, welche auf 1 ausübt F 1 = 1 4π r 1 r r 1 r 3. (II.14a) Dies ist die bekannte Coulomb-Kraft, die sich aus dem Potential ( r 1, r ) = 1 4π r 1 r, (II.14b)

5 II.1 Elektrisches Potential 17 gemäß F 1 = 1 ( r 1, r ) ableiten lässt, wobei 1 den Gradienten bezüglich des Ortsvektors r 1 bezeichnet. Bemerkungen: Der Ausdruck der Coulomb-Kraft (II.14a) einer elektrischen Punktladung auf eine andere ist antisymmetrisch unter dem Austausch der zwei Ladungen: F 1 = F 1, in Übereinstimmung mit dem dritten newtonschen Gesetz (I.19). Wenn die Punktladungen sich relativ zu einander bewegen, ist die Kraft zwischen ihnen nicht mehr die Coulomb-Kraft (II.14a). II.1.4 b Potentielle Energie Sei a der Gradient bezüglich des Ortsvektors r a der a-ten Punktladung eines Systems aus N Ladungen. Wie im vorigen Paragraphen bezeichnen E a bzw. F a das elektrische Feld bzw. die Kraft der anderen Ladungen b mit b a. Aus der Maxwell Thomson-Gleichung a E a = 0 und der Gl. (II.13a) folgt a F a = 0: laut der Behauptung vom I.1.3 c ist die Kraft F a konservativ. Genauer gilt F a ( r a ) = a ( { r b } ) (II.15a) mit einer potentiellen Energie, die durch (5) ( { r b } ) = 1 c,d=1 c d c d 4π r c r d (II.15b) gegeben ist. Alternativ gilt ( { r b } ) = 1 c Φ c ( r c ), c=1 (II.15c) wobei Φ c durch Gl. (II.10a) mit r = r c und Summierung über die Punktladungen d mit d c gegeben wird. Beweis: Mit dem Potential (II.15b) gilt unter erwendung der Kettenregel a = 1 ( ) c d 1 a = 1 ( ) c d r c r d δ ca 4π r c r d 4π r c r d 3 + δ r c r d da r c r d 3 = 1 d a c,d=1 c d a d 4π r a r d r a r d 3 1 a c 4π c a c,d=1 c d r c r a r c r a 3. Ersetzt man d bzw. c durch b in der ersten bzw. zweiten Summe der zweiten Zeile, so sind beide Summanden gleich und man findet genau das gesuchte Ergebnis (II.13b). Im Limes einer kontinuierlichen Ladungsverteilung ρ el. wird die potentielle Energie (II.15c) zu = 1 ρ el. ( r)φ( r) d 3 r (II.16) mit dem Raumvolumen, das die Ladungsverteilung besetzt; eigentlich kann durch R 3 ersetzt werden (5) Dieser Ausdruck stimmt natürlich mit der durch Gl. II.18 hier ohne äußeres Potential definierten gesamten potentiellen Energie eines Mehrteilchensystems überein.

6 18 Elektrostatik Bemerkung: Die letztere Gleichung könnte auf erster Sicht verwirrend sein, denn das elektrostatische Potential Φ im Integral wird in einem Punkt betrachtet, wo sich Ladungen befinden. Das heißt, dass dies nicht dem Gültigkeitsbereich der Gl. (II.1a) entspricht, für die der Punkt r außerhalb der Ladungsverteilung sein soll. Dies bedeutet nur, dass Φ( r) nicht durch Gl. (II.1a) gegeben ist. II.1.4 c Energie des elektrostatischen Feldes Die potentielle Energie (II.16) einer Ladungsverteilung ρ el. lässt sich auch durch das elektrostatische Feld E( r), das die erteilung erzeugt, ausdrücken. In der Tat gilt R3 E( r) = d 3 r, (II.17) wobei das Integrand als die elektrische Energiedichte e el. ( r) des Feldes im Punkt r interpretiert werden kann. Zum Beweis dieses Ergebnisses kann das Integral auf der rechten Seite der Gl. (II.16) zuerst über das olumen einer Kugel mit Radius R berechnen, dann am Ende den Grenzwert R betrachten. Dank der Maxwell Gauß-Gleichung (II.1a) gilt 1 ρ el. ( r)φ( r) d 3 r = [ E( r) Φ( r) d 3 r. Dabei lässt sich das Integrand mithilfe der Identität [ E( r) Φ( r) = [ Φ( r) E( r) E( r) Φ( r) = [ Φ( r) E( r) + E( r) umschreiben: 1 ρ el. ( r)φ( r) d 3 r = ɛ 0 [Φ( r) E( r) E( r) d 3 r + d 3 r. Der zweite Term auf der rechten Seite gibt das gesuchte Ergebnis im Limes R, so dass man nun beweisen soll, dass der erste Term in diesem Limes verschwindet. Tatsächlich kann das erste olumenintegral auf der rechten Seite mit dem Gauß schen Integralsatz in ein Oberflächenintegral über die Kugelfläche transformiert werden [Φ( r) E( r) d 3 r = Φ( r) E( r) d S. Wenn R groß genug ist, befinden sich alle Ladungen innerhalb der Kugel r R. Dann nehmen das elektrostatische Potential und das Feld mit R ab, gemäß (53) r =R Φ(R) 1 R, E(R) 1 R. Dagegen gilt d S = R d Ω mit d Ω dem Raumwinkelelement. Insgesamt kommt E( r) r =RΦ( r) d S 4πR 1 1 R R 1 R, so dass dieser Term im Grenzwert R Null wird. (53) Dies folgt aus dem Gauß schen Gesetz (II.7), unter erwendung des gleichen Arguments wie in II.1.3 a.

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung KAPITEL III Elektrostatik Hier fehlt die obligatorische Einleitung... Im stationären Fall vereinfachen sich die Maxwell Gauß und die Maxwell Faraday-Gleichungen für die elektrische Feldstärke E( r) die

Mehr

VIII.2 Bestimmung des Potentials aus der Poisson-Gleichung

VIII.2 Bestimmung des Potentials aus der Poisson-Gleichung 13 Elektrostatik III.2 Bestimmung des Potentials aus der Poisson-Gleichung Im III.1.3 wurde das elektrostatische Potential erzeugt durch eine Ladungsverteilung (III.12a mithilfe des Gauß schen Gesetzes

Mehr

Magnetostatik. B( r) = 0

Magnetostatik. B( r) = 0 KAPITEL III Magnetostatik Die Magnetostatik ist die Lehre der magnetischen Felder, die von zeitlich konstanten elektrischen Strömen herrühren. Im entsprechenden stationären Regime vereinfachen sich die

Mehr

IX.2 Multipolentwicklung

IX.2 Multipolentwicklung IX. Multipolentwicklung 153 IX. Multipolentwicklung Ähnlich der in Abschn. III.3 studierten Entwicklung des elektrostatischen Skalarpotentials Φ( r) einer Ladungsverteilung ρ el. als Summe der Potentiale

Mehr

VII.2 Bestimmung des Skalarpotentials aus der Poisson-Gleichung

VII.2 Bestimmung des Skalarpotentials aus der Poisson-Gleichung II.2 Bestimmung des Skalarpotentials aus der Poisson-Gleichung 129 II.2 Bestimmung des Skalarpotentials aus der Poisson-Gleichung Im II.1.3 wurde das durch eine Ladungsverteilung erzeugte elektrostatische

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Zeitabhängige elektromagnetische Felder

Zeitabhängige elektromagnetische Felder KAPITEL X Zeitabhängige elektromagnetische Felder Im Gegensatz zu den stationären Fällen der Elektro- und Magnetostatik sind das elektrische und das magnetische Feld im allgemeineren zeitabhängigen Fall

Mehr

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes X.3 Energie und Impuls des elektromagnetischen Feldes 169 X.3 Energie und Impuls des elektromagnetischen Feldes Genau wie mechanische Systeme trägt das elektromagnetische Feld Energie ( X.3.1 und Impuls

Mehr

Einleitung. als die Gleichungen angesehen werden, welche die Antwort vom elektromagnetischen Feld auf die Wirkung dessen Quellen modellieren.

Einleitung. als die Gleichungen angesehen werden, welche die Antwort vom elektromagnetischen Feld auf die Wirkung dessen Quellen modellieren. KAPITEL VI Einleitung Die Elektrodynamik beruht auf ein paar gekoppelten Gleichungen, die das Wechselspiel von elektrischen und magnetischen Feldern E, B mit elektrischen Ladungen und Strömen ρ el., j

Mehr

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot

Mehr

X. Elektrostatik und Magnetostatik in Materie

X. Elektrostatik und Magnetostatik in Materie X. Elektrostatik und Magnetostatik in Materie Dieses Kapitel befasst sich mit den elektromagnetischen Feldern in Materie im stationären Regime, d.h. wenn die mikroskopischen und makroskopischen Felder

Mehr

Dass die Rotation eines konservativen Kraftfeldes null ist, folgt direkt aus der Identität C 1 C 2 C 2 C 1

Dass die Rotation eines konservativen Kraftfeldes null ist, folgt direkt aus der Identität C 1 C 2 C 2 C 1 I.1 Grundbegriffe der newtonschen Mechanik 11 I.1.3 c Konservative Kräfte Definition: Ein zeitunabhängiges Kraftfeld F ( r) wird konservativ genannt, wenn es ein Skalarfeld (3) V ( r) gibt, das F ( r)

Mehr

Theoretischen Physik II SS 2007 Klausur I - Aufgaben und Lösungen

Theoretischen Physik II SS 2007 Klausur I - Aufgaben und Lösungen Theoretischen Physik II SS 7 Klausur I - Aufgaben und Lösungen Aufgabe Elektrostatik Im Mittelpunkt einer leitenden und geerdeten Hohlkugel RadiusR) befindet sich eine kleine Kugel mit homogener Ladungsverteilung

Mehr

X.4 Elektromagnetische Wellen im Vakuum

X.4 Elektromagnetische Wellen im Vakuum X.4 Elektromagnetische Wellen im Vakuum 173 X.4 Elektromagnetische Wellen im Vakuum In Abwesenheit von Quellen, ρ el. = 0 j el. = 0, nehmen die Bewegungsgleichungen (X.9) (X.11) für die elektromagnetischen

Mehr

1.12. MAKROSKOPISCHE ELEKTROSTATIK 87. In den vorangegangenen Abschnitten hatten wir die beiden Grundgleichungen der Elektrostatik.

1.12. MAKROSKOPISCHE ELEKTROSTATIK 87. In den vorangegangenen Abschnitten hatten wir die beiden Grundgleichungen der Elektrostatik. .. MAKROSKOPISCHE ELEKTROSTATIK 87. Makroskopische Elektrostatik.. Polarisation, dielektrische erschiebung In den vorangegangenen Abschnitten hatten wir die beiden Grundgleichungen der Elektrostatik rot

Mehr

Moderne Theoretische Physik WS 2013/2014

Moderne Theoretische Physik WS 2013/2014 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik WS 23/24 Prof. Dr. A. Shnirman Blatt 2:Lösungen Dr. B. Narozhny Besprechung 8..23. Gauß scher

Mehr

5. Grundgleichungen der Magnetostatik

5. Grundgleichungen der Magnetostatik 5. Grundgleichungen der Magnetostatik 5.1 Divergenz der magnetischen Induktion Wir bestimmen jetzt die eldgleichungen der Magnetostatik, d.h. infinitesimale (lokale) Gleichungen für die magnetische lussdichte,

Mehr

5. Grundgleichungen der Magnetostatik

5. Grundgleichungen der Magnetostatik 5. Grundgleichungen der Magnetostatik 5.1 Divergenz der magnetischen Induktion Wir bestimmen etzt die eldgleichungen der Magnetostatik, d.h. infinitesimale (lokale Gleichungen für die magnetische lussdichte,

Mehr

Wir haben gesehen, dass sich aus einer gegebenen Ladungsverteilung ρ( r ) das elektrostatische. ρ( r )

Wir haben gesehen, dass sich aus einer gegebenen Ladungsverteilung ρ( r ) das elektrostatische. ρ( r ) .7. RANDWERTPROBLEME 39.7 Randwertprobleme Wir haben gesehen, dass sich aus einer gegebenen Ladungsverteilung ρ( r ) das elektrostatische Potential φ( r) mit φ( r) ρ( r ) 4πε r r d3 r berechnen läßt. Hierbei

Mehr

2 Grundgrößen und -gesetze der Elektrodynamik

2 Grundgrößen und -gesetze der Elektrodynamik Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:

Mehr

6 Methoden zur Lösung des elektrostatischen Randwertproblems

6 Methoden zur Lösung des elektrostatischen Randwertproblems 6 Methoden zur Lösung des elektrostatischen Randwertproblems Die generelle Strategie zur Lösung des elektrostatischen Randwertproblems umfaßt zwei Schritte: 1. Finde eine spezielle Lösung der Poisson-Gleichung

Mehr

4 Grenzflächen, Leiter und das elektrostatische Randwertproblem

4 Grenzflächen, Leiter und das elektrostatische Randwertproblem 4 Grenzflächen, Leiter und das elektrostatische Randwertproblem Bei der Berechnung elektrostatischer Felder und Potentiale mussten wir bisher voraussetzen, dass wir die Ladungsverteilungen im gesamten

Mehr

5 Harmonische Funktionen

5 Harmonische Funktionen 5 Harmonische Funktionen Generell kann man die allgemeine Lösung des elektrostatischen andwertproblems auch als Summe einer speziellen Lösung der Poisson-Gleichung und einer Lösung der Laplace-Gleichung

Mehr

Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte)

Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte) Aufgabe K: Potential einer Hohlkugel ( + 7 + = Punkte) (a) Leiten Sie die integrale Form der Maxwell Gleichungen der Elektrostatik aus den entsprechenden differentiellen Gleichungen her. Differentielle

Mehr

In der Experimentalphysik-Vorlesung haben Sie die Maxwell schen Gleichungen der Magnetostatik in ihrer integralen Form kennengelernt:

In der Experimentalphysik-Vorlesung haben Sie die Maxwell schen Gleichungen der Magnetostatik in ihrer integralen Form kennengelernt: 13 Magnetostatik Solange keine Verwechslungen auftreten, werden wir in diesem und in den folgenden Kapiteln vom magnetischen Feld B an Stelle der magnetischen Induktion bzw. der magnetischen Flußdichte

Mehr

2. Grundlagen der Elektrostatik

2. Grundlagen der Elektrostatik . luss eines ektor-eldes. Grundlagen der Elektrostatik. Wichtige Integralsätze Im folgenden werden wir wiederholt die folgenden beiden Integralsätze im R 3 benötigen (in der ektoranalysis werden sie in

Mehr

Maxwell-Gleichungen (1873) Boltzmann: Es war ein Gott der diese Zeichen schrieb?

Maxwell-Gleichungen (1873) Boltzmann: Es war ein Gott der diese Zeichen schrieb? Literatur Feynman: Vorlesungen über Physik, Band II, Oldenbourg H. Vogel: Gerthsen Physik, Springer H.J. Paus: Physik in Experimenten und Beispielen, Hanser P.A. Tipler/R.A. Llewellyn: Moderne Physik,

Mehr

1.3. DAS COULOMBSCHE GESETZ, ELEKTROSTATISCHES FELD 9

1.3. DAS COULOMBSCHE GESETZ, ELEKTROSTATISCHES FELD 9 8 KAPITEL. ELEKTROSTATIK.3 Das Coulombsche Gesetz, elektrostatisches Feld Zur Einführung verschiedener Grundbegriffe betrachten wir zunächst einmal die Kraft, die zwischen zwei Ladungen q an der Position

Mehr

Experimentalphysik II

Experimentalphysik II Experimentalphysik II PK2-6SP Webpage http://photonik.physik.hu-berlin.de/lehre/ss08exp2/ 1 Übungstermine 1. Dr. J. Puls: Die, 15-17, Raum 1'12, NEW 14 2. Dr. H.J. Wünsche: Die, 15-17, Raum 1 11 NEW 14

Mehr

Elektromagnetische Felder (TET 1) Gedächtnisprotokoll

Elektromagnetische Felder (TET 1) Gedächtnisprotokoll Elektromagnetische Felder (TET 1) Gedächtnisprotokoll 8. August 2017 Dies ist ein Gedächtnisprotokoll. Leider konnte ich mich nicht an alle Details jeder Aufgabe erinnern. Für korrigierte Exemplare dieses

Mehr

2 Grundgrößen und -gesetze der Elektrodynamik

2 Grundgrößen und -gesetze der Elektrodynamik Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:

Mehr

2. Grundlagen der Elektrostatik

2. Grundlagen der Elektrostatik 2. Grundlagen der Elektrostatik 2.0 Wichtige Integralsätze Im folgenden werden wir wiederholt die folgenden beiden Integralsätze im R 3 benötigen (in der ektoranalysis werden sie in allgemeinerer orm bzw.

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) Zusatzvorlesungen: Z-1 Ein- und mehrdimensionale ntegration Z-2 Gradient, Divergenz und Rotation Z-3 Gaußscher und Stokesscher ntegralsatz Z-4 Kontinuitätsgleichung Z-5 Elektromagnetische Felder an Grenzflächen

Mehr

Felder und Wellen WS 2016/2017

Felder und Wellen WS 2016/2017 Felder und Wellen WS 216/217 Musterlösung zum 2. Tutorium 1. Aufgabe (**) Berechnen Sie das el. Feld einer in z-richtung unendlich lang ausgedehnten unendlich dünnen Linienladung der Ladungsdichte η pro

Mehr

Teil III. Grundlagen der Elektrodynamik

Teil III. Grundlagen der Elektrodynamik Teil III Grundlagen der Elektrodynamik 75 6. Die Maxwellschen Gleichungen 6.1 Konzept des elektromagnetischen eldes Im folgenden sollen die Grundgleichungen für das elektrische eld E( x, t) und für das

Mehr

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer TUM EM-Tutorübung SS 1 1.5.21 Formelsammlung EM SS 21 Diese Formelsammlung dient nur zur Orientierung und stellt keinen nspruch auf ollständigkeit. Zudem darf sie während der Prüfung nicht benutzt werden,

Mehr

31 Die Potentialgleichung

31 Die Potentialgleichung 3 Die Potentialgleichung Die Potentialgleichung oder auch Poisson-Gleichung ist die lineare Gleichung zweiter Ordnung u = f in einem Gebiet R n. Im homogenen Fall f = 0 spricht man auch von der Laplace-

Mehr

Lösung für Blatt 7,,Elektrodynamik

Lösung für Blatt 7,,Elektrodynamik Institut für Theoretische Physik, Universität Zürich Lösung für Blatt 7,,Elektrodynamik Prof. Dr. T. Gehrmann Blatt 7 FS 213 Aufgabe 1 Induktion im Magnetfeld Nach dem Faraday schen Induktionsgesetz induziert

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 27. 04. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 27. 04. 2009

Mehr

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Stephan Huber 19. August 2009 1 Nachtrag zum Drehmoment 1.1 Magnetischer Dipol Ein magnetischer Dipol erfährt

Mehr

Technische Universität München Lehrstuhl für Technische Elektrophysik. Tutorübungen zu Elektromagnetische Feldtheorie. (Prof.

Technische Universität München Lehrstuhl für Technische Elektrophysik. Tutorübungen zu Elektromagnetische Feldtheorie. (Prof. Technische Universität München Lehrstuhl für Technische Elektrophsik Tutorübungen zu Elektromagnetische Feldtheorie (Prof. Wachutka. Aufgabe: Lösung Wintersemester 208/209 Lösung Blatt 6 a Laut der Spiegelladungsmethode

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 Definition: Ein Skalarfeld ordnet jedem Punkt im dreidimensionalen Raum R 3 eine ahl () zu. Unter einem räumlichen Vektorfeld

Mehr

(Gaußscher Integralsatz)

(Gaußscher Integralsatz) Der Gaußsche Integralsatz Beim Oberflächenintegral O F n da beschreibt der Integrand den senkrechten Durchsatz des Vektorfeldes durch das Flächenelement da. Insgesamt liefert das Integral über eine geschlossene

Mehr

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern TP2: Elektrodynamik WS 2017-2018 Arbeitsblatt 10 21/22.12. 2017 Dipole und Multipole in stationären Feldern Die Multipolentwicklung ist eine hilfreiche Näherung zur Lösung der Poisson Gleichung, wenn eine

Mehr

Relativistische Punktmechanik

Relativistische Punktmechanik KAPITEL II Relativistische Punktmechanik Der Formalismus des vorigen Kapitels wird nun angewandt, um die charakteristischen Größen und Funktionen zur Beschreibung der Bewegung eines freien relativistischen

Mehr

Die Maxwell-Gleichungen

Die Maxwell-Gleichungen Die Maxwell-Gleichungen 1 Mathematische Grundlagen Wenn man erstmals mit der Elektrodynamik konfrontiert wird, hat man vermutlich mit der ektoranalysis und dem damit verbundenen Auftreten von partiellen

Mehr

10.1 Ampère sches Gesetz und einfache Stromverteilungen

10.1 Ampère sches Gesetz und einfache Stromverteilungen 1 Magnetostatik Solange keine Verwechslungen auftreten, werden wir in diesem und in den folgenden Kapiteln vom magnetischen Feld B an Stelle der magnetischen Induktion bzw. der magnetischen Flußdichte

Mehr

Elektrizität und Magnetismus - Einführung

Elektrizität und Magnetismus - Einführung Elektrizität und Magnetismus - Einführung Elektrostatik - elektrische Ladung - Coulomb Kraft - elektrisches Feld - elektrostatisches Potential - Bewegte Ladung -Strom - Magnetismus - Magnetfelder - Induktionsgesetz

Mehr

Übungen zu Theoretische Physik II

Übungen zu Theoretische Physik II Physikalisches Institut Übungsblatt 8 Universität Bonn 08.2.206 Theoretische Physik WS 6/7 Übungen zu Theoretische Physik II Prof. Dr. Hartmut Monien, Christoph Liyanage, Manuel Krauß Abgabe: spätestens

Mehr

2. Aufgabe (*) 2. r R 0 : (3R 2 0 r 2 ) φ(r) = Insgesamt ergibt sich: r > R 0 : Gegeben ist folgendes Vektorfeld in Zylinderkoordinaten: H R = 0

2. Aufgabe (*) 2. r R 0 : (3R 2 0 r 2 ) φ(r) = Insgesamt ergibt sich: r > R 0 : Gegeben ist folgendes Vektorfeld in Zylinderkoordinaten: H R = 0 Felder und Wellen WS 217/218 Musterlösung zum 3. Tutorium 1. Aufgabe (**) 1. E-Feld der homogen geladenen Kugel; außerhalb (r > R ) (3. Tutorium) E = Q 4πε r 2 e r mit Q = 4πR3 3 2. E-Feld innerhalb der

Mehr

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir Klassische Theoretische Physik TP-L - WS 2013/14 Mathematische Methoden 8.1.2014 Frank Bertoldi (Version 2) Abbildungen und Beispiele aus F. Embacher "Mathematische Grundlagen..." und "Elemente der theoretischen

Mehr

Kapitel 7: Maxwell-Gleichungen

Kapitel 7: Maxwell-Gleichungen Kapitel 7: Maxwell-Gleichungen 1831-1879 Physik-II - Christian Schwanenberger - Vorlesung 50 7.1 Der Verschiebungsstrom 7 Maxwell - Gleichungen 7.1 Der Verschiebungsstrom Das Faraday sche Gesetz B beschreibt,

Mehr

(a) Das elektrische Feld wird durch zwei Punktladungen, deren Felder sich ungestört überlagern, erzeugt.

(a) Das elektrische Feld wird durch zwei Punktladungen, deren Felder sich ungestört überlagern, erzeugt. 1. Superposition und Gauß scher Satz (a Das elektrische Feld wird durch zwei Punktladungen, deren Felder sich ungestört überlagern, erzeugt. E = E 1 + E 1 = 1 ( q 4πɛ 0 2 q = 1 8q (1 2 93a 2 4πɛ 0 9a 2

Mehr

Lagrange-Formalismus

Lagrange-Formalismus KAPITEL II Lagrange-Formalismus Die im letzten Kapitel dargelegte Formulierung der Mechanik nach Newton ist zwar sehr intuitiv: man zählt alle auf das zu studierende System wirkenden Kräfte auf, schreibt

Mehr

1 Mathematische Hilfsmittel

1 Mathematische Hilfsmittel Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation

Mehr

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld Inhalt 11. Elektrodynamik 11.1 Das Gaußsche Gesetz 11.2 Kraft auf Ladungen 11.2.1 Punktladung im elektrischen Feld 11. Elektromagnetische Kraft 11 Elektrodynamik 11. Elektrodynamik (nur Vakuum = Ladung

Mehr

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist.

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist. Beim Differenzieren von Vektoren im Zusammenhang mit den Kreisbewegungen haben wir bereits gesehen, dass ein Vektor als dreiwertige Funktion a(x, y, z) aufgefasst werden kann, die an jedem Punkt im dreidimensionalen

Mehr

Elektrostatik ( ) r r. Der elektrische Fluss Ψ : Wie stark strömt das elektrische Feld durch eine gegebene Fläche?

Elektrostatik ( ) r r. Der elektrische Fluss Ψ : Wie stark strömt das elektrische Feld durch eine gegebene Fläche? Der elektrische Fluss Ψ : Wie stark strömt das elektrische Feld durch eine gegebene Fläche? A r r ( ) Φ ΨA = E r A r da Experimentalphysik für Biologen und Chemiker, O. Benson & A. Peters, HumboldtUniversität

Mehr

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................

Mehr

Es kann günstig sein, Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a

Es kann günstig sein, Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a V.3.4 Kanonische Transformationen Es kann günstig sein Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a Koordinatentransformation im Phasenraum Wir betrachten eine allgemeine Koordinatentransformation

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu Klassische Elektrodynamik 1 Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de

Mehr

E2: Wärmelehre und Elektromagnetismus 12. Vorlesung

E2: Wärmelehre und Elektromagnetismus 12. Vorlesung E2: Wärmelehre und Elektromagnetismus 12. Vorlesung 28.05.2018 Heute: - Elektrische Ladungen - Coulomb-Gesetz - Elektrische Felder - Gaußscher Satz - Elektrisches Potential https://xkcd.com/567/ Prof.

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

Übungsblatt 3 - Lösungen

Übungsblatt 3 - Lösungen Übungsblatt 3 - Lösungen zur Vorlesung EP2 (Prof. Grüner) im 2010 3. Juni 2011 Aufgabe 1: Plattenkondensator Ein Kondensator besteht aus parallelen Platten mit einer quadratischen Grundäche von 20cm Kantenlänge.

Mehr

Elektrodynamik (T3p)

Elektrodynamik (T3p) Zusatzaufgaben zur Vorlesung Elektrodynamik (T3p) SoSe 5 Beachten Sie, dass die nachfolgenden Aufgaben nur als zusätzliche Übung und nicht als potenzielle Klausuraufgaben angesehen werden sollten! Aufgabe

Mehr

Bewegung im elektromagnetischen Feld

Bewegung im elektromagnetischen Feld Kapitel 6 Bewegung im elektromagnetischen Feld 6. Hamilton Operator und Schrödinger Gleichung Felder E und B. Aus der Elektrodynamik ist bekannt, dass in einem elektrischen Feld E(r) und einem Magnetfeld

Mehr

IV.2 Kanonische Transformationen

IV.2 Kanonische Transformationen IV.2 Kanonische Transformationen 79 IV.2 Kanonische Transformationen IV.2.1 Phasenraum-Funktionen Die verallgemeinerten Koordinaten q a t) und die dazu konjugierten Impulse p a t) bestimmen den Bewegungszustand

Mehr

9 Multipol-Entwicklung

9 Multipol-Entwicklung 9 Multipol-Entwicklung Im vorigen Kapitel haben wir gesehen, dass die Lösungen der Laplace-Gleichung bei axialer Symmetrie in einer Entwicklung nach Legendre-Polynomen dargestellt werden können, [ φ(r,

Mehr

PROBEPRÜFUNG MATHEMATIK I UND II

PROBEPRÜFUNG MATHEMATIK I UND II PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant

Mehr

4.4 Die Potentialgleichung

4.4 Die Potentialgleichung Beispiel 29. f(z) = exp( 1 ) H(C {}) z 1 w : z n = log w + 2πin, n N lim z n = n f(z n ) = exp(log w + 2πin) = w + exp(2πin) }{{} =1 In jeder Umgebung von Null nimmt f jeden Wert w (unendlich oft) an wesentliche

Mehr

Kapitel 11: Oberflächen- und Flussintegrale

Kapitel 11: Oberflächen- und Flussintegrale Kapitel 11: Oberflächen- und Flussintegrale Ziel: Berechnung von Integralen, deren Integrationsbereich eine 2-dim. Fläche in einem 3-dim. Raum ist (z.b. Fläche von Kugel) Motivation / Anwendungen: - z.b.

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 1 Thema: Elektrostatik Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Ladungen und Coulomb-Gesetz...................

Mehr

Übung Elektrische und magnetische Felder SoSe 2015

Übung Elektrische und magnetische Felder SoSe 2015 Aufgabe 1 Berechnen Sie die aumladungsdichte ρ für: 1.1 eine Linienladungsdichteτ( r) auf einem Kreisring mit dem adius 0 a) Geben Sie die Parameterdarstellung eines Kreises mit zugehörigem Wertebereich

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de Website: www.astro.uni-bonn.de/tp-l

Mehr

Elektrisches Potenzial Kapitel 25

Elektrisches Potenzial Kapitel 25 Elektrisches Potenzial Kapitel 25 Zusammenfassung Coulomb (22) gleiche Ladungen stoßen sich ab ungleiche Ladungen ziehen sich an Das elektrische Feld (23) Ein geladener Körper beeinflusst einen anderen

Mehr

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 2

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 2 Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 2 KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Mehr

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel 11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 2-3 Prof. Dr. Alexander Mirlin Blatt 4: Lösungen

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

Felder und Wellen WS 2017/2018. D = D r e r. 2πrlD r = Q

Felder und Wellen WS 2017/2018. D = D r e r. 2πrlD r = Q Felder und Wellen WS 2017/2018 Musterlösung zur 5 Übung 12 Aufgabe Berechnung der allgemeinen Kapazität eines Zylinderkondensators Die elektrische Verschiebungsdichte ist radial gerichtet D = D r Auf einer

Mehr

E2: Wärmelehre und Elektromagnetismus 12. Vorlesung

E2: Wärmelehre und Elektromagnetismus 12. Vorlesung E2: Wärmelehre und Elektromagnetismus 12. Vorlesung 28.05.2018 Heute: - Elektrische Ladungen - Coulomb-Gesetz - Elektrische Felder - Gaußscher Satz - Elektrisches Potential https://xkcd.com/567/ Prof.

Mehr

Fourier-Transformation

Fourier-Transformation ANHANG A Fourier-Transformation In diesem Anhang werden einige Definitionen Ergebnisse über die Fourier-Transformation dargestellt. A. Definition Theorem & Definition: Sei f eine integrable komplexwertige

Mehr

2 Gauss Gesetz. 2.1 Elektrischer Fluss

2 Gauss Gesetz. 2.1 Elektrischer Fluss 2 Gauss Gesetz Das Gauss'sche Gesetz formuliert einen Zusammenhang zwischen der elektrischen Ladung und dem elektrischen Feld. Es ist allgemeiner und eleganter als das Coulomb Gesetz. Die Anwendung des

Mehr

I.6.3 Kepler-Problem. V ( x ) = G Nm 1 m 2. (I.91a) mit dem Potential. . (I.91b)

I.6.3 Kepler-Problem. V ( x ) = G Nm 1 m 2. (I.91a) mit dem Potential. . (I.91b) 38 Newton sche Mechanik I.6.3 Kepler-Problem Die Newton sche Gravitationskraft zwischen zwei Massenpunkten mit Massen m 1, m 2 ist eine konservative Zentralkraft, gegeben durch mit dem Potential F ( x

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 26/8/13 Technische Universität München Abbildung 1: Punktladungen 1 Aufgaben zur Elektrostatik Aufgabe 1 Gegeben seien drei

Mehr

3.7 Das magnetische Feld in Materie

3.7 Das magnetische Feld in Materie 15 KAPITEL 3. MAGNETOSTATIK 3.7 Das magnetische Feld in Materie Wie wir in den vorangegangenen Kapiteln bereits gesehen haben, wird die magnetische Induktionsdichte B durch ein Vektorpotenzial A charakterisiert,

Mehr

Elektrodynamik. 1. Elektrostatik

Elektrodynamik. 1. Elektrostatik Elektrodynamik 1. Elektrostatik 1.1 Elektrische Ladung Es gibt positive und negative Ladungen. Sie ist quantisiert, d.h. jede beobachtete Ladung ist ein ganzes Vielfaches der Elementarladung: In jedem

Mehr

Die Maxwell Gleichungen

Die Maxwell Gleichungen Die Maxwell Gleichungen Die Maxwellschen Gleichungen beschreiben Beziehungen zwischen dem elektrischen Feld E = E( x;t), der magnetischen Flussdichte B = B( x;t), der elektrischen Stromstärke J = J( x;t),

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Technische Universität München Physik Department Ferienkurs Experimentalphysik 2 Vorlesung 1: Elektrostatik Tutoren: Elena Kaiser Matthias Golibrzuch Nach dem Skript Konzepte der Experimentalphysik 2:

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Känzig, Alonso-Finn Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2002-2003

Mehr

Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. 1 Integration von Funktionen einer Veränderlichen

Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. 1 Integration von Funktionen einer Veränderlichen Institut für Wissenschaftliches Rechnen Dr. Ute Feldmann, Maximilian Becker Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. Die 3 Kreise mit Ampelfarben dienen der Selbsteinschätzung.

Mehr

Zusammenfassung: Flächenintegrale

Zusammenfassung: Flächenintegrale Zusammenfassung: Flächenintegrale Gerichtetes Flächenelement: "Fluss" durch Flächenelement: "Fläche über G": "Fluss" durch die Fläche : Für orthogonale Koordinaten: Betrag des Flächenelements: Richtung:

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

C4.6: Oberflächenintegrale

C4.6: Oberflächenintegrale C4.6: Oberflächenintegrale Ziel: Berechnung von Integralen, deren Integrationsbereich eine 2-dim. Fläche in einem 3-dim. Raum ist (z.b. Fläche von Kugel) Motivation / Anwendungen: - z.b. Elektrostatik:

Mehr

Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16

Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16 Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 215/16 Abgabetermin: keine Abgabe, sondern Wertung als Präsenzübung Prof. Dr. Claudius Gros, Institut für Theoretische Physik, Goethe-Universität

Mehr

8. Energie, Impuls und Drehimpuls des elektromagnetischen

8. Energie, Impuls und Drehimpuls des elektromagnetischen 8. Energie, Impuls und Drehimpuls des elektromagnetischen Feldes 8.1 Energie In Abschnitt 2.5 hatten wir dem elektrostatischen Feld eine Energie zugeordnet, charakterisiert durch die Energiedichte ω el

Mehr